首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
扬子地块奥陶系碳酸盐岩重磁化机制探讨   总被引:1,自引:0,他引:1       下载免费PDF全文
碳酸盐岩是记录古地磁场信息的重要载体,然而,广泛存在的重磁化现象制约了碳酸盐岩在古地磁研究中的应用,其重磁化机制亟待解决.本文对采自贵州羊蹬地区的319块奥陶系碳酸盐岩定向样品作了详细的古地磁学和岩石磁学研究,其结果表明,94%样品(A类)记录了单一剩磁分量A,其解阻温度低于450℃;在地理坐标系下的平均方向为Dg/Ig=3.1°/48.1°(α95=2.9°),对应的古地磁极(87.0°N,2.8°E,A95=3.0°)与扬子地块古近纪-第四纪的古地磁极重合.6%样品(B类)记录了两个磁化分量,其高温分量(450℃~585℃)与A分量显著不同,但明显远离扬子块体早古生代古地磁极;低温分量(< 450℃)与A分量类似.说明羊蹬剖面奥陶系碳酸盐岩记录了两期重磁化.A分量和B低温分量的主要载磁矿物为磁黄铁矿(胶黄铁矿),B高温分量的主要载磁矿物为磁铁矿.这些磁性矿物都是成岩后的次生矿物.其中,解阻温度高于450℃的磁铁矿可能受晚燕山期造山运动影响生成;磁黄铁矿(胶黄铁矿)等矿物可能与印度板块与欧亚大陆碰撞引起的喜马拉雅造山运动所产生的流体作用有关,以后一期重磁化为主.新生代早期青藏高原隆升产生的流体在流经东南缘的碳酸盐岩等沉积岩层时,与原岩发生相互作用,使磁黄铁矿、胶黄铁矿、磁铁矿等磁性矿物生长并获得化学剩磁,造成了广泛重磁化.  相似文献   

2.
Magnetic analysis of carbonate strata of the mid-continent region of the United States indicates that the Late Paleozoic remagnetization already recognized in the Appalachians also affects almost the entire mid-continent. Magnetic intensity is regionally variable, with more intense magnetizations occurring on intracratonic arches. Magnetization is carried predominately by magnetite, which often occurs in tiny hollow spheroids composed of well formed octahedral microcrysts. Spheroid chemistry and morphology suggests that the magnetite is authigenic, composed of iron extracted from pre-existing pyrite or clay. The timing of the remagnetization, the character of the magnetite, and the regional variation in magnetic intensity support the idea that the remagnetization is a diagenetic consequence of tectonically-driven brine migration.  相似文献   

3.
Most of the studied Early Phanerozoic rocks of West Mongolia have undergone repeated remagnetization. Secondary magnetization components with normal and reversed polarity are isolated. The magnetization components with normal polarity are associated with the Mesozoic remagnetization of the rocks. The components with reversed polarity were probably formed during the Carboniferous–Permian superchron of reversed polarity. The analysis of the distribution of the reversed-polarity magnetization component in the structure of Mongolia permits some zonation. Within Mongolia, the regions with insignificant post- Permian deformations and complicated post-Permian deformations are identified; also the area of rotations of large geological blocks about the horizontal axis (Khan-Khukhei Ridge) is distinguished. It is hypothesized that in the Ordovician rocks of West Mongolia, the magnetization component that is close to primary was identified. If this is the case, the paleolatitude calculated from this magnetization direction corresponds to the interval 14°–17°–20° (minimal–mean–maximal) of probably northern latitude  相似文献   

