首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
大西洋中脊属于慢速扩张洋中脊,最北端到达87°N,距离北极仅333km,最南端延伸到54°S的布韦岛,占到全球洋中脊总长度的40%。随着北大西洋TAG(26°N)热液区的发现及较大硫化物资源量的证实,大西洋慢速扩张脊成为全球海底热液硫化物调查与研究的重点地区。俄罗斯、  相似文献   

2.
<正>慢速扩张洋脊占全球洋中脊扩张系统的80%(Murton and Rona,2015),在全球洋中脊系统研究中具有重要的意义。西北印度洋卡尔斯伯格脊南起2°S,以NW-SE向趋势延伸至10°N,洋脊的扩张速率为24.6~34.4 mm/a,属于典型的慢速扩张洋脊(Ray et al.,2013)。地形分析发现,其对称扩张洋脊段具有较窄的对称V形脊轴裂谷,发育脊轴新火山脊,扩张方向与脊轴的走向垂直;非对称扩张洋脊  相似文献   

3.
<正>近几十年来,由于勘探技术的进步,世界诸国开始重视和进行深海大洋海底矿产资源的调查勘探工作。海底多金属硫化物是海底矿产资源极为重要的一项,对其的研究具有明显的经济与科学意义。大西洋中脊属于慢速扩张脊,慢速扩张洋中脊容易发育大型的热液多金属硫化物。大西洋的热液硫化物主要分布于洋中脊地区,底部基岩主要由基性玄武岩与少量超基性岩组成。大西洋中脊的热液硫化物可主要分为Cu-Zn型和Cu-Fe型硫化物。已发现的热液硫化物区域在地形上具有显著差异,主  相似文献   

4.
斜向扩张是超慢速扩张洋中脊独特的构造特征,其地形分段特征明显区别于经典的快速-慢速端元洋中脊模型,是理解超慢速扩张洋中脊地质过程的重要切入点.基于西南印度洋中脊Indomed-Gallieni和Shaka-DuToit段多波束地形数据,分析了不同斜向扩张角度(α)洋中脊的地形分段样式.其中,46.5°~47.5°E(α...  相似文献   

5.
迄今为止,已发现有自然金产出的现代海底热液系统及其相关的块状硫化物矿床,主要分布于大西洋的慢速扩张洋脊和西太平洋的弧后盆地内(Herzig等,1993; Hannington等,1995;Binns等,1997;Murphy和Meyer,1998;Moss和Scott,2001).  相似文献   

6.
慢速-超慢速扩张西南印度洋中脊研究进展   总被引:5,自引:0,他引:5  
西南印度洋中脊具有慢速—超慢速扩张速率和斜向扩张的特征,是全球洋中脊系统研究的热点之一,也是研究海底构造环境、热液活动、地幔深部过程及其动力学机制的重要区域。在前人工作的基础上较为详细地介绍了西南印度洋中脊的研究历史、地形划分、扩张速率及其构造特征,归纳了西南印度洋中脊热液活动及岩石地球化学特征,探讨了超慢速扩张洋脊和超镁铁质岩系热液系统的特殊性,并认为超慢速扩张洋脊广泛暴露的地幔岩及其蛇纹石化作用、超镁铁质岩系热液系统以及热液硫化物成矿作用是西南印度洋中脊今后研究的重要内容。  相似文献   

7.
宋珏琛  李江海  冯博 《地质学报》2021,95(8):2273-2283
海底热液系统是地球热量平衡的重要组成,也是地球化学循环和成矿作用发生的主要场所,与洋中脊系统在空间上具有很强的联系.慢速-超慢速扩张洋中脊中确认的活跃热液喷口数量约占全球总数量的三分之一,查明热液发育位置及发育岩性与岩浆-构造活动的耦合关系,对于研究海底热液活动演化过程和海底找矿具有很好的指示意义.本文将全球慢速-超慢速扩张洋中脊中已确认的活跃热液活动进行统计分类,其中受岩浆活动控制的热液活动有29处,而受构造活动控制的热液活动有15处,相对于快速-中速扩张洋中脊显示出较强的构造相关性.研究发现,岩浆作用控制下的热液活动集中在洋中脊轴部中央裂谷内,而构造主控型热液活动常发育在非转换不连续间断和拆离断层系统内.随着大洋核杂岩成熟,热液活动位置向着离轴方向迁移,并且热液类型由高温"黑烟囱"型向低温弥散流型转变.  相似文献   

