首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
—The three-dimensional P-wave velocity structure of the Bear Valley region of central California is determined by applying a circular ray-tracing technique to 1735 P-wave arrivals from 108 locally recorded earthquakes. Comparison of the results obtained from one-dimensional and laterally varying starting models shows that many of the features in the structure determined are fairly insensitive to the choice of the starting model. Velocities associated with the Gabilan granites southwest of the San Andreas Fault are slightly higher than those in the Franciscan formation to the northeast, and these two features are separated in the southern part of the region by a narrow fault zone with very low velocities. In the southeastern part of the region, where the Gabilan granites do not abut the San Andreas Fault, the low velocities of the fault zone cross over to the southwestern side of the fault. They also appear to extend to depths of at least 15km, thus locally reversing the contrast across the San Andreas Fault that prevails farther to the northwest. In the northwestern part of the region, the low velocities of the fault zone split and follow the surface traces of the San Andreas and Calaveras Faults, but do not appear to extend to depths much deeper than about 6km. There also appears to be a well-defined contrast in structure in the middle of the Santa Clara Valley, suggesting the existence of a fault in the basement of the valley that may be a southern extension of the Sargent Fault into this region. Relocated hypocenters beneath the San Andreas Fault cluster in a zone that dips about 80° southwest and intersects the surface trace of the fault in the southern part of region.  相似文献   

2.
We present new in situ observations of systematic asymmetry in the pattern of damage expressed by fault zone rocks along sections of the San Andreas, San Jacinto, and Punchbowl faults in southern California. The observed structural asymmetry has consistent manifestations at a fault core scale of millimeters to meters, a fault zone scale of meters to tens of meters and related geomorphologic features. The observed asymmetric signals are in agreement with other geological and geophysical observations of structural asymmetry in a damage zone scale of tens to hundreds of meters. In all of those scales, more damage is found on the side of the fault with faster seismic velocities at seismogenic depths. The observed correlation between the damage asymmetry and local seismic velocity structure is compatible with theoretical predictions associated with preferred propagation direction of earthquake ruptures along faults that separate different crustal blocks. The data are consistent with a preferred northwestward propagation direction for ruptures on all three faults. If our results are supported by additional observations, asymmetry of structural properties determined in field studies can be utilized to infer preferred propagation direction of large earthquake ruptures along a given fault section. The property of a preferred rupture direction can explain anomalous behavior of historic rupture events, and may have profound implications for many aspects of earthquake physics on large faults.  相似文献   

3.
Correlation of three well-resolved paleoseismic records, including the Pitman Canyon site with its emerging record, presents a new possibility to understand fault segmentation. To be a useful concept, fault segment boundaries must be relatively stationary over multiple seismic cycles and must appear frequently in limiting the rupture extent of earthquakes; thus, sites on the same segment should share more paleoseismic events than those on different segments. A conclusive event correlation between sites is difficult or impossible due to dating uncertainties. However, often the data are adequate to preclude correlation and thus provide firm limits on rupture extent for those events. Thus clear non-correlations provide more information about segmentation than do unprovable potential correlations.The southern end of the most recent rupture in 1857, between Wrightwood and Pitman Canyon, is often used to define a segment boundary. However, there is an absence of significant non-correlation between the previous five Pitman Canyon events and the Wrightwood events. While both Pallett Creek and Wrightwood ruptured in 1857, only two of the previous five Wrightwood events can correlate with Pallett Creek events, which may or may not indicate that they actually do. These paleoseismic records do not support the existence of a segment boundary between Wrightwood and Pitman Canyon as defined by the 1857 rupture extent, suggesting a reevaluation of southern San Andreas Fault segmentation, and using historic ruptures to define segments in general.  相似文献   