4.
The Middle to Late Cambrian loop in the North American apparent polar wander path (APWP) has been variously attributed to tectonic rotations, remagnetizations and primary magnetizations. Although no primary thermal remanent magnetizations or primary detrital remanent magnetizations have as yet been demonstrated, the temporally self-consistent nature of the loop has been used as an argument for primary magnetizations. We have studied535 ± 5Ma nepheline syenites and syenites of the McClure Mountain alkalic complex, as well as495 ± 10Ma red trachyte dikes which intruded the complex, in an effort to find a primary TRM. Because Zijderveld analysis yielded consistent results for only one trachyte dike, remagnetization great-circle analysis was employed, giving a pole for the trachyte dikes at the tip of the loop (43°N, 114°E), while the syenites and nepheline synenites gave a pole at the base of the loop (18°N, 142°E). The magnetic carrier in the trachytes is hematite which apparently formed during a pervasive hydrothermal alteration. KAr whole rock dating of the trachytes suggests a Pennsylvanian age for the alteration, and thus a late Paleozoic remagnetization of the trachytes. Thus, the low-latitude Cambrian pole is confirmed, but we find no evidence in this study to support the primary nature of the Cambrian APWP.  相似文献   

5.
塔里木地块奥陶纪古地磁新结果及其构造意义   总被引:2,自引:1,他引:1       下载免费PDF全文
本文报道塔里木地块阿克苏—柯坪—巴楚地区奥陶纪古地磁研究新结果.对采自44个采点的灰岩、泥灰岩及泥质砂岩样品的系统岩石磁学和古地磁学研究表明,所有样品可分成两组:第一类样品以赤铁矿和少量磁铁矿为主要载磁矿物,该类样品通常可分离出特征剩磁组分A;第二类样品以磁铁矿为主要载磁矿物,系统退磁揭示出这类样品中存在特征剩磁组分B.特征剩磁组分A分布于绝大多数奥陶纪样品中,具有双极性,但褶皱检验结果为负,推测其可能为新生代重磁化.特征剩磁组分B仅能从少部分中晚奥陶世样品中分离出,但褶皱检验结果为正,且其所对应古地磁极位置(40.7°S,183.3°E,dp/dm=4.8°/6.9°)与塔里木地块古生代中期以来的古地磁极位置显著差别,表明其很可能为岩石形成时期所获得的原生剩磁.古地磁结果表明塔里木地块中晚奥陶世位于南半球中低纬度地区,很可能与扬子地块一起位于冈瓦纳古大陆的边缘;中晚奥陶世之后,塔里木地块通过大幅度北向漂移和顺时针旋转,逐步与冈瓦纳大陆分离、并越过古赤道;至晚石炭世,塔里木地块已到达古亚洲洋构造域的南缘.  相似文献   

6.
We have carried out paleomagnetic studies of the Upper Vendian sedimentary rocks from the Bashkirian Meganticlinorium (Southern Ural). The rocks were sampled at three localities spread over more than 100 km. Totally, more than 300 samples were collected from about 40 sampling sites. Stepwise thermal demagnetization up to 700°C revealed a stable component of magnetization of either polarity in 25 sites. The fold test and the reversal test for this component are positive, which is usually regarded as a sound argument in favor of the primary origin of magnetization. However, the Basu paleomagnetic pole (longitude 187.3°E, latitude 1.1°N) is located near the Late Ordovician-Early Silurian segment of the apparent polar wander path for Baltica, which might indicate a Paleozoic remagnetization of Vendian rocks. In this work we analyze different interpretations of the obtained results and evaluate the reliability of the Late Riphean and Vendian paleomagnetic data for Baltica.  相似文献   

7.
Paleomagnetic samples from the Nolichucky Formation (Late Cambrian), sampled at two sites in the Valley and Ridge Province of east Tennessee, yield a possibly penecontemporaneous characteristic magnetization that appears to reside in detrital magnetite. The paleomagnetic pole positions are “Paleozoic”, but differ: site I, lat. 41°N, long. 109°E,dp = 1°, dm = 2°; site II, lat. 39°N, long. 131°E,dp = 4°, dm = 7°. The difference in poles reflects a significant difference in declination between the site-mean directions, and this declination difference probably reflects relative tectonic rotation as the sites are in different thrust sheets. The paleontologic age of both sections is exceptionally well-constrained as they are sampled across an abrupt “biomere boundary” between contrasting trilobite faunas. Comparison of these results with paleomagnetic data from coeval strata elsewhere in North America reveals gross discrepancies, so that at least some of the published data must reflect remagnetization and/or tectonic rotation.  相似文献   

