首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A legacy seismic section across the Luzon Strait was reprocessed using the pre-stack depth migration method to reveal thermohaline structures in the water column. Distinct finescale and mesoscale features can be seen from the seismic image. Vertically, reflective patterns are associated with three water layers: upper layer, intermediate layer, and deep layer. The upper layer can be divided into three areas by two opposing weak-to-transparent zones from west to east with individual thicknesses: ~400, 550, and 700 m. They are interpreted as the South China Sea upper water, the Kuroshio water, and the Pacific upper water, respectively, separated by two Kuroshio frontal zones. Internal waves are ubiquitous in the Kuroshio water fluctuating in different amplitudes and wavelengths laterally. The finestructure shows the western Kuroshio front zone is composed of three subparallel blanking zones with an average eastward dipping angle of 2.3°. They are regarded as the well-mixed frontal interfaces developed in and along a multi-frontal frontal zone. The transparent reflection of the intermediate water above the Hengchun is suggestive of a well-mixed layer by the near-bottom turbulence. In the Pacific intermediate water near the eastern mouth of the Bashi Channel, there is an inverted crescent-shaped structure, which is likely associated with the intrusion of the South China Sea intermediate water through the Bashi Channel. These imaged features are consistent with the observed oceanographic phenomena in the region.  相似文献   

2.
利用美国SAGE II (Stratospheric Aerosol and Gas Experiment II)卫星最新版(6.0版)1.020 μm通道逐日气溶胶消光系数资料,得出了对流层中上层及平流层(10 km以上高度)气溶胶光学厚度的平均分布和变化特征。结果表明:气溶胶光学厚度在低纬度大,在印度洋的岛屿上空有三个高值中心,气溶胶光学厚度高值中心与对流层中上层的上升气流的高值中心相对应。与17年(1984~2000年)年平均相比,近6年(1995~2000年)孟加拉湾至青藏高原东南部上空气溶胶光学厚度明显增加;中国东部地区上空气溶胶光学厚度增加,中西部地区则减小。气溶胶光学厚度存在三个经向的增加带和两个经向的减小带。中纬度与赤道之间的布鲁尔-多普森环流(Brewer-Dobson Circulation)带来的低层大气与对流层中上层及平流层之间的气溶胶输送是导致气溶胶这种经向一致变化的主要因素。气溶胶的这种输送产生的近地面大气污染物向中上层大气输送有可能产生重要的气候变化。  相似文献   

3.
北京地区对流层中上部云和气溶胶的激光雷达探测   总被引:39,自引:8,他引:39  
介绍了近年来研制的一台多波长激光雷达及其探测对流层高云和气溶胶的实验,并依据探测结果重点分析了北京2000年1月至4月对流层上部云和气溶胶在532 nm波长的消光系数分布特征.结果表明:从6 km至11 km的气溶胶光学厚度值在0.0152至0.0284之间变化,均值为0.0192.从6 km至11 km的云光学厚度值在0.014至0.23之间变化.观测到的单层高云的厚度最大为6 km.4月6日,近年来最强的一次沙尘暴袭击北京.4月7日北京地区无可见云,激光雷达探测结果表明,从4 km至10 km高度范围内,存在一层厚度约为6 km的气溶胶粒子层,消光系数峰值处于8 km附近,比晴天无云时的消光系数值约大一个数量级.估计这是一层沙尘气溶胶,系由远距离输送至北京形成的.  相似文献   