4.
The northern Tehran fault (NTF) is a principal active fault of the Alborz mountain belt in the northern Iran. The fault is located north of the highly populated Metropolitan Area of Tehran. Historical records and paleoseismological studies have shown that the NTF poses a high seismic risk for the Tehran region and the surrounding cities (e.g. Karaj). A series of ground-motion simulations are carried out using a hybrid kinematic-stochastic model to calculate broadband (0.1–20 Hz) ground-motion time histories for deterministic earthquake scenarios (M7.2) on the NTF. We will describe the source characteristics of the target event to develop a list of scenario earthquakes that are probably similar to a large earthquake on the NTF. The effect of varying different rupture parameters such as rupture velocity and rise time on the resulting broadband strong motions has been investigated to evaluate the range of uncertainty in seismic scenarios. The most significant parameters in terms of ground-shaking level are the rise time and the value of the rupture velocity. For the worst-case scenario, the maximum expected horizontal acceleration, and velocity at rock sites in Tehran range between 128 and 1315 cm/s/s and 11–191 cm/s, respectively. For the lowest scenario, the corresponding values range between 102 and 776 cm/s/s and 12 to 81 cm/s. Nonlinear soil effects may change these results but are not accounted for in this study. The largest variability of ground motion is observed in neighborhood of asperity and also in the direction of rupture propagation. The calculated standard deviation of all ground-motion scenarios is less than 30% of the mean. The capability of the simulation method to synthesize expected ground motions and the appropriateness of the key parameters used in the simulations are confirmed by comparing the synthetic peak ground motions (PGA, PGV and response spectra) with empirical ground-motion prediction equations.  相似文献   

5.
Based on the extensive near field broadband strong-motion records with uniform azimuthal coverage and coseismic displacements, the rupture process of 2008 Wenchuan earthquake is inversed by the non-negative least square method and multiple-time window technique. The possible rupture sequence among southern Beichuan Fault, Pengguan Fault and Xiaoyudong Fault and the initial rupture time of high dip angle part of southern Beichuan Fault are analyzed from kinetic aspects, which have been seldom focused on. The results indicate that:(1) The near field waveform fitting residuals and the coseismic displacements show that only a bilateral rupture occurs on the intersection between the southern Beichuan Fault and Xiaoyudong Fault can the synthetic records of the stations located near the southwestern end of the Beichuan Fault conform to the observed ones, and meanwhile, the Pengguan fault cannot generate large slips on its southwestern part. The possible rupture sequence is that the earthquake started at the low dip angle part of Beichuan Fault and propagates to the Pengguan Fault in the shallow area, the Xiaoyudong Fault is triggered by the Pengguan Fault, and then producing bilateral rupture on the high dip angle part of Beichuan Fault at the intersection with the Xiaoyudong Fault. (2) Through analysis of the synthetic second packet records of stations at the southwest area of the fault, we obtain the initial rupture time on the high dip angle part of Beichuan Fault may have a 8s stagnation. In terms of timing, there may be rupture sequence between the southern Beichuan Fault and Pengguan Fault which are parallel to each other. The rupture of the southern shallow part of Beichuan Fault with high dip angle may lag behind the Pengguan Fault. At the same time, there may be a multipoint rupture in the southern section of the Beichuan Fault. (3) There is a good correspondence between the area on the fault with larger slip rate and the surrounding stations with larger PGV. In areas where slip rate on the fault plane is large, the stations tend to have larger peak ground velocities.  相似文献   