8.
西南印度洋中脊热液沉积稀土元素地球化学特征   总被引:1,自引:0,他引:1  
西南印度洋中脊(SWIR)超慢速扩张段特殊的构造环境是了解洋脊深部过程和热液系统的又一天然验室,为进一步认识全球洋中脊热液系统提供了新的思路和内容。同时,慢速扩张脊较低频率的构造事件或许促进热液上升流的长寿命、多期次活动,与高度不稳定的快速扩张热液系统相比更有利于大型矿床的形成。  相似文献   

9.
西南印度洋构造地貌与构造过程   总被引:3,自引:0,他引:3  
本文基于海底水深数据,制定了西南印度洋超慢速扩张脊新的海底构造地貌划分原则,将西南印度洋划分为7级构造地貌单元;并以该洋中脊中段的Discovery II和Gallieni转换断层之间及其邻区的海底构造地貌特征为依据,将其与该区断裂演化、分段性、分段拓展机制、中央裂谷形成过程、脊–柱相互作用和洋中脊跃迁进行综合分析。结果表明,该区洋中脊可以划分为4个三级构造地貌单元(即洋中脊的一级分段),从西向东被Andrew Bain和Prince Edwards、Discovery II以及Gallieni转换断层依次分割,分别反映为强热点–洋中脊相互作用的扩张脊、弱热点–洋中脊相互作用的扩张脊和正常超慢速扩张脊的地貌类型。每个三级分段可进一步划分为3~4个四级分段,本文仅侧重Discovery II和Gallieni转换断层间洋中脊四到七级的4个级别分段划分(即洋中脊的四级构造地貌单元再划分为3级)。其中,第七级构造地貌单元分别为侧列式裂谷(剪切带)、雁列式裂谷、横断层带等构造分割。该段洋中脊先后受Marion、Crozet、Madagascar等热点或海台的影响,经历了3次洋中脊跃迁,时间大致分别为80 Ma,60 Ma和40 Ma,该过程与冈瓦纳大陆裂解以来的大洋演化有关。最后,本文详细分析了20 Ma以来的西南印度洋洋中脊轴部的周期性拉分式断陷、多米诺式箕状断陷、地堑式断陷和海洋核杂岩等构造过程。  相似文献   

10.
<正>海底热液硫化物是一种重要的海底矿产资源,并在全球范围内的大洋中脊、海山及弧后盆地有较为广泛的分布,具有重要的经济价值和战略意义,其中西南印度洋中脊(SWIR)热液体系更因其超慢速的扩张速率而在全球大洋中脊系统中独具特色,且研究程度较低(陶春辉等,2011)。而同位素地球化学对于解释海底多金属硫  相似文献   

11.
慢速-超慢速扩张西南印度洋中脊普遍发育转换断层,洋脊分段性明显,是研究地质构造与地幔部分熔融关系的理想场所。对西南印度洋中脊(52°20′53°30′E)Gallieni转换断层与Gazelle转换断层之间洋脊段6个站位的深海橄榄岩研究发现:尖晶石Cr#的变化范围为0.194~0.329,对应的地幔部分熔融程度为7.6%~13.0%,反映全球洋中脊系统中低程度的地幔部分熔融,并且离转换断层近的地幔部分熔融程度低于洋脊分段中心,这种差异除了受转换断层的冷却作用影响外,还可能与洋脊分段中心更强的岩浆抽提作用有关。将研究区与全球其他洋脊对比发现,尖晶石Cr#及对应的地幔部分熔融程度随洋脊扩张速率的降低而降低,在探讨地幔部分熔融程度与洋脊扩张速率的相关性时,通过对转换断层效应的校正,能够更准确地反映地幔部分熔融程度随洋脊扩张速率的变化趋势。  相似文献   

12.
西南印度洋中脊(SWIR)平均扩张速率约为14 mm/yr,是全球洋中脊系统的重要组成端元,因其具有慢速-超慢速扩张特征,引起全球科学家的广泛关注.基于前人对SWIR的综合研究成果,从构造和岩浆作用两个角度出发,系统地回顾了 SWIR的形成和演化历史,探讨了岩浆的分布特征和地幔不均一性成因.SWIR的形成始于冈瓦纳大陆...  相似文献   

