首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
王恒  杨振宇 《地球物理学报》2019,62(5):1789-1808
印度—欧亚板块碰撞以来青藏高原内部及其周缘地区经历了复杂的构造演化,复杂构造变形区的复合构造使得古地磁的数据解释究竟代表区域的构造旋转还是只能反映局部的构造变形一直是备受关注的问题.本文通过采集川滇地块西缘渔泡江断裂东侧三岔河地区白垩纪红层古地磁样品,揭示采样区差异性旋转并探讨川滇地块西部自中新世以来的构造演化规律.前人的地质调查表明川滇地块渔泡江断裂东侧上白垩统赵家店组地层发育倾伏褶皱.三岔河剖面以三岔河镇为界分为南北两段,三岔河南段剖面高温剩磁分量平均方向在倾斜校正后Ds=29.3°,Is=45.7°,ks=54.3,α95=6.6°,倾伏地层产状校正后Ds=30.6°,Is=46.6°,ks=69.3,α95=5.8°;而三岔河北侧剖面高温剩磁分量平均方向在倾斜校正后Ds=350.4°,Is=42.1°,ks=69.4,α95=9.2°,倾伏地层产状校正后Ds=347.4°,Is=41.9°,ks=96.6,α95=7.8°;两组高温剩磁分量均通过了褶皱检验,表明其获得于褶皱形成之前.相对于东亚稳定区80Ma古地磁极,三岔河南侧剖面发生了20.5°±4.8°的顺时针构造旋转量,与楚雄盆地核部之间不存在差异性旋转;但三岔河镇以北剖面却发生了22.7°±6.6°的逆时针旋转.综合分析川滇地块内部的古地磁数据表明自中新世以来川滇地块南部楚雄盆地经历了约20°的顺时针构造旋转,而三岔河镇北侧经历了约20°逆时针旋转.进一步分析表明三岔河北侧剖面相对于南侧剖面经历了约40°的逆时针旋转,可能由于研究区的滑脱构造导致岩石薄弱层拆离滑脱所引起.  相似文献   

2.
对川滇地块程海断裂附近的宁蒗地区古新统宁蒗组地层进行了详细的磁组构研究,沿战河-西布河布置了22个采点(钻取287块样品),综合分析表明研究区内存在四种磁组构类型,分别为初始变形磁组构和铅笔状磁组构以及介于上述两者之间的两种过渡型磁组构.研究区西侧(采点1—9)K1轴优势方向为近NNE-SSW方向,东侧(采点13—22)K1轴优势方向则为近S-N向,K1轴方向的突然变化可能与研究区内的隐伏断层活动有关.另外,磁组构也可以很好判断断层所夹持块体之间的相对旋转运动.将两组K1轴优势方向经过旋转校正之后,发现研究区内中-晚始新世时古应力方向为近E-W向,该应力方向主要与新生代印欧碰撞有关.此外,E-W向的古应力场明显不同于现今的近S-N向的应力场方向,这可能与印欧碰撞后青藏高原从前期的挤压缩短阶段进入到后期的E-W向伸展阶段有关.  相似文献   

3.
川滇地块古新统宁蒗组磁组构特征及构造意义   总被引:1,自引:1,他引:0       下载免费PDF全文
对川滇地块程海断裂附近的宁蒗地区古新统宁蒗组地层进行了详细的磁组构研究,沿战河-西布河布置了22个采点(钻取287块样品),综合分析表明研究区内存在四种磁组构类型,分别为初始变形磁组构和铅笔状磁组构以及介于上述两者之间的两种过渡型磁组构. 研究区西侧(采点1-9)K1轴优势方向为近NNE-SSW方向,东侧(采点13-22)K1轴优势方向则为近S-N向,K1轴方向的突然变化可能与研究区内的隐伏断层活动有关.另外,磁组构也可以很好判断断层所夹持块体之间的相对旋转运动.将两组K1轴优势方向经过旋转校正之后,发现研究区内中-晚始新世时古应力方向为近E-W向,该应力方向主要与新生代印欧碰撞有关.此外,E-W向的古应力场明显不同于现今的近S-N向的应力场方向,这可能与印欧碰撞后青藏高原从前期的挤压缩短阶段进入到后期的E-W向伸展阶段有关.  相似文献   

