首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cumulate and Cumulative Granites and Associated Rocks   总被引:1,自引:0,他引:1  
Abstract. Processes that move crystals relative to melt, that is crystal fractionation, are of major importance in producing variations that are observed within cogenetic suites of granites. In low‐temperature granite suites, crystal fractionation initially involves the progressive separation of crystals residual from partial melting from that partial melt. Once separation of those crystals, or restite, has been completed, further fractionation may occur through the separation of crystals that had precipitated from the melt, the process known as fractional crystallization. High‐temperature granite magmas are largely or completely molten and elements such as Ca, Mg and Fe, and their associated minor elements, are in that case dissolved in the melt. Such magmas, particularly those that are more potassic and hence contain a higher fraction of low temperature melt, may evolve compositionally through fractional crystallization. Cumulate rocks result, comprising a framework of cumulus minerals with interstitial melt. In this process some of the melt is also displaced to form more felsic rocks. Such cumulate rocks may have distinctive chemical compositions, but that is often not the case. Distinctive features include SiC>2 contents near or below 50 % in rocks that are transitional in the field to more felsic granites, very high Cr and Ni, very low K, P, Ba, Rb and Zr, and anomalous abundances of the anorthite components Ca and Al. These rocks may also have positive Eu anomalies. Cumulate rocks do not necessarily have distinctive textures, at least as such features are understood at this time. Fractional crystallization can also involve the movement of precipitated crystals relative to melt. We refer to rocks as cumulative when formed from the fractions in which the abundance of crystals has increased. The production of cumulative granites typically occurs at more felsic melt compositions than is the case for cumulate granites, and this process may have its greatest significance in the fractional crystallization of the felsic haplogranites. Relative to felsic granites of broadly similar compositions lying on a liquid line of descent, cumulative granites contain more Ca, reflecting the addition from elsewhere of plagioclase crystals with solidus compositions. The abundances of Sr and Ba may be high to very high, and sometimes there are positive Eu anomalies. Cumulative I‐type granites may have low abundances of Y and the heavy REE, while the S‐type granites can be very distinctive with anomalously high abundances of Th and the heavy REE resulting from the concentrating of monazite. Generally, but not always, those who propose fractional crystallization as a mechanism for producing compositional variation within a suite of granites do not state whether the rocks in that particular case are thought to lie on a liquid line of descent or are cumulates/cumulative, although it is generally presumed that they were melts. Our experiences in eastern Australia have shown that the mechanism of fractional crystallization was quantitatively not as important during granite evolution as many workers would expect. However, there are some excellent examples of that process, most notably the Boggy Plain Supersuite. Overall in eastern Australia, varying degrees of separation of restite is a much more common mode of crystal fractionation, and that may also be seen to be the case for some other granite provinces if they are examined with that possibility in mind.  相似文献   

2.
Seventeen basalts from Ocean Drilling Program (ODP) Leg 183 to the Kerguelen Plateau (KP) were analyzed for the platinum-group elements (PGEs: Ir, Ru, Rh, Pt, and Pd), and 15 were analyzed for trace elements. Relative concentrations of the PGEs ranged from ∼0.1 (Ir, Ru) to ∼5 (Pt) times primitive mantle. These relatively high PGE abundances and fractionated patterns are not accounted for by the presence of sulfide minerals; there are only trace sulfides present in thin-section. Sulfur saturation models applied to the KP basalts suggest that the parental magmas may have never reached sulfide saturation, despite large degrees of partial melting (∼30%) and fractional crystallization (∼45%).First order approximations of the fractionation required to produce the KP basalts from an ∼30% partial melt of a spinel peridotite were determined using the PELE program. The model was adapted to better fit the physical and chemical observations from the KP basalts, and requires an initial crystal fractionation stage of at least 30% olivine plus Cr-spinel (49:1), followed by magma replenishment and fractional crystallization (RFC) that included clinopyroxene, plagioclase, and titanomagnetite (15:9:1). The low Pd values ([Pd/Pt]pm < 1.7) for these samples are not predicted by currently available Kd values. These Pd values are lowest in samples with relatively higher degrees of alteration as indicated by petrographic observations. Positive anomalies are a function of the behavior of the PGEs; they can be reproduced by Cr-spinel, and titanomagnetite crystallization, followed by titanomagnetite resorption during the final stages of crystallization. Our modeling shows that it is difficult to reproduce the PGE abundances by either depleted upper or even primitive mantle sources. Crustal contamination, while indicated at certain sites by the isotopic compositions of the basalts, appears to have had a minimal affect on the PGEs. The PGE abundances measured in the Kerguelen Plateau basalts are best modeled by melting a primitive mantle source to which was added up to 1% of outer core material, followed by fractional crystallization of the melt produced. This reproduces both the abundances and patterns of the PGEs in the Kerguelen Plateau basalts. An alternative model for outer core PGE abundances requires only 0.3% of outer core material to be mixed into the primitive mantle source. While our results are clearly model dependent, they indicate that an outer core component may be present in the Kerguelen plume source.  相似文献   