6.
The locked section of the San Andreas fault in southern California has experienced a number of large and great earthquakes in the past, and thus is expected to have more in the future. To estimate the location, time, and slip of the next few earthquakes, an earthquake instability model is formulated. The model is similar to one recently developed for moderate earthquakes on the San Andreas fault near Parkfield, California. In both models, unstable faulting (the earthquake analog) is caused by failure of all or part of a patch of brittle, strain-softening fault zone. In the present model the patch extends downward from the ground surface to about 12 km depth, and extends 500 km along strike from Parkfield to the Salton Sea. The variation of patch strength along strike is adjusted by trial until the computed sequence of instabilities matches the sequence of large and great earthquakes sincea.d. 1080 reported by Sieh and others. The last earthquake was theM=8.3 Ft. Tejon event in 1857. The resulting strength variation has five contiguous sections of alternately low and high strength. From north to south, the approximate locations of the sections are: (1) Parkfield to Bitterwater Valley, (2) Bitterwater Valley to Lake Hughes, (3) Lake Hughes to San Bernardino, (4) San Bernardino to Palm Springs, and (5) Palm Springs to the Salton Sea. Sections 1, 3, and 5 have strengths between 53 and 88 bars; sections 2 and 4 have strengths between 164 and 193 bars. Patch section ends and unstable rupture ends usually coincide, although one or more adjacent patch sections may fail unstably at once. The model predicts that the next sections of the fault to slip unstably will be 1, 3, and 5; the order and dates depend on the assumed length of an earthquake rupture in about 1700.  相似文献   

7.
The scarcity of strong ground motion records presents a challenge for making reliable performance assessments of tall buildings whose seismic design is controlled by large‐magnitude and close‐distance earthquakes. This challenge can be addressed using broadband ground‐motion simulation methods to generate records with site‐specific characteristics of large‐magnitude events. In this paper, simulated site‐specific earthquake seismograms, developed through a related project that was organized through the Southern California Earthquake Center (SCEC) Ground Motion Simulation Validation (GMSV) Technical Activity Group, are used for nonlinear response history analyses of two archetype tall buildings for sites in San Francisco, Los Angeles, and San Bernardino. The SCEC GMSV team created the seismograms using the Broadband Platform (BBP) simulations for five site‐specific earthquake scenarios. The two buildings are evaluated using nonlinear dynamic analyses under comparable record suites selected from the simulated BBP catalog and recorded motions from the NGA‐West database. The collapse risks and structural response demands (maximum story drift ratio, peak floor acceleration, and maximum story shear) under the BBP and NGA suites are compared. In general, this study finds that use of the BBP simulations resolves concerns about estimation biases in structural response analysis which are caused by ground motion scaling, unrealistic spectral shapes, and overconservative spectral variations. While there are remaining concerns that strong coherence in some kinematic fault rupture models may lead to an overestimation of velocity pulse effects in the BBP simulations, the simulations are shown to generally yield realistic pulse‐like features of near‐fault ground motion records.  相似文献   

8.
The San Andreas Fault (SAF) is the Pacific-North American plate boundary, yet in southern California a significant portion of the relative plate motion is accommodated by the San Jacinto Fault (SJF). Here we investigate the initiation of the SJF and its interaction with the SAF in a three-dimensional visco-elasto-plastic finite-element model. The model results show that the restraining bend of the southern SAF causes strain localization along the SJF, thus may have contributed to its initiation. Slip on the SJF tends to reduce slip rate on the SAF and enhance deformation in the Eastern California Shear Zone. The initiation of the SJF and its interaction with the SAF reflect the evolving plate boundary zone as it continuously seeks the most efficient way to accommodate the relative plate motion.  相似文献   

9.
Synthetic waveform modeling of the anomalous receiver functions for two stations in the eastern San Gabriel Mountains, California, suggests that a flat-topped notch structure exists on the Moho. North of the San Andreas Fault (SAF), the Moho depth is 36–38 km and is 33–35 km south of the San Gabriel Fault (SGF), but in-between under the Mt. Baldy block, it is only  29 km. The inferred notch structure is also supported by the Pms arrival times along the SCSN and the LARSE I profiles. The shallow Moho block correlates well with the surficial exposure of the lower plate Pelona Schist or where it resides at very shallow depth. The large Moho offsets across the two major faults can be either related to differential uplifting reflected by the difference in the denudation rate and the exposure of the lower plate Pelona Schist, or it can be the result of the juxtaposition of the distinctive terranes with initially different Moho depth due to the strike-slip movements along the two major faults.  相似文献   