4.
四川盆地西南部西侧为龙门山冲断带,南面紧挨川西南褶皱带,其新生代构造变形特征对于认识青藏高原东南缘的变形机制具有一定的指示意义.磁组构是一种灵敏的应变指示计,在变形微弱的沉积岩地区尤为适用.本文在雅安-乐山剖面选取12个采样点进行磁组构分析,结合已有的天全-雅安飞仙关剖面的27个采样点数据,综合讨论川西南地区的构造变形特征.所有采样点的磁组构测试结果显示出3种弱变形的磁组构类型:沉积磁组构、初始变形磁组构和铅笔状磁组构.雅安-乐山剖面采样点的磁线理绝大部分为北东-南西走向,和龙门山南段的整体延伸方向一致,表明四川盆地西南缘新生代构造变形主要受控于龙门山的构造作用.飞仙关剖面的磁组构测试结果显示44%的采样点表现出磁线理和地层走向斜交的特征,由初始变形磁组构演变而来,并且所有异常磁组构仅局限在断层上盘,本文认为这是雅安地区新生代期间局部逆时针旋转引起变形叠加的结果.  相似文献   

5.
川滇菱形块体顺时针转动的构造学与古地磁学证据   总被引:22,自引:3,他引:22       下载免费PDF全文
川滇菱形块体内部受NE向丽江 -小金河断裂的切割 ,可进一步划分为川西北次级块体和滇中次级块体等南北 2个部分 ;各次级块体东边界断裂有规律地左旋滑动、西边界断裂的右旋滑动及其滑动速率值的差异 ,反映出新生代时期各次级块体作向SE的水平滑移叠加绕垂直轴顺时针转动的复合运动。其中 ,川西北次级块体SE向的水平滑移速率 5mm/a ,顺时针转动角速度 1 4°/Ma ;滇中次级块体SE向的水平滑移速率 3 5mm/a ,顺时针转动角速度约 1 5°/Ma。在滇中次级块体内部姚安、大姚、永仁、昆明北马街等地采集到约 90个古新世地层的定向样品 ,通过交变退磁和热退磁获得了它们各自的剩磁矢量 (实验磁偏角和磁倾角 ) ,由实测磁偏角与期望磁偏角相比可知川滇地区滇中次级块体中新世早期以来的顺时针转动累积量可达 30°~ 4 8°。次级块体的整体转动与块边活动断裂的左旋滑动符合左旋走滑断裂作用区块体作顺时针转动的运动学模式  相似文献   

6.
冀东油田钻井岩芯的磁学研究   总被引:5,自引:2,他引:5       下载免费PDF全文
论述了利用古地磁、磁组构综合研究进行钻井岩芯定向和确定沉积组构(沉积层面在现代地理坐标系下的)方向的方法.通过对冀东油田100块钻井岩芯实测结果的系统分析,指出该方法在岩芯磁组构方向确定和沉积剩磁成分能够分离出来的情况下,可用于地层产状未知和井孔近似直立情况下的钻井岩芯定向,并能给出沉积组构方向.对岩芯样品中的磁性矿物成分、成因进行了研究,分析了岩芯磁性特征与烃类富集的关系,指出磁参数分布特征,能为油气勘探开发、指示油气富集部位提供参考.  相似文献   

7.
川滇地区现代地壳运动速度场和活动块体模型研究   总被引:35,自引:9,他引:35       下载免费PDF全文
吕江宁  沈正康  王敏 《地震地质》2003,25(4):543-554
通过分析中国地壳运动观测网络的GPS数据得到川滇地区地壳水平运动速度场 ,由此划分活动块体并分析其运动特征。结果表明 :相对欧亚板块 ,滇中、雅江和中甸次级块体的顺时针转动速率分别为 0 37°± 0 16°/Ma ,0 84°± 0 39°/Ma和 0 90°± 0 39°/Ma ,造成块体间跨木里弧形断裂带约 3mm/a的SN向挤压、丽江 -大理断裂带约 4mm/a的EW向拉张和理塘断裂带约 6mm/a的近EW向拉张。鲜水河断裂带左旋走滑速率 8~ 10mm/a ,安宁河 -则木河 -小江断裂带左旋走滑 5~6mm/a。龙门山断裂带没有明显的地壳消减 ,而断裂带西北约 15 0km处有一形变速度阶跃带 ,右旋走滑速率 4~ 5mm/a。阶跃带两侧的岷山块体和阿坝地区逆时针转动速率分别为 0 13°± 0 0 8°/Ma和0 5 3°± 0 19°/Ma。鲜水河 -小江断裂带以南、以西地区 ,青藏高原物质的E向挤出和重力滑塌造成川滇块体东移 ,在东部相对稳定的华南地块的阻挡下 ,川滇块体沿鲜水河 -小江断裂带由东转向南运动 ,从而引起川滇块体内部各次级块体的顺时针转动  相似文献   