3.
Zagami consists of a series of increasingly evolved magmatic lithologies. The bulk of the rock is a basaltic lithology dominated by pigeonite (Fs28.7–54.3), augite (Fs19.5–35.0) and maskelynite (Ab42–53). Approximately 20 vol.% of Zagami is a basaltic lithology containing FeO-enriched pyroxene (pigeonite, Fs27.0–80.8) and mm- to cm-sized late-stage melt pockets. The melt pockets are highly enriched in olivine-bearing intergrowths, mesostases, phosphates (both whitlockite and water-bearing apatite), Fe,Ti-oxides and sulfides. The systematic increases in abundances of late-stage phases, Fs and incompatible element (e.g., Y and the REEs) contents of pigeonite, Ab contents of maskelynite, and FeO concentrations of whitlockite all point to a fractional crystallization sequence.The crystallization order in Zagami and the formation of these various lithologies was controlled by the abundances of iron, phosphorus, and calcium. During fractional crystallization, iron and phosphorus enrichment occurred, ultimately forcing the crystallization of calcium phosphates and olivine-bearing intergrowths. The limited amount of calcium in the melt and its partitioning between phosphates and silicates controlled the crystallization of phosphates, plagioclase, pigeonite, and augite. The presence of these FeO-enriched, water-poor late-stage lithologies has important implications. Discrepancies between experimental and petrologic studies to infer the history of basaltic shergottites may be partially explained by the use of starting compositions which are too FeO-poor in the experimental studies. The water-poor nature of the late-stage melt pockets suggests crystallization from a very dry magma, although whether this magma was always dry or experienced significant near-surface degassing remains an open question. Finally, the presence of fractional crystallization products within Zagami suggests that this may be a relatively common process on Mars.  相似文献   

4.
The extrusive rocks of Hekla are predominantly flows of basaltic andesite and andesite (icelandite) but each eruptive cycle is initiated by production of tephra of andesitic, dacitic, and even rhyolitic composition. The evolution of basaltic andesites to dacites and rhyolites can be explained by crystallization and (presumably gravitative) separation of olivine, titaniferous magnetite, plagioclase, and probably augite. No contamination by sialic crustal material is required.Although basalts are never erupted from Hekla the origin of the basaltic andesites is probably best explained by separation of magnesian olivine, augite, and calcic plagioclase from an olivine tholeiite parent, producing an initial differentiation trend toward a high Fe/Mg ratio. The increase in Fe/Mg ratio is limited by the appearance of magnetite as a liquidus phase.From the Fe/Mg ratios of the lavas and from compositions of the plagioclase phenocrysts the water pressure of the basaltic andesites is estimated to have been between 0.6 and 2.4 kb. Total pressure may have been significantly higher. A best estimate for the water content is approximately 2 1/2 to 6 weight percent. This high water content accounts for the explosive initiation of each eruptive cycle and is consistent with fractional crystallization in a shallow magma chamber.Division of Geological and Planetary Sciences, California Institute of Technology, Contribution No. 2355.  相似文献   