4.
This study examines the effect of seasonally varying chlorophyll on the climate of the Arabian Sea and South Asian monsoon. The effect of such seasonality on the radiative properties of the upper ocean is often a missing process in coupled general circulation models and its large amplitude in the region makes it a pertinent choice for study to determine any impact on systematic biases in the mean and seasonality of the Arabian Sea. In this study we examine the effects of incorporating a seasonal cycle in chlorophyll due to phytoplankton blooms in the UK Met Office coupled atmosphere-ocean GCM HadCM3. This is achieved by performing experiments in which the optical properties of water in the Arabian Sea—a key signal of the semi-annual cycle of phytoplankton blooms in the region—are calculated from a chlorophyll climatology derived from Sea-viewing Wide Field-of-View Sensor (SeaWiFS) data. The SeaWiFS chlorophyll is prescribed in annual mean and seasonally-varying experiments. In response to the chlorophyll bloom in late spring, biases in mixed layer depth are reduced by up to 50% and the surface is warmed, leading to increases in monsoon rainfall during the onset period. However when the monsoons are fully established in boreal winter and summer and there are strong surface winds and a deep mixed layer, biases in the mixed layer depth are reduced but the surface undergoes cooling. The seasonality of the response of SST to chlorophyll is found to depend on the relative depth of the mixed layer to that of the anomalous penetration depth of solar fluxes. Thus the inclusion of the effects of chlorophyll on radiative properties of the upper ocean acts to reduce biases in mixed layer depth and increase seasonality in SST.  相似文献   

5.
In order to study the factors influencing the formation of the vertical component of atmospheric electric field (AEF) strength E z , the data on meteorological parameters (atmospheric pressure, air temperature, and snow depth) are applied, as well as the data of radon Rn emanation into the atmosphere. Determined is the seasonal dependence on the radon emanation to the atmospheric surface layer due to the decrease in the upper soil layer permeability in wintertime that results in the decrease in the surface layer ionization which explains the difference between the maximum and minimum values of electric field strength within the annual variations amounting to ~100 V/m for the observational period. It is demonstrated that during the negative mean diurnal temperatures (November-April), the cyclone arrival from southern directions is accompanied by significant decrease in AEF E z due to the increase in the radon flow under the influence of considerable fall of atmospheric pressure and dramatic warming by 10–15°C resulting in the increase in upper soil layer permeability.  相似文献   

6.
Upper ocean response of the South China Sea to Typhoon Krovanh (2003)   总被引:1,自引:0,他引:1  
To quantitatively investigate the dynamic and thermal responses of the South China Sea (SCS) during and subsequent to the passage of a real typhoon, a three-dimensional, regional coupled air–sea model is developed to study the upper ocean response of the SCS to Typhoon Krovanh (2003). Owing to the scarcity of ocean observations, the three-dimensional numerical modeling with high resolution, as a powerful tool, offers a valuable opportunity to investigate how the air–sea process proceeds under such extreme conditions. The amplitude and distribution of the cold path produced by the coupled model compare reasonably well with the TRMM/TMI-derived data. The maximum SST cooling is 5.3 °C, about 80 km to the right of the typhoon track, which is consistent with the well-documented rightward bias in the SST response to typhoons. In correspondence to the SST cooling, the mixed layer depth exhibits an increase; the increases in the mixed layer depth on the right of typhoon track are significantly higher than those on the left, with maxima of 58 m. This correspondence indicates that the SST cooling is caused mainly by entrainment. Under the influence of typhoon, a cyclonic, near-surface current field is generated in the upper ocean layer, which moves with the typhoon. The typhoon-induced horizontal currents in the wake of the storm have strong near-inertial oscillation, which gradually propagates downward. The unique features of the SCS response to Typhoon Krovanh are also discussed, such as Kuroshio intrusion and coastal subsurface jets.  相似文献   

7.
Considered is the water exchange in the coastal zone of natural reservoirs induced as a result of the differential heating of water above the sloping bottom. The laboratory experiment data and the constructed simple analytic model demonstrate that the main reason for the motions is the hydrostatic pressure difference in the area above the slope. It is demonstrated for different types of vertical stratification that the pressure difference maximum is reached at the depth of about 0.4D (D is the depth of the heated layer in the deep part). The respective current is directed to the shore and is a driving element of the whole circulation of water including its forced ascend along the slope, the free surface level increase, and the formation of the compensatory offshore current in the upper layers. The analysis of in situ observational data in the coastal zone of the Baltic Sea at the intensive heating in July 2006 corroborates the obtained regularities indicating that the coastal heating favors the formation of upwelling along the slope.  相似文献   