8.
鄂尔多斯地块的运动学特征和动力学机制深受地学界关注。文中基于GPS数据和SKS剪切波分裂结果等地球物理资料,分析了鄂尔多斯地块及其周缘现今的壳幔运动学特征。结果表明,鄂尔多斯地块相对于欧亚大陆呈现逆时针旋转,欧拉极位于俄罗斯东南部,欧拉矢量为(50. 942±1. 935)°N,(115. 692±0. 303)°E,(0. 195±0. 006)°/Ma;块体内部变形微弱,GPS速率差异2mm/a,应变率5nano/a,应变时间序列的变化范围为-10~10nano,均在GPS的误差范围之内,表明在现有GPS资料的有效分辨范围内,鄂尔多斯块体内部相对完整,不存在明显的差异运动。块体西缘和东缘活动强烈,形成了2条明显的右旋剪切带,旋转速率为0. 2°~0. 4°/Ma;块体南缘和北缘活动较弱,边界断裂有左旋运动性质,旋转速率约0. 1°/Ma。青藏高原东北缘和鄂尔多斯块体西缘的壳-幔变形完全一致,满足垂直贯通模型,变形由青藏高原东北缘强烈的推挤作用引起;块体南部到秦岭造山带的地震各向异性与绝对板块运动方向一致,表明该区域存在地幔流通道,且已深入到鄂尔多斯块体内部;山西断陷带到太行山的SKS剪切波分裂的快波偏振方向与软流圈地幔流动方向一致,表明该区域受控于太平洋板块的俯冲作用;鄂尔多斯块体内部微弱的SKS各向异性来自于克拉通内部"化石"的各向异性。综合上述资料分析,鄂尔多斯地块相对于其周缘的旋转运动可能主要来自于其周缘构造带在岩石圈和软流圈作用下的主动运动,块体的主动旋转可能比较微弱。  相似文献   

9.
四川盆地西南缘紧邻龙门山褶皱冲断带(青藏高原东边界)南段.该地区的新生代早期红层沉积记录了青藏高原东缘的隆升历史及构造演变.本研究选取四川盆地西南缘芦山地区古新统—下渐新统名山组—芦山组地层剖面为研究对象,利用磁组构方法,结合前人对研究区古地磁及构造变形的研究,恢复了该地区新生代早期的古应力方向.本研究获取了548块样品的磁组构数据,这些磁组构的磁面理与层面平行,产状校正后磁线理呈NE-SW方向(39°/219°),K3主轴方向相对集中(为120.9°±1.3°),为弱应变背景下平行层缩短之前初始变形磁组构类型,主要形成于地层成岩阶段,未受到后期褶皱等构造变形的强烈改造.本研究认为芦山剖面磁组构结果记录了研究区新生代早期的构造变形信息:新生代早期龙门山褶皱冲断带南段及川西南盆地受NW-SE向的最大主应力控制.该地区新生代晚期及现今应力场与新生代早期一致,可能继承了新生代早期的应力体制,暗示龙门山作为青藏高原的东边界可能在新生代早期已经形成.  相似文献   