5.
Rare earth abundances were determined by neutron activation in twenty Hawaiian lavas and one diabase of known chemical and mineralogical compositions. These results demonstrate a systematic relationship between the absolute or relative rare earth abundances and the petrochemistry of these rocks. Three distinct lava groups are recognized. These correspond to: (1) tholeiites, (2) alkali series, (3) nepheline-melilite basalts.Based on rare earths: a) The hawaiites and mugearite of the alkali series represent residual melts derived from alkali olivine basalts, most likely by fractional crystallization; the trachyte, however, seems to have a more complicated history. b) Fractional crystallization models linking nephelinites or alkali olivine basalts to tholeiites are possible. However, production of these three lava groups, independently, by various degrees of partial melting of the mantle is equally likely and cannot be distinguished from these fractional crystallization models. c) Daly limestone syntexis hypothesis to produce the nephelinites is unlikely.  相似文献   

6.
Several high alumina basalts from the Aleutian volcanic centers of Cold Bay and Kanaga Island contain large (up to 1.5 cm diameter) megacrysts of sector-zoned augite. The megacrysts are invariably euhedral with well developed {001}, {010} and {111} forms. All crystals display concentric bands that are rich in mineral and glass inclusions. The sector zonation typically occurs as well developed (010), (100), (111) and (110) sectors which grew at different rates. A comparison of the width of synchronous growth bands indicates that following relative growth rates: (111) ≫ (100) ∼ (110) > (010). Compositionally, SiO2 and MgO abundances decrease, and TiO2, Al2O3, FeO and Na2O abundances increase in the different sectors in the order (111), (100) ∼ (110), (010). This order is identical to that deduced for the relative growth rates, implying that growth rate clearly had a role in the development of the sector zonation. Calculated pre-eruption H2O contents of the basalts range from 1 to 3 wt% but actual (measured) post-eruption H2O contents range from 0.01 to 0.3 wt%. Deteurium isotopic values are heavily depleted and range from −110 to −141‰ . Together these indicate significant vapor (H2O) exsolution prior to eruption. Maximum H2O abundances in primitive glass inclusions, thought to be most representative of the host liquid reservoir at the time of melt entrapment, systematically decrease from the core to the rim of one augite megacryst studied in detail. We conclude that the presence of sector-zoned augite is due to augite supersaturation and rapid crystallization brought about by magma decompression and volatile (H2O) exsolution. The calculated pre-eruption H2O contents of 1–3 wt% limit vapor exsolution and basalt crystallization to depths of less than 3 and more likely 1.5 km. Very rapid crystallization at very shallow depths makes it unlikely that the time scales between initial crystallization and final eruption are sufficient to permit appreciable amounts of fractional crystallization. Given that high alumina basalt fractionation is the dominant process for generating more evolved andesite, dacite and rhyolite magmas of the calc-alkaline suite, the inability of parental high alumina basalt to yield such derivative magmas in the low pressure environment places the likely site of fractionation in the high pressure environment, at or near the base of the crust. Received: 1 December 1997 / Accepted: 23 December 1998  相似文献   

7.
我国东部苏鲁皖地区新生代碱性玄武岩中,除了含有大量地幔橄榄岩类捕虏体以外,尚含有一定数量的石榴石、普通辉石和歪长石巨晶。这些巨晶是在地幔不同深度上从玄武岩中晶出的。巨晶组合的分离结晶作用对熔体稀土元素含量有很大影响。赋存巨晶的碱性玄武岩所具有的LREE富集、HREE亏损的稀土元素分配型式是由地幔橄榄岩类部分熔融程度、石榴石巨晶和普通辉石巨晶的早期高压熔离和玄武岩的结晶分异作用等综合因素造成的。  相似文献   

8.
 The use of ocean floor basalt chemistry as a tool to investigate mantle composition and processes requires that we work with basalts that have been modified little since leaving the mantle. One source of such basalts is melt inclusions trapped in primitive crystals. However, obtaining information from these melt inclusions is complicated by the fact that melt inclusions in natural basalts are essentially always altered by post-entrapment crystallization. This requires that we develop techniques for reconstructing the original trapped liquid compositions. We conducted a series of experiments to reverse the effects of post-entrapment crystallization by re-heating the host crystals to their crystallization temperature. For these experiments we used plagioclase crystals separated from a single Gorda Ridge lava. The crystallization temperature for these crystals was determined by a set of incremental re-heating experiments to be ∼1240–1260° C. The inclusions are primitive, high Ca-Al basaltic melts, saturated with plagioclase, olivine and Al-rich chromite at low pressure. The inclusion analyses can be linked to the host lava composition by low pressure fractionation. The major element composition of the re-homogenized melt inclusions within each crystal is relatively constant. However, the incompatible element analyses have extremely wide ranges. The range of La/Sm and Ti/Zr from inclusions analyzed from a single sample from the Gorda Ridge exceeds the range reported for lavas sampled from the entire ridge. The pyroxene compositions predicted to be in equilibrium with the melt inclusion trace element signature cover much of the range represented by pyroxenes from abyssal peridotites. The volumetric proportions of the magmas entering the base of the crust can be evaluated using frequency distribution of melt inclusion compositions. This distribution suggests that the array of magmas was skewed towards the more depleted compositions, with little evidence for an enriched component in this system. This pattern is more consistent with a dynamic flow model of the mantle or of a passive flow model where the melts produced in the peripheral areas of the melting regime were not focused to the ridge. Received: 5 January 1995 / Accepted: 13 June 1995  相似文献   