10.
We present a new set of Ground Motion Prediction Equations (GMPEs) for horizontal Peak Ground Acceleration, Peak Ground Velocity, and 5 % damped pseudo-spectral acceleration (PSA), developed for the San Jacinto Fault Zone (SJFZ) area. Besides using these equations to quantify seismic shaking in the area, the results allow us to examine the physics and local properties controlling the observed ground motions. The analyzed dataset includes ~30,000 observations from ~800 events spanning a magnitude range of 1.5 < M < 6.0 and recorded by up to 140 stations at epicentral distances ranging from essentially zero to 150 km. The local GMPE is developed for the SJFZ by applying classical regression techniques with predictive variables that include first distance and magnitude, and then site characteristics, rupture directivity, and fault zone amplification. The significance of these effects is determined by measuring the uncertainty-reduction of the GMPE due to each factor. The results show that, in contrast to many regional studies, traditional site characteristic has a relatively minor effect on peak amplitudes in our study area. However, rupture directivity is a significant factor controlling the amplitudes of ground motion even for small events. The dense seismic network and newly developed directivity tool enable us to extract efficiently directivity effects with statistical significance, using the ground-motion dataset during the regression analysis process. The obtained rupture directivities are consistent with the main focal mechanism orientations and surface trace orientations, known from other studies, and predictions for bimaterial ruptures in the trifurcation area of the SJFZ. Fault zone amplification is a second important factor, showing strong impact on the peak ground motion values, with increasing role for the lower frequency range (<10 Hz) examined in the 5 % damped PSA values. We also observe signatures of large amplitude-variances, which indicate additional source-related control on the distribution of amplitudes (besides rupture directivity) for aftershocks close in time and location to the M L 5.1 earthquake of March 2013. Using the full set of records we present the most complete set of GMPEs for the SJFZ area, including a higher-amplitude prediction for regions in the direction of rupture.  相似文献   

11.
Bayan Hara Block is one of the most representative active blocks resulting from the lateral extrusion of Tibet Plateau since the Cenozoic. Its southern and northern boundary faults are characterized by typical strike-slip shear deformation. Its eastern boundary is blocked by the Yangze block and its horizontal movement is transformed into the vertical movement of the Longmen Shan tectonic belt, leading to the uplift of the Longmen Shan Mountains and forming a grand geomorphic barrier on the eastern margin of the Tibet Plateau. A series of large earthquakes occurred along the boundary faults of the Bayan Hara Block in the past twenty years, which have attracted attention of many scholars. At present, the related studies of active tectonics on Bayan Hara Block are mainly concentrated on the boundary faults, such as Yushu-Ganzi-Xianshuihe Fault, East Kunlun Fault and Longmen Shan Fault. However, there are also some large faults inside the block, which not only have late Quaternary activity, but also have tectonic conditions to produce strong earthquake. These faults divide the Bayan Hara Block into some secondary blocks, and may play important roles in the kinematics and dynamics mechanism of the Bayan Hara Block, or even the eastern margin of the Tibet Plateau. The Dari Fault is one of the left-lateral strike-slip faults in the Bayan Hara Block. The Dari Fault starts at the eastern pass of the Kunlun Mountains, extends eastward through the south of Yalazela, Yeniugou and Keshoutan, the fault strike turns to NNE direction at Angcanggou, then turns to NE direction again at Moba town, Qinghai Province, and the fault ends near Nanmuda town, Sichuan Province, with a total length of more than 500km. The fault has been considered to be a late Quaternary active fault and the 1947 M73/4 Dari earthquake was produced by its middle segment. But studies on the late Quaternary activity of the Dari Fault are still weak. The previous research mainly focused on the investigation of the surface rupture and damages of the 1947 M73/4 Dari earthquake. However, there were different opinions about the scale of the M73/4 earthquake surface rupture zone. Dai Hua-guang(1983)thought that the surface rupture of the earthquake was about 150km long, but Qinghai Earthquake Agency(1984)believed that the length of surface rupture zone was only 58km. Based on interpretation of high-resolution images and field investigations, in this paper, we studied the late Quaternary activity of the Dari Fault and the surface rupture zone of the 1947 Dari earthquake. Late Quaternary activity in the central segment of the Dari Fault is particularly significant. A series of linear tectonic landforms, such as fault trough valley, fault scarps, fault springs and gully offsets, etc. are developed along the Dari Fault. And the surface rupture zone of the 1947 Dari earthquake is still relatively well preserved. We conducted a follow-up field investigation for the surface rupture zone of the 1947 Dari earthquake and found that the surface rupture related to the Dari earthquake starts at Longgen village in Moba town, and ends near the northwest of the Yilonggounao in Jianshe town, with a length of about 70km. The surface rupture is primarily characterized by scarps, compressional ridges, pull-apart basins, landslides, cleavage, and the coseismic offset is about 2~4m determined by a series of offset gullies. The surface rupture zone extends to the northwest of Yilonggounao and becomes ambiguous. It is mainly characterized by a series of linear fault springs along the surface rupture zone. Therefore, we suggest that the surface rupture zone of the 1947 Dari earthquake ends at the northwest of Yilonggounao. In summary, the central segment of the Dari Fault can be characterized by strong late Quaternary activity, and the surface rupture zone of the 1947 Dari earthquake is about 70km long.  相似文献   