8.
We have derived a water mass model for the Strait of Sicily, based on 1994 and 1995 cruise data. The model consists of seven water masses, suggested by the measured shapes of the vertical temperature and salinity distributions. The core of the Atlantic water is distributed below the surface as a shallow layer, in a depth range of 40 to 100 m, with a salinity minimum. It is capped by upper and surface layers above and a mixed region below. At the bottom, Levantine water is present with a transition region above. Between the mixed and transition region there is, on occasion, a fresher water layer. The structure and statistics of water masses is analyzed over the Strait of Sicily region in terms of their temperature, salinity, and depth values. Objective analysis of the temperature, salinity, and depth parameters is performed in latitude and longitude. The water masses are tracked in terms of their parameter signatures. Changes in temperature and salinity distributions are interpreted. 2-D ellipses that represent the water masses, in terms of means and standard deviation, are derived in a space of temperature, salinity, and depth. Their axes are the standard deviations of parameter space ranges. The areas of the ellipses are compared against the temperature and salinity data distribution. The water mass composition ratios are computed and analyzed. Hypotheses and mechanisms for the origin and mixing of water masses are suggested.  相似文献   

9.
The boundary currents over the Western Australian continental shelf and slope consist of the poleward flowing Leeuwin Current (LC) and the equatorward flowing Leeuwin Undercurrent (LUC). Key properties of the LC are its poleward strengthening, deepening to the south, and shelfbreak intensification. The alongshore flow reverses direction below about 300 m, forming the LUC at greater depths. To investigate the processes that cause these features, we obtain solutions to an idealized, regional ocean model of the South Indian Ocean. Solutions are forced by relaxing surface density to a prescribed, meridionally varying density profile ρ*(y) with a timescale of δt. In addition, vertical diffusion is intensified near the ocean surface. This diffusion establishes the minimum thickness over which density is well-mixed. We define this thickness as the “upper layer”. Solutions are obtained with and without a continental shelf and slope off Western Australia and for a range of values of δt and mixing parameters. Within this upper layer, there is a meridional density gradient that balances a near-surface, eastward geostrophic flow. The eastward current downwells near the eastern boundary, leading to westward flow at depth. The upper layer's meridional structure and zonal currents crucially depend on coastal processes, including the presence of topography near the eastern boundary. Kelvin waves inhibit the upper layer from deepening at the coast. Rossby waves propagate the coastal density structure offshore, hence modifying the interior currents. A comparison of the solutions with or without a continental shelf and slope demonstrate that topographic trapping of Rossby waves is a necessary process for maintaining realistic eastern boundary current speeds. Significant poleward speeds occur only onshore of where the upper layer intersects the slope, that is, at a grounding line. Its poleward transport increases when surface-enhanced vertical mixing is applied over a greater depth. When the timescale δt is sufficiently short, the poleward current is nearly barotropic. The current's spatial structure over the shelf is controlled by horizontal mixing, having the structure of a Munk layer. Increasing vertical diffusion deepens the upper layer thickness and strengthens the alongshore current speed. Bottom drag leads to an offshore flow along the bottom, reducing the net onshore transport and weakening the current's poleward acceleration. When δt is long, poleward advection of buoyancy forms a density front near the shelf break, intensifying poleward speeds near the surface. With bottom drag, a bottom Ekman flow advects density offshore, shifting the jet core offshore of the shelf break. The resulting cross-shelf density gradient reverses the meridional current's direction at depth, leading to an equatorward undercurrent.  相似文献   

10.
Seasonal variation features of aerosol optical depth (AOD) over East China and India in association with the Asian monsoon system are investigated, based on the latest AOD data derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra satellite, the NCEP Final (FNL) Operational Global Analysis data, the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) data, and the NCEP/NCAR reanalysis data from March 2000 to February 2017. The results indicate that AOD in East China is significantly larger than that in India, especially in spring. The seasonal mean AOD in East China is high in both spring and summer but low in fall and winter. However, the AOD averaged over India is highest in summer and lower in spring, fall, and winter. Analysis reveals that AOD is more closely related to changes in surface wind speed in East China, while no obvious relation is found between precipitation and the AOD distribution on the seasonal timescale. As aerosols are mainly distributed in the atmospheric boundary layer (ABL), the stability of the ABL represented by Richardson number (Ri) is closely correlated with spatial distribution of AOD. The upper and lower tropospheric circulation patterns significantly differ between East China and India, resulting in different effects on the AOD. The effect of advection associated with lower tropospheric circulation on the AOD and the influence of convergence and divergence on the AOD distribution play different roles in maintaining the AOD in East China and India. These results improve our understanding of the mechanism responsible for and differences among the aerosol changes in East China and India.  相似文献   