10.
石鼓尖岩体位于大别山核部天堂寨地区,为片麻理化石英二长岩.岩体磁组构分析显示,磁面理主体倾向SE,倾角较大,85%采样点的倾角介于40°~90°之间,与岩体的片麻理产状一致.岩体磁线理在东南部走向为NWW-SEE向,在岩体中部和北部,磁线理走向皆为NE-SW向.在岩体中部,磁线理向SW倾伏,北部磁线理向NE倾伏,磁线理倾角中等.磁化率各向异性度P值介于1.065~1.532之间;形态参数T介于0.005~0.694之间;弗林图解(F-L图解)显示K值均小于1,磁组构分析表明岩体是在SE-NW向挤压应力环境下侵位.石英C轴组构分析表明,岩体受到SE-NW向挤压应力,变形温度在400~500℃之间.显微构造显示岩石具有接近固态的变形组构特征,属同构造岩体变形组构.结合岩体磁组构、显微构造和石英C轴组构,指示石鼓尖岩体侵位冷凝成岩与区域NE向构造为同期,属同构造侵入岩体.石鼓尖岩体U-Pb定年结果表明,岩体锆石U-Pb年龄为(141±2.3)Ma,代表岩体侵位结晶年龄.综合分析认为,石鼓尖岩体侵位冷凝成岩时大别造山带仍然处于挤压环境,造山带由挤压向伸展转换的时间应该在141 Ma之后,岩体侵位时大别造山带的构造演化已受控于滨太平洋构造域.而邻近的天堂寨等巨大岩基则是伸展环境的产物.  相似文献   

11.
本文综合运用磷灰石-锆石裂变径迹和(U-Th)/He、镜质体反射率及盆地模拟等手段,深入细致地探讨了中扬子江汉平原簰洲湾地区中、新生代构造-热史演化过程.研究结果表明,研究区中-新生代大规模构造抬升剥蚀、地层冷却事件始于早白垩世(140-130 Ma);大规模抬升冷却过程主要发生在早白垩世中后期至晚白垩世.研究区虽然可能存在一定厚度的晚白垩世-古近纪地层沉积,总体沉积规模相对较小.综合分析认为,区内应该存在较大厚度的中侏罗统或/和上侏罗统乃至早白垩世地层的沉积;而现今残存中生代中、上侏罗统地层相对较薄,主要是由于后期持续构造抬升剥蚀造成的,估计总剥蚀厚度约4300 m左右.区内中生代地层在早白垩世达到最大古地温,而不是在古近纪沉积末期;上三叠统地层最大古地温在170~190℃之间.热史分析结果表明,区内古生代古热流相对稳定,平均热流在53.64 mW·m-2;早侏罗世末期古热流开始降低,在早白垩世初期古热流约为48.38 mW·m-2.  相似文献   

12.
鄂尔多斯地块构造演化的古地磁学研究   总被引:15,自引:0,他引:15       下载免费PDF全文
鄂尔多斯地块与中朝地台其它地区相同时代地层的古地磁结果基本一致表明:晚二叠世以来,中朝地台经历了从低纬度(19°左右)向中纬度的北移过程,并伴有50°左右的逆时针旋转;晚二叠世—中三叠世地台北移10°(1000km)左右,而方位基本未变;中三叠世—中侏罗世主要发生50°左右的逆时针旋转,而北向位移不明显,这一旋转可能与杨子地台和中朝地台碰撞拼合有关,或者说是印支运动在该地区的反应,中侏罗世—早白垩世地块已基本和现代位置一致  相似文献   