8.
The palaeomagnetic and rock magnetic characteristics of some Cenozoic rocks from the Cairo–Fayum area have been investigated. A total number of 259 oriented core samples were collected at 32 sites located in rocks of Eocene (13 sites), Oligocene (11 sites) and Pliocene (9 sites) ages. Most of these rocks carry a weak but stable remanent magnetisation that is principally carried by hematite. Goethite and magnetite are also found in some samples as subordinate constituents. Careful thermal demagnetisation successfully enabled the isolation of the characteristic remanent magnetisation. Normal and reversed polarities that passed a reversal test have been recorded in the three age groups. This magnetisation is probably of primary origin and reflects the ages of the rocks. The resultant palaeomagnetic poles are considered reliable and represent a good contribution to the African palaeomagnetic database and should help in further refining of the Cenozoic APWP for Africa.  相似文献   

9.
We present a quantitative relationship between blocking temperature and time that, in principle, provides a calibration of thermal remagnetization in nature. For a given metamorphic temperature-time regime, one can decide whether a given laboratory blocking temperature (or for paleointensity work, a range of blocking temperatures) is consistent with primary natural remanence (NRM) or with a metamorphic overprint. Independent of the domain structure or the chemical composition of the magnetic minerals, two general types of behaviour are predicted. If the primary NRM possesses laboratory (or primary cooling) blocking temperatures within 100°C or so of the Curie temperature, thermal remagnetization at lower temperatures, even over times as long as 106 years, is improbable. If the blocking temperatures are lower, viscous remagnetization is pronounced at temperatures well below those indicated by laboratory thermal demagnetization. An approximate scale of the “survival potential” of primary NRM in rocks of different metamorphic grades indicates that primary paleointensities are unlikely to be recovered from rocks metamorphosed above high-greenschist facies if the predominant magnetic mineral is nearly pure magnetite, or above middle-amphibolite facies if nearly pure hematite is predominant. Evidence from laboratory experiments and paleomagnetic field studies in metamorphic regions suggests, however, that these survival estimates are unduly optimistic. Chemical remagnetization through the destruction of primary magnetic minerals, and not thermal remagnetization, probably sets an effective upper temperature for the survival of primary NRM.  相似文献   

10.
Thermal and alternating-current demagnetization combined with ore microscopy and measurements of the temperature dependence of saturation magnetization have been carried out on some Mesozoic, probably Cretaceous, basaltic lavas from two areas (Seidfjell and Sørlifjell) at Spitsbergen. The experimental studies suggest that the Seidfjell locality has undergone extensive oxidations, which resulted in remagnetization. The estimated palaeomagnetic pole for this area is 77°N 107°E, which suggests a remagnetization, probably some time in the Late Tertiary. On the other hand the experimental data from the Sørlifjell locality suggest that the magnetization is primarily of deuteric origin. The mean palaeomagnetic pole position for this latter formation is at 75°N 235°E, which is significantly different from previously published European Mesozoic data. However, closing the Neo-Arctic basin by rotating Spitsbergen towards the Lomonosov Ridge, makes the suggested Cretaceous pole coincide with poles of similar age from North-America. This suggests that the estimated pole from Sørlifjell is a good approximation for a Late Mesozoic palaeomagnetic pole for Europe and it also confirms that the process of continental separation in the Arctic has taken place in Tertiary time.  相似文献   