11.
Based on the data of deep-ocean ship observations of temperature T and salinity S, analysis is carried out of the fields of pair correlation coefficients between T and S at different depths as an additional characteristic of water masses in the layer 0–1000 m in the North Atlantic. As a result of analysis, surface, subsurface, and the upper part of North Atlantic intermediate waters are classified according to a degree of correlation between temperature and salinity. The emphasis was given to regions with low correlations, because they indicate the prevalence of the interaction processes that differ most from the typical mixing of two water masses with entirely different characteristics.  相似文献   

12.
中国土壤湿度的垂直变化特征   总被引:24,自引:0,他引:24  
使用中国 57个站 1981~ 2 0 0 0年 0~ 10 0cm的土壤湿度资料 ,逐站进行了垂直方向土壤湿度的诊断分析 ,根据湿度的垂直分布形态归纳为 3种主要类型 :夏季均匀型、急剧变化型和季节差异型 ;分析土壤湿度的年际变化发现 :多数测站湿度的距平符号在垂直方向是一致的 ,变化趋势以长时间持续干和湿以及 3~ 4a振荡周期为主 ;进一步对干和湿期土壤湿度和降水量进行合成 ,发现湿期和干期的土壤湿度垂直分布多数情况下保持了气候态的基本特征 ,湿期减干期的土壤湿度差与降水差有很好的对应关系  相似文献   

13.
Knowledge of cloud properties and their vertical structure is important for meteorological studies due to their impact on both the Earth’s radiation budget and adiabatic heating within the atmosphere. The objective of this study is to evaluate bulk cloud properties and vertical distribution simulated by the US National Oceanic and Atmospheric Administration National Centers for Environmental Prediction Global Forecast System (GFS) using three global satellite products. Cloud variables evaluated include the occurrence and fraction of clouds in up to three layers, cloud optical depth, liquid water path, and ice water path. Cloud vertical structure data are retrieved from both active (CloudSat/CALIPSO) and passive sensors and are subsequently compared with GFS model results. In general, the GFS model captures the spatial patterns of hydrometeors reasonably well and follows the general features seen in satellite measurements, but large discrepancies exist in low-level cloud properties. More boundary layer clouds over the interior continents were generated by the GFS model whereas satellite retrievals showed more low-level clouds over oceans. Although the frequencies of global multi-layer clouds from observations are similar to those from the model, latitudinal variations show discrepancies in terms of structure and pattern. The modeled cloud optical depth over storm track region and subtropical region is less than that from the passive sensor and is overestimated for deep convective clouds. The distributions of ice water path (IWP) agree better with satellite observations than do liquid water path (LWP) distributions. Discrepancies in LWP/IWP distributions between observations and the model are attributed to differences in cloud water mixing ratio and mean relative humidity fields, which are major control variables determining the formation of clouds.  相似文献   

14.
This paper aims at characterizing how different key cloud properties (cloud fraction, cloud vertical distribution, cloud reflectance, a surrogate of the cloud optical depth) vary as a function of the others over the tropical oceans. The correlations between the different cloud properties are built from 2?years of collocated A-train observations (CALIPSO-GOCCP and MODIS) at a scale close to cloud processes; it results in a characterization of the physical processes in tropical clouds, that can be used to better understand cloud behaviors, and constitute a powerful tool to develop and evaluate cloud parameterizations in climate models. First, we examine a case study of shallow cumulus cloud observed simultaneously by the two sensors (CALIPSO, MODIS), and develop a methodology that allows to build global scale statistics by keeping the separation between clear and cloudy areas at the pixel level (250, 330?m). Then we build statistical instantaneous relationships between the cloud cover, the cloud vertical distribution and the cloud reflectance. The vertical cloud distribution indicates that the optically thin clouds (optical thickness <1.5) dominate the boundary layer over the trade wind regions. Optically thick clouds (optical thickness >3.4) are composed of high and mid-level clouds associated with deep convection along the ITCZ and SPCZ and over the warm pool, and by stratocumulus low level clouds located along the East coast of tropical oceans. The cloud properties are analyzed as a function of the large scale circulation regime. Optically thick high clouds are dominant in convective regions (CF?>?80?%), while low level clouds with low optical thickness (<3.5) are present in regimes of subsidence but in convective regimes as well, associated principally to low cloud fractions (CF?<?50?%). A focus on low-level clouds allows us to quantify how the cloud optical depth increases with cloud top altitude and with cloud fraction.  相似文献   