9.
Composition, mean pressure, mean melt fraction, and crustalthickness of model mid-ocean ridge basalts (MORBs) are calculatedusing MELTS. Polybaric, isentropic batch and fractional meltsfrom ranges in source composition, potential temperature, andfinal melting pressure are integrated to represent idealizedpassive and active flow regimes. These MELTS-derived polybaricmodels are compared with other parameterizations; the resultsdiffer both in melt compositions, notably at small melt fractions,and in the solidus curve and melt productivity, as a resultof the self-consistent energy balance in MELTS. MELTS predictsa maximum mean melt fraction (  相似文献   

10.
Experimental data allow modeling the behavior of the named elements during formation of fluorine- saturated leucocratic rocks of silicic and alkaline compositions. The distribution of alkaline and alkaliearth elements is discussed at equilibrium between the silica-alumina melt with fluoride phases (crystalline and liquid) and with feldspar. Cryolite crystals form during saturation of silica-alumina melt of normal alkalinity with fluorine. Continuous solid solution of sodium-potassium cryolite is stable at 800°C. The equilibrium between melt and crystals continues up to the maximum molar fraction of 0.1 lithium end member in cryolite, at which two fluoride phases (crystalline and liquid) coexist with the silica-alumina melt of fixed composition. Separation of salt melts during late differentiation stages of granite and alkaline rocks is a regular process continuing the natural evolution of ore-magmatic systems. At equilibrium of two liquid phases, the silica phase is relatively enriched in potassium, and the fluoride phase is substantially enriched in sodium. This detected effect is the only currently possible mechanism for the occurrence of the potassium differentiation trends of granite melts. All effects related to crystallization cause enrichment in sodium. In other cases (with Ca, Sr, Mg, Rb, and Cs), separation of the second liquid phase acts in the same direction and enhances the action of crystallization. Comparison between partition coefficients allows derivation of the following affinity rows of alkaline elements for fluoride melt: Li > Na > K > Rb≈Cs and Mg > Ca > Sr > Ba. Hence, the known rule for joining strong bases with strong acids and weak bases with weak acids is fulfilled.  相似文献   

11.
The rhyolite of Little Glass Mountain (73–74% SiO2) is a single eruptive unit that contains inclusions of quenched andesite liquid (54–61% SiO2) and partially crystalline cumulate hornblende gabbro (53–55% SiO2). Based on previous studies, the quenched andesite inclusions and host rhyolite lava are related to one another through fractional crystallization and represent an example of a fractionation-generated composition gap. The hornblende gabbros represent the cumulate residue associated with the rhyolite-producing and composition gap-forming fractionation event. This study combines textural (Nomarski Differential Interference Contrast, NDIC, imaging), major element (An content) and trace element (Mg, Fe, Sr, K, Ti, Ba) data on the style of zonation of plagioclase crystals from representative andesite and gabbro inclusions, to assess the physical environment in which the fractionation event and composition gap formation took place. The andesite inclusions (54–61% SiO2) are sparsely phyric with phenocrysts of plagioclase, augite and Fe-oxide±olivine, +/–orthopyroxene, +/–hornblende set within a glassy to crystalline matrix. The gabbro cumulates (53–55% SiO2) consist of an interconnected framework of plagioclase, augite, olivine, orthopyroxene, hornblende and Fe-oxide along with highly vesicular interstitial glass (70–74% SiO2). The gabbros record a two-stage crystallization history of plagioclase+olivine+augite (Stage I) followed by plagioclase+orthopyroxene+ hornblende+Fe-oxide (Stage II). Texturally, the plagioclase crystals in the andesite inclusions are characterized by complex, fine-scale oscillatory zonation and abundant dissolution surfaces. Compositionally (An content) the crystals are essentially unzoned from core-to-rim. These features indicate growth within a dynamic (convecting?), reservoir of andesite magma. In contrast, the plagioclase crystals in the gabbros are texturally smooth and featureless with strong normal zonation from An74 at the core to around An30. K, and Ba abundances increase and Mg abundances decrease steadily towards the rim. Ti, Fe, and Sr abundances increase and then decrease towards the rim. The trace element variations are fully consistent with the two-stage crystallization sequence inferred from the gabbro mineralogy. These results indicate progressive closed-system in situ crystallization in a quiescent magmatic boundary layer environment located along the margins of the andesite magma body. The fractional crystallization that generated the host rhyolite lava is one of inward solidification of a crystallizing boundary layer followed by melt extraction and accumulation of highly evolved interstitial liquid. This mechanism explains the formation of the composition gap between parental andesite and rhyolite magma compositions.  相似文献   