13.
The giant sinistral Altyn Tagh Fault(ATF)is the northern boundary of the Tibetan Plateau. It has been playing important role in adjusting the India-Eurasia collision and the tectonic evolution of the northeastern Tibetan Plateau. Knowledge of the evolution of the ATF can provide comprehensive understanding of the processes and mechanisms of the deformation of the Tibetan Plateau. However, its timing of commencement, amount of displacement and strike-slip rate, as well as the tectonic evolution of the region are still under debate. South of the ATF, there exist a series of oroclinal-like arcuate structures. Knowledge of whether these curved geometries represent original curvatures or the bending of originally straight/aligned geological units has significant tectonic implications for the evolution of the ATF. The Yingxiongling arcuate belt in the western Qaidam Basin and the northern Qaidam marginal thrust belt(NQMTB)north of the Qaidam Basin are the two typical arcuate thrust belts, where the former has a "7-types" structure, and the latter has a reverse "S-type" structure. Successive Cenozoic sediments are well exposed and magnetostratigraphically dated in both belts. Paleomagnetic declination has great advantage to reveal vertical-axis rotations of geological bodies since they become magnetized. Recently conducted paleomagnetic rotation studies in different parts of these two thrust belts revealed detailed Cenozoic rotation patterns and magnitudes of the region. By integrating these paleomagnetic rotation results with regional geometric features and lines of geological evidence, we propose that these two arcuate thrust belts were most likely caused by different rotations in different parts of these curvatures, due to the sinistral strike-slip faulting along the ATF, rather than originally curved ones. The Yingxiongling arcuate belt was shaped by the significant counterclockwise(CCW)rotations of its northwestern half(the Akatengnengshan anticline)near the ATF during~16~11Ma BP, while its southeastern half(the Youshashan anticline)had no significant rotations since at least~20Ma BP. The geometry of the NQMTB was developed firstly by remarkable clockwise rotations of its middle part during~33~14Ma BP, and later possibly CCW rotations of its northwestern part during the Middle to Late Miocene, similar to that of the northwestern part of the Yingxiongling arcuate belt. The characteristics of two-stage strike-slip evolution of the ATF since the Early Oligocene were enriched:1)During the Early Oligocene to mid-Miocene, fast strike-slip faulting along the ATF was proposed to accommodate the eastward extrusion of the northern Tibetan Plateau with its sinistral shear confined to the fault itself. While in the NQMTB and farther east area in the Qilian Shan, its sinistral shear was transferred to the interior of the plateau and was accommodated by deformation of differential crustal shortenings and block rotations in these regions. Thus, the displacement along the ATF west of the NQMTB is larger than that east of the NQMTB. 2)Since the mid-late Miocene, sinistral shear of the ATF was widespread distributed within the northern Tibetan Plateau, instead of concentrated to the fault itself. Its sinistral offsets were partially absorbed by the shortening deformation within the Qaidam Basin and the Qilian Shan, leading the offsets along the ATF decreasing to the east. With the sinistral frictional drag of blocks(the Tarim Basin and the Altyn Tagh Range)on the other side during the second stage evolution of the ATF, a transitional zone south of the ATF was likely developed by remarkable CCW rotations during the Middle to Late Miocene, which is probably confined to east of the Tula syncline. Combining the sinistral offsets along the ATF derived from the paleomagnetic rotations during the Early Oligocene to mid-late Miocene and that by piercing points since the Late Miocene, the post Oligocene strike-slip offsets were constrained as at least~350~430km for the reference in the western Qaidam Basin and~380~460km for the reference in the NQMTB, with an average slip rate of at least~10.6~13.9mm/a. The post Early Oligocene offsets are consistent with the widely accepted offsets of~300~500km obtained by piercing point analyses.  相似文献   

14.
Abstract   Detrital composition and major element geochemistry of Jurassic sandstones in the south Hefei Basin, central China, show their provenance to be the Dabie Mountains, whose tectonic attributes are closely related to continent–island arc complexes. It was found that a provenance change, from recycled orogen signatures and mixed orogenic sandstones to arc orogen, occurs from the lower Middle Jurassic to the Upper Jurassic (the Zhougongshan Formation). Dissected magmatic arc sources were gradually exposed in the Dabie Mountains due to intensive exhumation during the Late Jurassic, particularly after the Fenghuangtai depositional phase. Furthermore, it can be infered that the magmatic arc was initially present in both the Early Paleozoic and the Triassic, according to isotopic dating studies in previously published reports. δ13C–δ18O tracing between existing marbles of different strata in the Dabie block and marble gravels of the Fenghuangtai Formation in the Hefei Basin indicate that partial lithostratigraphic units for the Jurassic provenances have entirely disappeared from the Dabie block; therefore, it is impossible to reconstruct integral orogenic processes from studies on the remaining Dabie block alone. These findings, together with basin-fill sequences, also suggest that the Hefei Basin was mainly subjected to compressive mechanical regimes rather than extensional regimes in the Jurassic, which resulted in reverse-grading clastic depositional sequences, and is probably related to the northward intracontinental deep subduction of the Yangtze Plate. Regional exhumation properties and a tectonic model of the Late Mesozoic Dabie orogenesis are discussed in this paper.  相似文献   