15.
利用地面激光雷达、太阳光度计观测反演气溶胶光学特性参数,结合PM2.5观测数据,分析了2018年1月25—28日北京一次完整污染过程中气溶胶光学特性变化。基于观测数据,利用短波辐射传输模式计算了不同程度污染日,晴空背景下气溶胶对辐射加热率的改变程度。结果表明:清洁日(25日),PM2.5日平均质量浓度为19.00 μg·m-3,440 nm气溶胶光学厚度为0.13,单次散射反照率为0.87,整层气溶胶消光系数低于0.10 km-1,短波辐射均为增温效应;污染期间(26—27日),PM2.5日平均质量浓度为83.21 μg·m-3,气溶胶光学厚度为2.48,气溶胶散射能力增强,单次散射反照率达到0.94,气溶胶主要消光层厚度提升至3.00 km高度,消光系数平均值为0.43 km-1,气溶胶在垂直方向的变化导致气溶胶中上层(1.50~3.00 km高度)加热作用强烈,短波辐射加热率平均值达到13.89 K·d-1,而低层(1.50 km高度以内)加热作用较弱,加热率平均值仅为0.99 K·d-1。气溶胶散射能力增强导致加热作用减弱,污染日加热率对于气溶胶散射能力变化更敏感。  相似文献   

16.
台风艾云尼(1804号)第2次登陆广东过程中降水表现出显著的非对称分布,强降水主要位于其路径前进方向的右侧(简称台风右侧)。利用欧洲中期天气预报中心ERA5再分析资料、广东风廓线雷达观测资料以及降水观测资料,对造成非对称降水的环流背景和动力、热力结构演变特征进行了分析。结果表明:艾云尼左右两侧水汽输送及动力、热力条件差异是造成降水非对称的主要原因。加强的低空急流以及台风马力斯(1805号)水汽的输送为台风右侧强降水的产生提供了更好的水汽背景,而低空急流的加强配合高空强的辐散抽吸使得右侧垂直上升运动也明显大于左侧。边界层内强盛的低空急流以及珠江三角洲地区下垫面强摩擦辐合作用导致艾云尼右前侧径向入流强度更强、强入流层厚度更厚、边界层高度更高,且由于距离台风眼墙越近风速越大,上述现象越明显,为强降水的产生提供的动力和水汽条件越好。强降水期间艾云尼右侧低层大气维持不稳定状态,分析表明强低空急流携带的θse平流及其随高度的减弱弥补了强降水造成的能量损耗,是不稳定能量维持的重要原因。   相似文献   