12.
本文对富钾火山岩中单斜辉石、斜方辉石、长石巨晶的物理性质、化学成分、微量元素等特征进行了研究。文中还对巨晶的成因及对岩浆的影响问题,提出了作者自己的观点。  相似文献   

13.
Partition coefficients between olivine and melt at upper mantle conditions, 3 to 14 GPa, have been determined for 27 trace elements (Li, Be, B, Na, Mg, Al, Si, P, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Rb, Sr, Y, Zr, Cs, Ba, La and Ce) using secondary-ion mass-spectrometry (SIMS) and electron-probe microanalysis (EPMA). The general pattern of olivine/melt partitioning on Onuma diagrams resembles those reported previously for natural systems. This agreement strongly supports the argument that partitioning is under structural control of olivine even at high pressure. The partition coefficients for mono- and tri-valent cations show significant pressure dependence, both becoming larger with pressure, and are strongly correlated with coupled substitution into cation sites in the olivine structure. The dominant type of trace element substitution for mono- and tri-valent cations into olivine changes gradually from (Si, Mg)↔(Al, Cr) at low pressure to (Si, Mg)↔(Al, Al) and (Mg, Mg)↔(Na, Al) at high pressure. The change in substitution type results in an increase in partition coefficients of Al and Na with pressure. An inverse correlation between the partition coefficients for divalent cations and pressure has been observed, especially for Ni, Co and Fe. The order of decreasing rate of partition coefficient with pressure correlates to strength of crystal field effect of the cation. The pressure dependence of olivine/melt partitioning can be attributed to the compression of cation polyhedra induced by pressure and the compensation of electrostatic valence by cation substitution. Received: March 6, 1997 / Revised, accepted: March 12, 1998  相似文献   

14.
结晶分异和同化混染是侵入岩体形成过程中控制岩相成分和分异程度的主导因素。探讨这两个因素在岩浆演化过程中的作用阶段及对矿物成分变化的影响对揭示岩体成因和成矿具有重要意义。新疆北山地区的红石山镁铁-超镁铁岩体钻孔剖面上岩相和各种矿物含量的渐变特征反映了岩浆演化的结晶分异过程。长石中Si、Na、Al、Ca和单斜辉石中Si、Al、Ti、Ca、Mg的系统变化揭示不同程度的同化混染作用。橄榄石和尖晶石对同化混染作用的反应较为迟缓,但其Fo、Ni和Cr#、Ti对新鲜岩浆注入较为敏感。这些矿物化学对岩浆演化过程的推断与全岩成分变化的指示相一致。因此,矿物化学在研究岩浆演化方面将会发挥重要作用。  相似文献   

