首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The geomorphologic structure in the southeastern Tibetan Plateau is one of the important indexes for the expansion and deep dynamic process of Tibet. There are two different understandings for the geomorphologic structure in the southeastern Tibetan Plateau, i.e. gradual change and abrupt change. The gradient model suggests a gradual topographic reduction towards southeast which is an important evidence for the lower crust channel flow. The abrupt model considers that the southeast boundary of the plateau shows an abrupt change of topography in a zone of 50~200km wide which is controlled by the Yarlung-Yulong fault system. Here, we describe the morphotectonic feature in detail of the Sichuan-Yunnan block on the southeast edge of the plateau through the digital elevation model(DEM)analysis, further review the structural controls on the geomorphologic structure by combining the tectono-thermochronology analysis, and evaluate the southeastward spreading mode of the plateau. The topographic arithmetic progression ranking by using the DEM of the Sichuan-Yunnan block reveals three geomorphologic steps gradually lowering from the northwest to southeast. The switching of hypsometric integral(HI)value and the anomaly of SL/K value(where SL is stream length-gradient index and K is altitude of the profile)of river systems all occur on the edge of terraces. The high terrace is located on the north of Muli-Yulong with average elevation~4 200m; the secondary level of terrace extends to the Yanyuan-Lijiang area with average elevation~3 000m; and the third level is the region between the Jinhe-Qinghe and Anninghe with average elevation~1 800m. Structure investigation reveals that all the topographic boundaries between different terraces are consistent with regional major faults. The Muli thrust fault and Yulong thrust fault control the southeast edge of the high terrace, the Jinhe-Qinghe thrust fault separates the second and third level of terrace. The coincidence between topography boundaries and faults suggests that the formation of the stepped geomorphology on the southeast edge of the plateau were induced by the fault activities, reflecting the fault-controlled southeastward stepped-expanding mode of the plateau. The fission-track(FT)dating of the granites at the hanging wall of the Yuling-Muli Fault reveals fast uplift during~27~22Ma BP, reflecting the major thrusting along the Yulong-Muli Fault, which is consistent with the early-stage activity (~30~25Ma BP) of the Longmenshan Fault. Therefore, the high terrace was formed during the Oligocene to early Miocene with the thrusting of the Yulong-Muli Fault. Tectono-thermochronology analysis also reveals the major thrusting of the Jinhe-Qinghe Fault occurred during~18~11Ma BP, indicating the middle terrace was formed in the middle Miocene, which also could correspond to the middle Miocene(~15~10Ma BP) activity of the Longmenshan Fault. Therefore, the thrusting faults controlled stepped terrace geomorphologic structure and the stepwise expanding mode under combined movements of large-scale thrusts and strike-slip faults at the southeast edge of Tibetan Plateau during the late Cenozoic do not support the lower crust channel flow model.  相似文献   

2.
库木库里盆地位于青藏高原北缘,与柴达木盆地一山之隔,是二者的过渡地带,也是高原主体部分向NE扩展的前缘地区;现今构造表现为被3条大型活动构造带(走滑的阿尔金断裂带、东昆仑断裂带和逆冲的祁漫塔格褶皱逆冲系)所夹持。因此,该盆地对于研究青藏高原北缘的构造活动性、活动历史,探讨高原的扩展模式具有十分重要的意义。虽然库木库里盆地南、北两侧均发育活动性很强的大型走滑断裂,但是在盆地中央发育1条大型背斜,走向NWW-SEE,与祁漫塔格褶皱逆冲系和柴达木盆地内的褶皱构造走向一致,说明盆地目前遭受NNE向的挤压。通过对盆地地形横、纵剖面和阶地展布形态的分析,得出背斜有自西向东扩展变形的特征;野外调查和测年结果显示,背斜东段冰川融水形成了大型冰水扇,形成年龄为(87.09±2.31)~(102.4±3.7)ka,进而获得背斜东段自晚更新世以来平均隆升速率的最大值为(2.78±0.28)~(3.28±0.28)mm/a。库木库里盆地整体的活动性很强,在构造上与其北边的柴达木盆地类似,都受控于阿尔金断裂南侧的NNE向的区域挤压作用。  相似文献   