12.
Incremental Dynamic Analysis (IDA) involves a series of nonlinear response history analyses with a suite of incrementally scaled ground motion records. Although IDA is perhaps the most comprehensive seismic performance assessment method, it receives criticism because several ground motion records are scaled up until the structure collapses. The scaling practice often results to unrealistic multipliers, thus modifying the amplitude of the ground motion and introducing bias on the structural performance estimation. Record scaling is a common practice in earthquake engineering due to the lack of natural records corresponding to large magnitudes and/or small distances from the fault rupture location. In this work we use a large number of ground motion records to compare the predictions of IDA with that of unscaled ground motions and we propose a new methodology in order to quantify the bias introduced in IDA. Apart from natural records, we have conducted broadband ground motion simulations for rupture scenarios of weak, medium and large magnitude events in order to expand our record database. The investigation is performed on a series of inelastic single-degree-of-freedom systems and on two multistory steel moment frame buildings. The results pinpoint both qualitatively and quantitatively, for the full range of limit-states, the bias that IDA introduces on the structural performance estimation.  相似文献   

13.
We examine the nature of the seismogenetic system along the San Andreas Fault (SAF), California, USA, by searching for evidence of complexity and non-extensivity in the earthquake record. We use accurate, complete and homogeneous earthquake catalogues in which aftershocks are included (raw catalogues), or have been removed by a stochastic declustering procedure (declustered catalogues). On the basis of Non-Extensive Statistical Physics (NESP), which generalizes the Boltzmann–Gibbs formalism to non-equilibrating (complex) systems, we investigate whether earthquakes are generated by an extensive self-excited Poisson process or by a non-extensive complex process. We examine bivariate cumulative frequency distributions of earthquake magnitudes and interevent times and determine the size and time dependence of the respective magnitude and temporal entropic indices, which indicate the level on non-equilibrium (correlation). It is shown that the magnitude entropic index is very stable and corresponds to proxy b-values that are remarkably consistent with the b-values computed by conventional means. The temporal entropic index computed from the raw catalogues indicate moderately to highly correlated states during the aftershock sequences of large earthquakes, progressing to quasi-uncorrelated states as these die out and before the next large event. Conversely, the analysis of the declustered catalogues shows that background seismicity exhibits moderate to high correlation that varies significantly albeit smoothly with time. This indicates a persistent sub-extensive seismogenetic system. The degree of correlation is generally higher in the southern SAF segment, which is consistent with the observation of shorter return periods for large earthquakes. A plausible explanation is that because aftershock sequences are localized in space and time, their efficient removal unveils long-range background interactions which are obscured by their presence! Our results indicate complexity in the expression of background seismicity along the San Andreas Fault, with criticality being a very likely mechanism as a consequence of the persistent non-equilibrium inferred from the temporal entropic index. However, definite conclusions cannot be drawn until the earthquake record is exhaustively studied in all its forms.  相似文献   