15.
深熔过程中熔体成分与锆石行为模拟计算   总被引:3,自引:2,他引:1  
王伟  魏春景  刘晓春  赵越  高亮  娄玉行  初航  张颖慧 《岩石学报》2014,30(10):3075-3084
发生深熔作用是高级变质作用的一个重要特征。深熔过程中产生的熔体可为淡色花岗岩提供潜在的源区;深熔过程中锆石的行为直接影响对变质锆石记年地质意义的理解。在含Zr体系下的相平衡模拟显示泥质成分深熔过程中产生熔体的成分在P-T空间中规律变化。温度升高时熔体Zr/Si值、Zr、FeO、MgO以及CaO等含量明显增加,压力较高时K2O含量也随温度升高而明显增加。Na2O含量随温度升高而降低,但随压力升高而增加。压力升高时Al/Si值显著升高。温度较高时Na/(Na+K)等值线较陡,减压熔融过程不会显著改变熔体Na/(Na+K)值,而升温减压过程以及近等压升温过程都会明显降低熔体Na/(Na+K)值。中压时随温度升高熔体Fe/(Fe+Mg)值缓慢升高,而石榴石的生长发育会迅速降低熔体Fe/(Fe+Mg)值。不同温压条件下对应的固相线熔融、白云母脱水熔融以及黑云母脱水熔融形成的熔体成分具有明显差异。对比模拟熔体成分在P-T空间的演化,喜马拉雅地区电气石淡色花岗岩对应熔体的形成温压条件应低于二云母淡色花岗岩,同类型淡色花岗岩之间在形成条件上也可能存在一定差异,并经历了差异性演化过程。含Zr体系下的相平衡关系显示进变过程是消耗锆石的过程,因而在进变过程中变质锆石难以生长,发生深熔作用的岩石中的变质锆石主要在退变过程中形成并记录退变质年龄。熔体丢失相关模拟显示不同温度阶段发生熔体丢失对锆石稳定性的影响不同。温度较低时Zr含量较少的熔体丢失会扩大持续进变过程中锆石的稳定范围,而温度较高时富Zr熔体的丢失会降低持续进变过程中锆石的稳定温度。类似于分离熔融作用的过程最利于残留相中剩余锆石在持续进变过程中的保存。  相似文献   

16.
王建  李建平 《矿物学报》2003,23(2):115-123
对西秦岭礼县新生代钾霞橄黄长岩系中的基质相含钛透辉石进行了矿物化学研究,根据透辉石中Ti和Al的含量划分出低Ti—透辉石和高Ti—铝透辉石两种基本类型,它们作为同源岩浆演化结晶的产物,结晶顺序前者先于后者。火山岩系的透辉石[Ca(Mg,Fe)Si2O6]结晶过程中广泛存在着CaTiAl2O6(钛辉石)分子替代,晚期熔体富Ti、Al贫Si、Mg。百草山岩筒是演化岩浆结晶的产物,熔体向富Ti、Al、Fe^3 、Na,贫Mg、Si趋势演化;在透辉石成分上表现为CaTiAl2O6和NaFe^3 Si2O6(锥辉石)端元分子对Ca(Mg,Fe)Si2O6的替代。本地区基质相透辉石与世界上典型地区的钾霞橄黄长岩系的透辉石具有不同程度的可比性,反映了这种特殊的岩浆熔体成分在一定程度上控制着透辉石的结晶过程和阳离子在矿物晶格中的占位。  相似文献   

17.
Geochemical and field data for the Cordillera Paine (CP) pluton of southern Chile, indicate that differentiation took place by closed system in situ fractional crystallization. Minor, local and irregular separation of liquids from crystals led to the formation of evolved granites and aplites which are encountered mostly at the plutons roof and margins. Chemical trends show strong depletions of Sr, Ba, Mg less intense depletions of Ca, La, Ce, Nd, Fe, Ti, Al and enrichment of Nb, Y, Th, Rb and Si with differentiation. Pronounced crystal zoning of Ca, Sr and Ba in plagioclase, Ba in orthoclase and LREE, Y and Th in allanite closely correspond to the whole rock chemical variation. The crystal zoning data suggest that surface equilibrium only was maintained for the zoned elements during crystallization. Thus, continuous separation of liquids from crystals was not necessary to generate the kind highly evolved differentiates whose character reflects fractional crystallization. The schedule of liquid-crystal separation affects mainly the location, degree of dispersion and relative abundance of the differentiates. The homogeneity of the CP pluton and the intense crystal zoning suggest that crystal-liquid separation was inefficient, and that whole rock compositions approach liquid compositions. Assumption of a closed system during crystallization allows estimation of mineral/melt partition coefficients (K d s) using crystal core and whole rock compositions. Crystal zoning and whole rock chemical trends are consistent with models constructed using the K d s thus obtained along with modal abundances from petrographic estimates. Lamont-Doherty Geological Observatory Contribution Number 3701  相似文献   