3.
The 40km-long, NEE trending Reshui-Taostuo River Fault was found in the southern Dulan-Chaka highland by recent field investigation, which is a strike-slip fault with some normal component. DEM data was generated by small unmanned aerial vehicle(UAV)on key geomorphic units with resolution<0.05m. Based on the interpretation and field investigation, we get two conclusions:1)It is the first time to define the Reshui-Taostuo River Fault, and the fault is 40km long with a 6km-long surface rupture; 2)There are left-handed dislocations in the gullies and terraces cut by the fault. On the high-resolution DEM image obtained by UAV, the offsets are(9.3±0.5) m, (17.9±1.5) m, and(36.8±2) m, measured by topographic profile recovery of gullies. The recovery measurements of two terraces present that the horizontal offset of T1/T0 is(18.2±1.5) m and the T2/T1 is (35.8±2) m, which is consistent with the offsets from gullies. According to the historical earthquake records, a M5 3/4 earthquake on April 10, 1938 and a MS5.0 earthquake on March 21, 1952 occurred at the eastern end of the surface rupture, which may be related to the activity of the fault. By checking the county records of Dulan and other relevant data, we find that there are no literature records about the two earthquakes, which is possibly due to the far distance to the epicenter at that time, the scarcity of population in Dulan, or that the earthquake occurred too long ago that led to losing its records. The southernmost ends of the Eastern Kunlun Fault and the Elashan Fault converge to form a wedge-shaped extruded fault block toward the northwest. The Dulan Basin, located at the end of the wedge-shaped fault block, is affected by regional NE and SW principal compressive stress and the shear stress of the two boundary faults. The Dulan Basin experienced a complex deformation process of compression accompanying with extension. In the process of extrusion, the specific form of extension is the strike-slip faults at each side of the wedge, and there is indeed a north-east and south-west compression between the two controlling wedge-shaped fault block boundary faults, the Eastern Kunlun and Elashan Faults. The inferred mechanism of triangular wedge extrusion deformation in this area is quite different from the pure rigid extrusion model. Therefore, Dulan Basin is a wedge-shaped block sandwiched between the two large-scale strike-slip faults. Due to the compression of the northeast and southwest directions of the region, the peripheral faults of the Dulan Basin form a series of southeast converging plume thrust faults on the northeast edge of the basin near the Elashan Fault, which are parallel to the Elashan Fault in morphology and may converge with the Elashan Fault in subsurface. The southern marginal fault of the Dulan Basin(Reshui-Taostuo River Fault)near the Eastern Kunlun fault zone is jointly affected by the left-lateral strike-slip Eastern Kunlun Fault and the right-lateral strike-slip Elashan Fault, presenting a left-lateral strike-slip characteristic. Meanwhile, the wedge-shaped fault block extrudes to the northwest, causing local extension at the southeast end, and the fault shows the extensional deformation. These faults absorb or transform the shear stress in the northeastern margin of the Tibet Plateau. Therefore, our discovery of the Dulan Reshui-Taostuo River Fault provides important constraints for better understanding of the internal deformation mode and mechanism of the fault block in the northeastern Tibetan plateau. The strike of Reshui-Taostuo River Fault is different from the southern marginal fault of the Qaidam Basin. The Qaidam south marginal burial fault is the boundary fault between the Qaidam Basin and the East Kunlun structural belt, with a total length of ~500km. The geophysical data show that Qaidam south marginal burial fault forms at the boundary between the positive gravity anomaly of the southern East Kunlun structural belt and the negative gravity anomaly gradient zone of the northern Qaidam Basin, showing as a thrust fault towards the basin. The western segment of the fault was active at late Pleistocene, and the eastern segment near Dulan County was active at early-middle Pleistocene. The Reshui-Taostuo River Fault is characterized by sinistral strike-slip with a normal component. The field evidence indicates that the latest active period of this fault was Holocene, with a total length of only 40km. Neither remote sensing image interpretation nor field investigation indicate the fault extends further westward and intersects with the Qaidam south marginal burial fault. Moreover, it shows that its strike is relatively consistent with the East Kunlun fault zone in spatial distribution and has a certain angle with the burial fault in the southern margin of Qaidam Basin. Therefore, there is no structural connection between the Reshui-Taostuo River Fault and the Qaidam south marginal burial fault.  相似文献   

4.
柴达木盆地沉积地层记载着青藏高原东北部的构造演化信息.对该盆地路乐河地区上中生界—新生界地层系统采样,获得千余块定向岩心样品.岩石磁学研究表明样品中的磁性矿物主要为赤铁矿和磁铁矿;磁组构研究表明为初始沉积磁组构特征.磁组构特征指示了自中侏罗统大煤沟组(J2d)至早中新统下油砂山组(N12y)7个地层单位沉积时期,古水流方向共经历了4次阶段性的变化,表明柴达木块体相应地发生了4次旋转.在中—晚侏罗世块体逆时针旋转约22°;至早白垩世,块体又顺时针旋转约65°;在65.5~32 Ma期间块体旋转方向再次改变,逆时针旋转约63°;到32~13Ma阶段块体又发生约50°的顺时针旋转.柴达木块体的旋转及其方向的转换,可能与其南的羌塘块体、拉萨块体和印度板块阶段性北向碰撞挤压紧密相关.拉张环境与挤压环境的多次转换可能与中特提斯的关闭、新特提斯的张开和闭合、高原快速隆升后其边部松弛相联系.  相似文献   

5.