14.
2014年8月24日,在美国加州旧金山海湾北部的纳帕地区发生了MW6.1地震.发震断层是西纳帕断裂系统中的一部分,但是该断层之前并未被足够重视.本文利用欧洲空间局最近发射成功并刚刚投入使用的Sentinel-1A卫星获取的第一对同震干涉像对(20140807-20140831),得到了该地震的地表同震形变场,结合震后24h内区域GPS同震形变资料作为约束条件,反演了纳帕地震的断层几何参数以及滑动分布.Sentinel-1A干涉结果表明,此次地震造成了明显的地面形变,视线向最大抬升和最大沉降量均达到了10cm.联合反演结果表明,该发震断层的走向为344°,倾角为80°.主要破裂以右旋走滑为主,平均倾滑角为-146.5°,最大倾滑量达到了1.1m,位于地表下约4km,存在明显的滑动亏损现象.此次地震,累计释放地震矩达1.5×1018 N·m,约合矩震级MW6.1.该结果略小于InSAR单独约束结果,可能与Sentinel-1A像对中包含的快速震后形变分量有关.  相似文献   

15.
Near-field strong ground motions are useful for engineering seismology studies and seismic design, but dense observation networks of damaging earthquakes are still rare. In this study, based on the strong-motion data from the M w 6.6 Lushan earthquake, the ground motion parameters in different spatial regions are systematically analyzed, and the contributions from different effects, like the hanging-wall effect, directivity effect, and attenuation effect are separated to the extent possible. Different engineering parameters from the observed ground motions are compared with the local design response spectra and a new attenuation relation of Western China. General results indicate that the high frequency ground motion, like the peak ground acceleration, on two sides of the fault plane is sensitive to the hanging-wall effect, whereas the low frequency ground motion, like the long period spectral acceleration, in the rupture propagation direction is affected by the directivity effect. Moreover, although the M w 6.6 Lushan earthquake is not a large magnitude event, the spatial difference of ground motion is still obvious; thus, for a thrust faulting earthquake, in addition to the hanging effect, the directivity effect should also be considered.  相似文献   

16.
The seismic hazard potential for metropolitan of Damascus, Syria is mainly controlled by earthquakes along Serghaya Fault which is a branch of Dead Sea Fault System. In this study, strong ground motion due to the November 1759 Earthquake along the fault of Serghaya was estimated with a numerical simulation technique. In the simulation, the Kostrov-like slip-velocity function was used as an input to the discrete wave number method to simulate the strong ground motions in a broadband frequency range. In order to model the incoherent rupture propagation which can excite large high-frequency waves, random numbers are added to arrival time of circular rupture front. MMI intensities calculated from the synthetic ground motions are compared with the observed values by Ambraseys and Barazangi (J Geophys Res 94:4007-4013, 1989). The calculated intensities are in good agreement with the observed ones at the most sites that validate appropriateness of the proposed source model. The PGA and PGV in the eastern region of Damascus city are higher than those in the western region due to the effects of local site amplification. The simulated high-frequency (1.0–6.0 Hz) ground motions for the sites in the Damascus city are higher than the design requirements defined by the Syrian building code. Furthermore, the simulated high-frequency ground motions for sites in the focal region are bigger than the design requirements in the case of the near-fault factors and are not considered. That demonstrates the appropriateness of considering the near-fault factors for a site near the focal region as introduced by the new building code.  相似文献   