15.
The uplift and exhumation process in the Tianshan orogen since the late Paleozoic were likely related to the preservation of ore deposits. This study involved reconstructing the whole tectonic thermal history of the Ouxidaban pluton in central South Tianshan Mountains based on hornblende/plagioclase Ar-Ar and zircon/apatite(U-Th)/He methods. The thermal history and uplift process of central South Tianshan Mountains since the late Paleozoic were analyzed according to the results of previous works and cooling/exhumation rate features. The hornblende yields a plateau age of 382.6±3.6 Ma, and the plagioclase yields a weighted mean age of 265.8±4.9 Ma. The Ouxidaban pluton yields weighted mean zircon(U-Th)/He age of 185.8±4.3 Ma and apatite(U-Th)/He age of 31.1±2.9 Ma, respectively. Five stages of tectonic thermal history of South Tianshan Mountains since the late Paleozoic could be discriminated by the cooling curve and modeling simulation:(1) from the latest Silurian to Late Devonian, the average cooling rate of the Ouxidaban pluton was 7.84°C/Ma;(2) from the Late Devonian to the latest Middle Permian, the average cooling rate was about 2.07°C/Ma;(3) from the latest Middle Permian to the middle Eocene, the cooling rate decreased to about 0.68°C/Ma, suggesting that the tectonic activity was gentle at this time;(4) a sudden increase of the cooling rate(5.00°C/Ma) and the exhumation rate(0.17 mm/a), and crustal exhumation of ~1.83 km indicated that the Ouxidaban pluton would suffer a rapid uplift event during the Eocene(~46?35 Ma);(5) since the middle Eocene, the rapid uplift was sustained, and the average cooling rate since then has been 1.14°C/Ma with an exhumation rate of about 0.04 mm/a and an exhumation thickness of 1.33 km. The strong uplift since the Cenozoic would be related to a far-field effect from the Indian and Eurasian plates' collision. However, it was hysteretic that the remote effect was observed in the Tianshan orogenic belt.  相似文献   

16.
Paleomagnetic results obtained from Upper Cretaceous sandstones in Northeastern Anatolia demonstrate that the entire area from Erzincan to Kars has been remagnetised. The remagnetisation was acquired before the Middle Eocene collision between the Eastern Pontides and the Arabian Platform because Middle Eocene sandstones carry primary natural remanent magnetisations. The post-folding in situ mean direction of the Upper Cretaceous sandstones is compared with mean directions of younger, Middle Eocene to present rock formations. As a result, a two-stage antagonistic rotation mechanism is proposed. First, the collision between the Pontides and the Taurides between Late Cretaceous and Middle Eocene was associated by clockwise rotation of  ~ 26°. In the second stage between Middle Eocene and Middle Miocene and beyond, counterclockwise rotations up to ~ 52° of the Pontide and Anatolide blocks and clockwise rotations of the Van Block were characterised by regional shortening and westward escape.  相似文献   