13.
范庆凯  李江海  刘持恒  潘相茹 《地质学报》2018,92(10):2040-2050
洋中脊拆离断层和洋底核杂岩(OCC)发育于慢速-超慢速扩张洋中脊中央裂谷边界,常伴随不对称的洋底扩张方式,其形成与演化起源于洋中脊中央裂谷间歇性的岩浆作用循环。拆离断层的规模和位置会随其自身演化而变化,并影响到洋中脊扩张中心的位置变化。依据洋中脊扩张中心位置的离轴迁移规律,本文将拆离断层和洋底核杂岩的演化过程划分为6个阶段,并参照洋中脊拆离断层和洋底核杂岩演化阶段的划分,将全球27处拆离断层进行分类。现今全球洋中脊拆离断层多属于非活动性拆离断层,位于阶段VI(如Logachev Massif拆离断层和Kane Megamullion拆离断层);但部分拆离断层仍在活动,即属于发展期和成熟期(阶段III/IV,如MAR, 13°19′N拆离断层和MtDent拆离断层),以及衰亡期(阶段V,如MAR, 13°30′N拆离断层和Atlantis Massif拆离断层)。在洋中脊拆离断层和洋底核杂岩形成-演化-衰亡-再次形成的循环过程中,中央裂谷的岩浆作用发生周期性循环,洋中脊扩张中心亦发生新生火山岩区中线-拆离断层终止线-重新活动的新生火山岩区中线的位置变化,并先后产生离轴和向轴的位移。  相似文献   

14.
<正>迄今为止,前人已在位于大洋中脊、海山以及弧后盆地热液活动区的部分块状硫化物矿床中发现有大量自然金、银金矿和自然银产出(Hannington et al.,1986,1991,1995;Herzig et al.,1993;Murphy&Meyer,1998;Moss&Scott,2001;Petersen et al.,2002)。但总体而言,Au-Ag系列独立矿物在大多数沿快速-中速扩张洋脊分布、以MORB为容矿基岩的多金属硫化物矿床中  相似文献   

15.
在《印度洋底大地构造图》的基础上,分析了印度洋盆构造格局和洋盆演化重大事件序列,并从印度洋盆初始裂解机制、扩张中心跃迁与热点作用、洋中脊扩展作用等方面讨论了印度洋盆的张开过程,提出以下几点认识:(1)现今印度洋洋中脊可分为两个系统:东南印度洋中脊-中印度洋中脊-卡斯伯格洋脊系统(东支)和西南印度洋中脊系统(西支),前者是太平洋洋中脊扩展作用的产物,后者是太平洋-东南印度洋中脊与大西洋中脊之间构造调节的产物;(2)印度洋盆最初裂解受地幔柱垂向挤压-水平伸展作用控制,沿前寒武造山带等地壳薄弱带发育;(3)印度洋盆经历两次扩张中心的跃迁,其趋向性跃迁方向与热点相对板块的运动方向具有一致性,显示两者存在内在联系。(4)大西洋和太平洋洋中脊在印度洋交汇,于古近纪连通,末端伴随陆块持续发生碎裂化、裂解化,可称为鱼尾构造模式,表明印度洋盆衔接和调节了三大洋盆的发育和演化过程,具有全球洋盆枢纽的关键意义。  相似文献   

16.
海底块状硫化物(SMS)蕴藏有丰富的Cu、Cd、Au、Fe、Ag、Co等战略性金属,是未来可供人类开发利用的战略资源.本文搜集了全球3 946组SMS化学成分数据,根据构造环境可将其分成4类(快速、中速、慢速、超慢速扩张)洋中脊型和2类(弧后扩张中心和弧火山)岛弧型SMS矿床.利用多元统计方法分析了SMS战略性金属的分布特征和主控因素,探讨了其资源前景.结果表明:洋中脊型SMS矿床富集Cu+Fe+Co±Mo,而岛弧型普遍富集Zn+Pb+Cd+Sb+Ag±Au等关键元素.分析表明,成矿温度、成矿物质来源、酸碱度和氧化还原条件是战略性金属富集的主要影响因素,其中流体温度主要受水深条件控制,成矿物质来源主要受控于构造地质环境,酸碱度和氧化还原性主要受控于围岩类型.Cu+Au+Fe+Co在水深超过约2 650 m的慢速—超慢速扩张脊非转换不连续带和拆离断层带等区域具较好的勘查前景;而Cu+Au+Cd+Ag在水深约1 080~2 160 m的弧后扩张中心区域具较好的勘查前景.   相似文献   