11.
Precambrian amphibolite and hyperite rocks from the Bamble and Kongsberg areas in SE Norway, and amphibolite rocks from SW Sweden were investigated for evidence of remagnetization by the Sveconorwegian metamorphic episode. The similarity of the characteristic natural remanent magnetization directions, shown by the various rocks from the Bamble and Kongsberg areas, indeed supports the idea of remagnetization on a regional scale. Therefore the average pole position at 3°S, 153°W, determined from six sites in these areas, is considered to reflect the average virtual pole position for the post-Sveconorwegian period of uplift and cooling (1,120–975) · 106 year ago. The pole positions determined from the characteristic natural remanent magnetization directions of amphibolite rocks in SW Sweden are indicative of being somewhat younger.In addition, two hyperite dikes were studied near Karlshamn in SE Sweden. Their characteristic natural remanent magnetization is consistent with that of the hyperite dikes in central south Sweden (Mulder, 1971).The Precambrian apparent polar wandering path for Europe is reconstructed on the basis of twenty-three pole positions from the Baltic Shield and three pole positions from Great Britain. This pole path requires an average angular rate of apparent polar wandering of 0.2–0.3° per 106 year.  相似文献   

12.
柴达木盆地沉积地层记载着青藏高原东北部的构造演化信息.对该盆地路乐河地区上中生界—新生界地层系统采样,获得千余块定向岩心样品.岩石磁学研究表明样品中的磁性矿物主要为赤铁矿和磁铁矿;磁组构研究表明为初始沉积磁组构特征.磁组构特征指示了自中侏罗统大煤沟组(J2d)至早中新统下油砂山组(N12y)7个地层单位沉积时期,古水流方向共经历了4次阶段性的变化,表明柴达木块体相应地发生了4次旋转.在中—晚侏罗世块体逆时针旋转约22°;至早白垩世,块体又顺时针旋转约65°;在65.5~32 Ma期间块体旋转方向再次改变,逆时针旋转约63°;到32~13Ma阶段块体又发生约50°的顺时针旋转.柴达木块体的旋转及其方向的转换,可能与其南的羌塘块体、拉萨块体和印度板块阶段性北向碰撞挤压紧密相关.拉张环境与挤压环境的多次转换可能与中特提斯的关闭、新特提斯的张开和闭合、高原快速隆升后其边部松弛相联系.  相似文献   

13.
An intensive paleomagnetic investigation has been conducted on the Middle Triassic Leikoupo Formation on the Wangcang section (32.14°N, 103. 17°E). The results indicate the magnetic minerals are dominant by multidomain magnetite or maghemite, and the characteristic remnant magnetization revealed by stepwise thermal/alternating field demagnetization is close to the present-day geomagnetic direction of the sampling site. This suggests that dolomitization/thermal viscous magnetization is responsible for the remagnetization of this kind of rocks.  相似文献   

14.
New data for the Early and Late Carboniferous sections of the Russian platform (Moscow syneclise and Donbass) are presented. Magneto-mineralogical studies are carried out to identify the magnetic minerals—carriers of natural remanent magnetization. Extensive Late Paleozoic remagnetization of Carboniferous rocks is revealed. The obtained paleomagnetic data allowed us to determine the average paleomagnetic poles for the Gzhelian, Serpukhovian, and Visean stages of Carboniferous deposits of the Moscow syneclise.  相似文献   

15.
From Lower- and Middle-Triassic formations (respectively, the Sidi Stout and the Kirchaou sandstones) in southern Tunisia, 13 sites have been chosen for a palaeomagnetic study. In spite of the presence of two antiparallels, normal and reverse clusters of stable magnetization directions, the magnetization carried by these rocks results from a relatively recent remagnetization.  相似文献   

16.
17.

An intensive paleomagnetic investigation has been conducted on the Middle Triassic Leikoupo Formation on the Wangcang section (32.14°N, 103. 17°E). The results indicate the magnetic minerals are dominant by multidomain magnetite or maghemite, and the characteristic remnant magnetization revealed by stepwise thermal/alternating field demagnetization is close to the present-day geomagnetic direction of the sampling site. This suggests that dolomitization/thermal viscous magnetization is responsible for the remagnetization of this kind of rocks.