17.
GRAPES-Meso模式浅对流云辐射效应的改进试验   总被引:1,自引:0,他引:1  
在万子为等(2015)对GRAPES-Meso模式浅对流参数化改进的基础上,进一步引入了浅对流云量诊断计算,并设计旨在完善浅对流云辐射效应的浅云云量和云中水凝物的补偿方案,以改进模式低层云量偏少和浅对流云辐射效应不足的问题。通过对数值试验结果的诊断和对比分析以及与观测的比较,重点考察了浅对流云量计算与浅对流激发的协调性、浅对流云对低云补偿后所产生的辐射效应以及对模式地面要素预报的影响等,验证了改进方案的合理性与有效性。结果表明:(1)浅对流云量诊断计算合理,其云覆盖区与浅对流激发区相吻合,引入浅对流云量的计算可减小模式云量的计算偏差、使其向观测结果靠近;(2)改进方案在浅对流发生区低层0.5-4 km高度范围内,对影响模式云辐射过程的浅云云量和云中水凝物形成有效补偿,最明显的浅云补偿在1-1.5 km高度处,浅对流活跃时期浅对流过程对浅云水凝物(云水和雨水之和)的补偿量可达20%-55%;(3)云光学厚度对浅云水凝物的补偿响应合理,即水凝物的补偿引起云光学厚度增大,两者的变化特征在时空分布上十分相似,且云光学厚度之变化受云水补偿的影响比受雨水补偿的影响更明显;(4)在白天时段,浅云补偿所产生的辐射效应使模式地表太阳总辐射有所下降,缩小了与观测的偏差,进而使地表温度和地面2 m气温模拟偏差减小。改进方案在缓解模式云量偏少、地表太阳总辐射偏强和地面2 m气温偏高等方面的作用,在批量试验中得到了验证。   相似文献   

18.
The climatic effects of the stratospheric volcanic ash are simulated. The model we used is a primitive equation model with the P-σ incorporated coordinate system. The model has 5 layers in the atmosphere and 2 layers in the soil. The volcanic ash is introduced to the first (highest) model layer with a fixed optical thickness of 0.1275. Two comparative numerical experiments with and without the volcanic ash are made. Results show that the effects of the stratospheric volcanic ash on the formations of the mean climatic fields are much smaller than those of the land-sea distribution and the large scale topography. However, it does have contributions to the anomalies of the basic climatic states. The direct effect of the volcanic ash is to increase the temperature in the stratosphere. It can also influence the temperature and the height fields of isobaric surfaces, horizontal and vertical motions, precipitation and the surface climate through dynamic and thermodynamic processes in the atmosphere.  相似文献   

19.
韦英英 《气象科技》2018,46(2):343-351
以2009年7月17—18日一次山东特大暴雨为研究对象,利用NCEP/NCAR再分析资料、FY-2C卫星水汽资料及常规气象观测资料,通过数字化卫星水汽图像与大气动力场相结合的方式,揭示干侵入在本次暴雨过程中的特征及其对暴雨发生、发展的作用机制。结果表明,此次强降水过程是在高空槽和低层低涡切变的有利形势下产生的。暴雨过程与干侵入密切相关,干侵入在对流层中高层随高度向东倾斜,强降水出现在干侵入前沿湿度梯度最大值处的湿区一侧。卫星水汽图像干侵入暗区与对应着350hPa位涡高值区、干冷区。与干侵入相伴随的高位涡下传,使低层气旋性涡度加强,气旋发展。高层干冷空气下传有利于干层的形成和维持,干层的存在加强了暴雨过程的对流不稳定,对暴雨的加强和发展起重要作用。  相似文献   

20.
In this study a coupled air–sea–wave model system, containing the model components of GRAPES-TCM, ECOM-si and WAVEWATCH III, is established based on an air–sea coupled model. The changes of wave state and the effects of sea spray are both considered. Using the complex air–sea–wave model, a set of idealized simulations was applied to investigate the effects of air–sea–wave interaction in the upper ocean. Results show that air–wave coupling can strengthen tropical cyclones while air–sea coupling can weaken them; and air–sea–wave coupling is comparable to that of air–sea coupling, as the intensity is almost unchanged with the wave model coupled to the air–sea coupled model. The mixing by vertical advection is strengthened if the wave effect is considered, and causes much more obvious sea surface temperature (SST) decreases in the upper ocean in the air–sea coupled model. Air–wave coupling strengthens the air–sea heat exchange, while the thermodynamic coupling between the atmosphere and ocean weakens the air–sea heat exchange: the air–sea–wave coupling is the result of their balance. The wave field distribution characteristic is determined by the wind field. Experiments are also conducted to simulate ocean responses to different mixed layer depths. With increasing depth of the initial mixed layer, the decrease of SST weakens, but the temperature decrease of deeper layers is enhanced and the loss of heat in the upper ocean is increased. The significant wave height is larger when the initial mixed layer depth increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号