17.
The Jurassic stratigraphy in China is dominated by continental sediments. Marine facies and marine-terrigenous facies sediment have developed locally in the Qinghai-Tibet area, southern South China, and northeast China. The division of terrestrial Jurassic strata has been argued, and the conclusions of biostratigraphy and isotope chronology have been inconsistent.During the Jurassic period, the North China Plate, South China Plate, and Tarim Plate were spliced and formed the prototype of ancient China. The Yanshan Movement has had a profound influence on the eastern and northern regions of China and has formed an important regional unconformity. The Triassic-Jurassic boundary(201.3 Ma) is located roughly between the Haojiagou Formation and the Badaowan Formation in the Junggar Basin, and between the Xujiahe Formation and the Ziliujing Formation in the Sichuan Basin. The early Early Jurassic sediments generally were lacking in the eastern and central regions north of the ancient Dabie Mountains, suggesting that a clear uplift occurred in the eastern part of China during the Late Triassic period when it formed vast mountains and plateaus. A series of molasse-volcanic rock-coal strata developed in the northern margin of North China Craton in the Early Jurassic and are found in the Xingshikou Formation, Nandailing Formation, and Yaopo Formation in the West Beijing Basin. The geological age and markers of the boundary between the Yongfeng Stage and Liuhuanggou Stage are unclear. About 170 Ma ago, the Yanshan Movement began to affect China. The structural system of China changed from the near east-west Tethys or the Ancient Asia Ocean tectonic domain to the north-north-east Pacific tectonic domain since 170–135 Ma. A set of syngenetic conglomerate at the bottom of the Haifanggou or Longmen Fms. represented another set of molasse-volcanic rock-coal strata formed in the Yanliao region during the Middle Jurassic Yanshan Movement(Curtain A1). The bottom of the conglomerate is approximately equivalent to the boundary of the Shihezi Stage and Liuhuanggou Stage. The bottom of the Manas Stage creates a regional unconformity in northern China(about 161 Ma, Volcanic Curtain of the Yanshan Movement, Curtain A2). The Jurassic Yanshan Movement is likely related to the southward subduction of the Siberian Plate to the closure of the Mongolia-Okhotsk Ocean. A large-scale volcanic activity occurred in the Tiaojishan period around 161–153 Ma. Note that 153 Ma is the age of the bottom Tuchengzi Formation, and the bottom boundary of the Fifth Stage of the Jurassic terrestrial stage in China should have occurred earlier than this. This activity was marked by a warming event at the top of the Toutunhe Formation, and the change in the biological assembly is estimated to be 155 Ma. The terrestrial Jurassic-Cretaceous boundary(ca. 145.0 Ma) in the Yanliao region should be located in the upper part of Member 1 of the Tuchengzi Formation, the Ordos Basin in the upper part of the Anding Formation, the Junggar Basin in the upper part of the Qigu Formation, and the Sichuan Basin in the upper part of the Suining Formation The general characteristics of terrestrial Jurassic of China changed from the warm and humid coal-forming environment of the Early-Middle Jurassic to the hot, dry, red layers in the Late Jurassic. With the origin and development of the Coniopteris-Phoenicopsis flora, the Yanliao biota was developed and spread widely in the area north of the ancient Kunlun Mountains, ancient Qinling Mountains, and ancient Dabie Mountain ranges in the Middle Jurassic, and reached its great prosperity in the Early Late Jurassic and gradually declined and disappeared and moved southward with the arrival of a dry and hot climate.  相似文献   

18.
Uplift of the Tibetan Plateau, inversion of eastern and western geomorphology, eastward flowing of large rivers, and run-through of the Changjiang River exert great influence on sedimentation and environ-mental variations in the East China Sea. Provenance discrimination of Tibetan-Plateau-originated sediments in the river-mouth areas and marginal seas is key to figure out these issues.In the past, most studies of the run-through time of the Changjiang and the Yellow rivers focused on geomo…  相似文献   

19.
Lawrence R.  Zamoras  Atsushi  Matsuoka 《Island Arc》2004,13(4):506-519
Abstract   Upper Paleozoic to Mesozoic sedimentary sequences of chert (Liminangcong Formation), clastics (Guinlo Formation) and a number of limestone units (Coron Formation, Minilog Formation and Malajon Limestone) constitute the accretionary complex of the North Palawan block, Philippines. Based on chert-to-clastic transitions from different stratigraphic sequences around the Calamian Islands, three accretionary belts are delineated: the Northern Busuanga Belt (NBB), the Middle Busuanga Belt (MBB) and the Southern Busuanga Belt (SBB). The accretion events of these belts along the East Asian accretionary complex, indicated by their sedimentary transitions, began with the Middle Jurassic NBB accretion, followed by the Late Jurassic MBB accretion and the Early Cretaceous SBB accretion. Several limestone blocks that formed over the seamounts became juxtaposed with chert–clastic sequences during accretion. During the Late Cretaceous, accretion-subduction along the East Asian margin subsided bringing tectonic stability to the region. The seafloor spreading during the mid-Oligocene disconnected the entire North Palawan block from the Asian mainland and then migrated southward. The collision between the North Palawan block and the Philippine Island Arc system in the middle Miocene generated a megafold structure in the Calamian Islands as a result of the clockwise turn of the accretionary belts in the eastern Calamian from originally northeast–southwest to northwest–southeast.  相似文献   

20.
塔北阿瓦特剖面磁性地层的构建:天山的脉动式隆升   总被引:1,自引:0,他引:1       下载免费PDF全文
晚新生代以来天山造山带的构造演化过程仍缺少准确的年龄限制.南天山山前新生界地层普遍缺乏古生物化石以及岩浆活动等定年依据,然而地层沉积连续,适合于磁性地层定年.对阿瓦特地区3700 m厚的晚新生代地层进行了详细的磁性地层研究,建立了该地区西域组底部至吉迪克组顶部的磁极性变化序列,共识别出26个负极性和26个正极性带,与C...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号