17.
<正>慢速洋中脊离轴区高温热液对流系统主要建立在超基性岩基础上,其成矿流体为碱性还原性流体(Bach et al.,2010),流体组分很大程度上取决于高温海水与超基性岩的水-岩反应,该类热液区上的块状硫化物因此表现出相对特殊的矿物组成和化学成分(Klevenz et al.,2011)。我们对Rainbow区(Lein et al.,2003)、Logatchev(Gablina et al.,2000)、Ashadze(Mozgova et al.,2008)等离轴区热液喷口流体  相似文献   

18.
青海德尔尼铜(锌钴)矿床产出在北西或北西西向超镁铁质岩带中,对其矿床成因长期以来一直存在争议。文中对德尔尼矿床主矿体不同类型硫化物矿石的Cu同位素组成进行了分析,通过与现代海底正在形成的赋存在超镁铁质岩(蛇纹石化橄榄岩)中的块状硫化物矿床进行类比,从构造背景和矿床地质角度探讨了矿床成因,得出以下主要认识:(1)阿尼玛卿构造带可能存在大型拆离断层,超镁铁质岩体和硫化物矿体的产出均与北西向发育的长期活动拆离断层有关;(2)德尔尼矿床属古代海相火山成因块状硫化物矿床,为赋存在超镁铁质岩体中的一个特殊类型(或称为"德尔尼型");(3)硫化物原生矿石Cu同位素组成均为负值,呈富轻Cu同位素特征,表明矿床经历了广泛的后期热液叠加过程。德尔尼矿床控矿构造、岩体特征和后期叠加成矿过程的深入研究不仅对矿床成因认识和找矿具有重要意义,而且为现代海底慢速-超慢速扩张洋中脊超镁铁质岩热液系统成矿研究提供了参考。  相似文献   

19.
程石  周怀阳 《岩石学报》2019,35(11):3565-3577
人们对超慢速扩张洋中脊深部岩浆过程的了解至今仍十分模糊。我们对西南印度洋洋中脊(Southwest Indian Ridge,SWIR) 63. 9°E处采集到的斜长石超斑状玄武岩(Plagioclase Ultra-Phyric Basalt,PUB)进行了岩石学和地球化学研究。样品具有以下几个特征:斜长石斑晶的体积分数高达~25%,而橄榄石斑晶的体积分数约1%;尽管该样品中玻璃的成分与同一洋脊段玄武岩的成分基本一致,但高Fo橄榄石斑晶与玻璃基质的成分不平衡;不同类型的斜长石晶体之间存在成分差异,单个斜长石大斑晶中的An值也呈现出与正常的结晶分异过程不符的环带;斜长石斑晶中发育溶蚀、筛状等不平衡结构。因此,我们认为,斜长石超斑状玄武岩经历了多期次熔体的作用,是由通过密度分选聚集在岩浆房顶部的斜长石斑晶被之后的火山喷发带出海底形成。尽管斜长石超斑状玄武岩与同一洋脊段的非斑状玄武岩之间并不存在母熔体成分上的差别,但超斑状玄武岩的出现进一步反映了超慢速扩张洋壳岩浆活动的多样性。  相似文献   

20.
本文将全球洋中脊系统作为研究整体,根据洋中脊的全球分布、运动学特征及其初始形成时与泛大陆的构造几何关系,将全球现今的洋中脊系统划分为内、外支洋中脊。外支洋中脊为探索者洋中脊-太平洋洋隆-东南印度洋中脊-西北印度洋中脊,起源于泛大洋及冈瓦纳大陆内部;内支洋中脊为西南印度洋中脊-大西洋中脊-北冰洋加科尔洋中脊,起源于泛大陆内部。两者之间通过俯冲带、转换断层以及弥散性板块边界实现全球板块构造在运动上的平衡,并保持地球的球形几何形态恒定。外支洋中脊在全球板块构造上造成泛大洋缩减,并持续被太平洋取代,直接推动了环太平洋俯冲带的形成;内支洋中脊造成大西洋盆、印度洋盆中生代以来持续扩张。中生代以来,外支洋中脊和内支洋中脊共同作用引起非洲板块、印度澳大利亚板块向北运动,新特提斯洋盆关闭,形成特提斯(阿尔卑斯山-喀尔巴阡山-扎格罗斯山-喜马拉雅山)碰撞造山带,并通过洋中脊扩张平衡了相关的岩石圈缩短。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号