18.
This paper describes the melting relations of three basalts,a Picture Gorge tholeiite, the 1921 Kilauea olivine tholeiite,and the 1801 Hualalai alkali basalt, at 5 kb water pressure,680–1045 °C, at the oxygen fugacities of the quartz-fayalite-magnetite(QFM) and hematite-magnetite (HM) buffer. All melts producedwithin the hornblende stability field are strongly quartzo-feldspathic.All are quartz-normative, including those from the alkali basalt,and all but two of the melts are corundum-normative. Melt compositionshows very little dependence on oxygen fugacity within the hornblendestability field, as MgO and FeO contents are very low. Whenhornblende begins to melt extensively (1000°–1045°C), the TiO2, FeO, and MgO contents of the melt increaseabruptly. In this range, melts formed on the HM buffer havemuch higher Mg/Fe ratios and lower TiO2 than melts formed onthe QFM buffer. Melt composition is also quite insensitive to changes in basaltcomposition, within the hornblende stability field. The chiefexception is the Na/Ca ratio, which varies directly with Na/Cain the starting basalt. When projected into the Ab-An-Or-Qzquaternary system, all melts produced follow a rather narrowspiral path through the tetrahedron; they descend from the Ancorner, moving toward Qz at constant Ab/Or, moving toward Oronly when plagioclase± quartz begin to precipitate. The melting behavior of hornblende, plagioclase, and augitein these experiments has been examined closely, with the followingresults: successive partial melts may differ from each otherby compositional increments which are very different in compositionfrom the minerals contributing to the melt in the temperatureinterval under consideration. These increments can almost neverbe expressed solely in terms of members of the one or two mineralsolid solutions from which they are actually derived. In a fewcases the increments cannot be expressed in terms of any reasonablecombination of minerals. This pattern contrasts markedly withthat observed in fractional crystallization, in which the differencebetween successive melts must always correspond to present orpossible phenocryst minerals. The contrast implies that magmaseries generated by any kind of melting process, equilibriumor fractional, should be recognizably different from seriesgenerated by fractional crystallization, if minerals like hornblendeor pyroxene are involved.  相似文献   

19.
Compositional and textural relations of coexisting augite and pigeonite in a tholeiitic dolerite in Semi, northern Japan have been analysed with the electron probe microanalyser. Two different crystallization trends of augite have been recognized. In the first case, augite varies in composition from Ca37 Mg41 Fe22 to Ca35 Mg32 Fe33 with nearly constant Ca/Ca +Mg+Fe ratio, whereas in the second case, augite varies from Ca36Mg40Fe24 to Ca28Mg35Fe37 with a considerable decrease of Ca/Ca+Mg+Fe ratio. The compositional trend of augite in the first case may be explained by cotectic crystallization of augite and pigeonite, and that in the second case may be explained by metastable crystallization of subcalcic augite due to undercooling of magma. Such metastable crystallization may have resulted in local heterogeneity of magma.  相似文献   

20.
西秦岭礼县地区新生代钾霞橄黄长岩系的单斜辉石   总被引:5,自引:1,他引:5  
对西秦岭礼县地区钾霞橄橄黄长质火山岩系中单斜辉石进行了矿物化学研究,斑晶相单斜辉石类型复杂,成分变化范围大,具有多源属性,基质相单斜辉石可以分为高Ti铝透辉石和含Ti透辉石两种基本类型,它们是同源岩浆演化结晶的产物。结晶顺序前者晚于后者,岩系中透辉石Ca(Mg,Fe)Si2O6结晶过程中广泛存在于CaTiAl2O6分子替代,晚期熔体富Ti,Al贫Si,Mg,熔体有向富Ti,Al,Fe,Na贫Mg,Si演化的趋势,在透辉石成分上表现为CaTiAl2O6和NaFe^3 Si2O6端员分子对Ca(Mg,Fe)Si2O6的替代,本区基质相透辉石与世界上典型地区的钾霞橄黄长岩系的透辉石具有不同程度的可比性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号