17.
Ground‐motion simulations generated from physics‐based wave propagation models are gaining increasing interest in the engineering community for their potential to inform the performance‐based design and assessment of infrastructure residing in active seismic areas. A key prerequisite before the ground‐motion simulations can be used with confidence for application in engineering domains is their comprehensive and rigorous investigation and validation. This article provides a four‐step methodology and acceptance criteria to assess the reliability of simulated ground motions of not historical events, which includes (1) the selection of a population of real records consistent with the simulated scenarios, (2) the comparison of the distribution of Intensity Measures (IMs) from the simulated records, real records, and Ground‐Motion Prediction Equations (GMPEs), (3) the comparison of the distribution of simple proxies for building response, and (4) the comparison of the distribution of Engineering Demand Parameters (EDPs) for a realistic model of a structure. Specific focus is laid on near‐field ground motions (<10km) from large earthquakes (Mw7), for which the database of real records for potential use in engineering applications is severely limited. The methodology is demonstrated through comparison of (2490) near‐field synthetic records with 5 Hz resolution generated from the Pitarka et al (2019) kinematic rupture model with a population of (38) pulse‐like near‐field real records from multiple events and, when applicable, with NGA‐W2 GMPEs. The proposed procedure provides an effective method for informing and advancing the science needed to generate realistic ground‐motion simulations, and for building confidence in their use in engineering domains.  相似文献   

18.
Precariously balanced rocks (PBRs) are freestanding boulders that are precarious or fragile in the sense that they could be toppled by relatively low-amplitude earthquake ground motion. They are important in paleoseismology because their continued existence limits the amplitude of ground motion experienced at their location during their lifetime. In order to make quantitative use of PBRs for seismic hazard studies, one must determine when they attained their present state of fragility, that is, the point in time when the contact between the rocks and the pedestals on which they rest was exhumed from surrounding soil and the rock became vulnerable to earthquake ground motions. Cosmogenic-nuclide exposure dating can be used for this purpose, but is complicated because nuclide production occurs throughout exhumation of the PBR, so the apparent exposure age of any part of the rock surface exceeds the time that the rock has actually been precariously balanced. Here we describe a method for determining the length of time that a PBR has been fragile by measuring cosmogenic-nuclide concentrations at several locations on the PBR surface, and linking them together with a forward model that accounts for nuclide production before, during, and after exhumation of the PBR. Fitting model to data yields the rate and timing of rock exhumation and thus the length of time the rock has been fragile. We use this method to show that an example PBR in southern California has been fragile for 18.7 ± 2.8 ka.  相似文献   

19.
We incorporate body-wave arrival time and surface-wave dispersion data into a joint inversion for three-dimensional P-wave and S-wave velocity structure of the crust surrounding the site of the San Andreas Fault Observatory at Depth. The contributions of the two data types to the inversion are controlled by the relative weighting of the respective equations. We find that the trade-off between fitting the two data types, controlled by the weighting, defines a clear optimal solution. Varying the weighting away from the optimal point leads to sharp increases in misfit for one data type with only modest reduction in misfit for the other data type. All the acceptable solutions yield structures with similar primary features, but the smaller-scale features change substantially. When there is a lower relative weight on the surface-wave data, it appears that the solution over-fits the body-wave data, leading to a relatively rough V s model, whereas for the optimal weighting, we obtain a relatively smooth model that is able to fit both the body-wave and surface-wave observations adequately.  相似文献   

20.
We focus here on the rupture directivity effect on the spatial distribution and attenuation characteristics of near-field ground motions during the 2008 MW7.9 Wenchuan earthquake. We examine the difference between the observed ground motions in and opposite the rupture directions and compare them with Next Generation Attenuation-West2 (NGA-West2) ground motion prediction models. The isochrone directivity predictor is used to quantify the band-limited nature of the rupture directivity effect on strong ground motion. Our results show that the observed peak ground velocity (PGV) and spectral accelerations of periods of 1.0 s and longer are significantly amplified in the rupture direction, but de-amplified in the opposite direction affected by rupture directivity effect of this event. In contrast, the effect of rupture directivity on the observed peak ground acceleration (PGA) and periods of shorter than 1.0 s are relatively weak. The rupture directivity of this event shows clear period dependent and band limited characteristics with the strongest effect occurring around the period of 7.5 s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号