  相似文献   

18.
In view of the recent recognition of widespread Late Paleozoic remagnetization of Devonian formations across North America, we undertook a reinvestigation of the Upper Devonian Perry Formation of coastal Maine and adjacent New Brunswick. Thermal demagnetization of samples from the redbeds yielded a characteristic direction (D = 166°, I = 4°) that fails a fold test. Comparison of the corresponding paleopole (312°E, 41°S) with previously published Paleozoic poles for North America suggests that the sediments were remagnetized in the Late Carboniferous. After the removal of a steep, northerly component, the volcanics also reveal a shallow and southerly direction ( D = 171°, I = 25° without tilt correction). No stability test is available to date the magnetization of the volcanics; however, similarity of several of the directions to those seen in the sediments raises the suspicion that the volcanics are also remagnetized. Although the paleopole without tilt correction (303°E, 32°S) could be taken to indicate an early Carboniferous age for the remagnetization, scatter in the data suggests that the directions are contaminated by the incomplete removal of a steeper component due to present-day field. Thus, it is more likely that the volcanics were remagnetized at the same time as the sediments. Isothermal remanent magnetization (IRM) acquisition curves, blocking temperatures, coercivities and reflected light microscopy indicate that the magnetization is carried by hematite in the sediments and by both magnetite and hematite in the volcanics. It is therefore likely that the remagnetization of the Perry Formation involved both thermal and chemical processes related to the Variscan/Alleghenian orogeny. Our results indicate that previously published directions for the Perry Formation were based on the incomplete resolution of two magnetic components. These earlier results can no longer be considered as representative of the Devonian geomagnetic field.  相似文献   

19.
为进一步确定拉萨地块白垩纪-古近纪的古地理位置,我们对青藏高原拉萨地块措勤地区林子宗火山岩18个采点进行了古地磁研究.结果表明高温(高场)特征剩磁分量主要为亚铁磁性的磁铁矿所携带,特征剩磁分量在95%置信水平下通过了褶皱检验. 倾斜校正后采点平均的特征剩磁方向为D/I=16.2°/17.7°, α95=5.6°,对应古地磁极位置为63.1°N,224.6°E,A95=5.1°. 另一方面,Ar-Ar年代学结果表明采样剖面的林子宗火山岩形成年龄为~99-93 Ma, 与拉萨地块林周盆地的林子宗群火山岩的形成年龄存在较大差异.由此我们得到晚白垩世拉萨地块中部措勤地区的古纬度为8.5°±6.9°N,与林周盆地古近纪林子宗群典中组和年波组所揭示出的古纬度相当,进一步表明亚洲大陆最南缘的拉萨地块在晚白垩世-古近世期间位于北半球~10°N的低纬度地区.结合最新的特提斯海相地层古地磁结果,晚白垩世-古近世拉萨地块的古地理位置限定了印度与欧亚大陆的初始碰撞时间不晚于60.5 Ma;~93 Ma以来,拉萨地块和单一刚性欧亚大陆之间存在~1900 km的构造缩短.  相似文献   

20.
Paleomagnetic polarity data were obtained from nine sections of the Verde Formation, a late Tertiary carbonate-bearing lacustrine unit in central Arizona. This study tested the applicability of magnetostratigraphy as a geochronologic technique in a restricted terrestrial sedimentary basin, and its objective was to better define the age of the Verde Formation.Intensities of natural remanent magnetism (NRM) ranged from <10?7 to >10?4 gauss. Although secondary components of viscous magnetization commonly were observed, alternating field demagnetization was successful in revealing the polarity of the primary NRM at almost all sites. Thermomagnetic analysis, partial thermal demagnetization of NRM, and polished section analysis together indicate that the primary NRM is a depositional remanence carried by detrital magnetite. Intrabasin stratigraphic correlation of the sections, together with K-Ar ages on interbedded and underlying volcanic rocks has allowed construction of a composite magnetostratigraphic column for the Verde Formation that is correlated with the late Cenozoic polarity time scale. The correlation indicates nearly continuous sedimentation in the Verde basin from ~7.5 to ~2.5 m.y. ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号