The Xunhua, Guide and Tongren Basins are linked with the Laji Mountain and the northern West Qinling thrust belts in the Xunhua-Guide district. Basin depositional stratigraphy consists of the Oligocene Xining Group, the uppermost Oligocene-Pliocene Guide Group and the Lower Pleistocene. They are divided into three basin phases by unconformities. Basin phase 1 is composed of the Xining Group, and Basin phase 2 of the Zharang, Xiadongshan, Herjia and Ganjia Conglomerate Formations in the Guide Group, and Basin phase 3 of the Gonghe Formation and the Lower Pleistocene. Three basin phases all develop lacustrine deposits at their lower parts, and alluvial-braided channel plain depositional systems at upper parts, which constitute a coarsening-upward and progradational sequence. Basin deposition, paleocurrent and provenance analyses represent that large lacustrine basin across the Laji Mountain was developed and sourced from the West Qinling thrust belt during the stage of the Xining Group (Basin phase 1), and point-dispersed alluvial fan-braided channel plain deposition systems were developed beside the thrust and uplifted Laji Mountain and sourced from it, as thrusting migrated northwards during the stage of the Guide Group (Basin phase 2). Evolution of basin-mountain system in the study area significantly indicates the growth process of the distal Tibetan Plateau. The result shows that the Tibetan Plateau expanded to the northern West-Qinling at Oligocene (29–21.4 Ma) by means of northward folded-and-thrust thickening and uplifting and frontal foreland basin filling, and across the study area to North Qilian and Liupan Mountain at the Miocene-Pliocene (20.8–2.6 Ma) by means of two-sided basement-involved-thrust thickening and uplifting and broken foreland basin filling, and the distant end of Tibetan Plateau behaved as regional erosion and intermontane basin aggradational filling during the Pliocene and early Pleistocene (2.6–1.7 Ma).

  相似文献   

6.
The Ximalin fault is the northwest section of the Ximalin-Shuiquan fault, which is part of the north-edge fault zone of the Yanghe Basin, located in the conjunction of the Zhangjiakou-Bohai fault zone and Shanxi fault-depression basin, and its structural geometry and deformation characteristics can facilitate the research on the interaction of the two tectonic belts. In this paper, data of geological surveys and geophysical exploration are used to study this fault exhaustively, concerning its geometry, structural features and activity as well as its relationship with adjacent faults and rule in the deformation transform of the north-edge fault zone of the Yanghe Basin. The results show that the Ximalin Fault is a strike-slip feature with thrust component. Its vertical slip rates are 0.17mm/a and 0.25~0.38mm/a, and the horizontal slip rate is 0.58~0.67mm/a and 0.50mm/a during the late Middle Pleistocene and Holocene, respectively. It is formed alternately by the NW-trending main faults and secondary NE-trending faults, of which the former is characterized by high-angle reverse with sinistral strike-slip, and the latter shows normal faulting. The two sets of structures have specific structural geometry relations, and the motion manners and deformation characteristics match each other. During the active process of the north-edge fault of the Yanghe Basin, the NW trending Ximalin fault played a role similar to a transform fault in deformation change and stress transfer, and its sinistral strike slip activity accommodated the NE trending normal faulting at the both ends.  相似文献   

7.
帕米尔北缘弧形推覆构造带东段由强烈活动的艾卡尔特弧形活动褶皱-逆断裂带与卡兹克阿尔特弧形活动褶皱-逆断裂带南、北两条巨型边缘弧形构造带及其间的推覆构造构成。每个弧形带分别由多个不同级别的、相对独立的次级弧形构造组成。每个弧形构造实际上就是一个独立的逆冲推覆席体,都有其各自独特的几何学、运动学、动力学特征,但同时又具有自相似性特征。独立地震破裂区或形变带与独立活动的弧形推覆构造可能具有一定的对应关系  相似文献   

8.
在青藏高原的运动变形过程中,断层活动起着至关重要的作用.本文利用有限元数值模拟的方法,分别计算了在GPS做边界约束下青藏高原及周边区域的连续体模型和含断层的不连续体模型的运动状态和应力场分布.从连续性模型和非连续体模型的差异发现,断层存在与否很大程度上影响了青藏高原现代运动场的分布.主要体现在,断层的滑移运动(1)增加了青藏高原东西两侧的拉张趋势;(2)加大了青藏高原物质东移的速度;(3)改变了塔里木和柴达木盆地的运动状态.模拟结果显示,非连续模型的运动场分布与GPS观测结果吻合程度大大高于连续体模型结果,表明断层活动在青藏高原的运动学和动力学过程中起着重要的作用,在研究青藏高原的动力学机制中,必须考虑断层作用的影响.  相似文献   

9.
We report on new paleomagnetic results obtained from 27 sites sampled in the Plio–Pleistocene sequences at the external front of the central–northern Apennines. Previous analyses of Miocene (Messinian) sediments indicated that the present shape of the northern Apenninic arc is due to the oroclinal bending of an originally straight belt oriented around N320° and that vertical axis rotations accompanied the migration of the thrust fronts toward the Adriatic foreland [F. Speranza et al., J. Geophys. Res. 102 (1997) 3153–3166]. We tried to provide new paleomagnetic constraints for the timing and rates of the oroclinal bending process during the Pliocene and the Pleistocene. The results suggest that CCW rotations observed in the northern part of the studied area are possibly younger than 3 Ma. No regional rotation is recorded in the Pliocene and Pleistocene sediments from the southern part of the study area, analogously to the Messinian sediments of the ‘Acquasanta’ domain of Speranza et al. [F. Speranza et al., J. Geophys. Res. 102 (1997) 3153–3166]. A local significant CCW rotation (23°±10°) is identified in the Early Pleistocene sediments that crop out along the Adriatic coast between Ascoli and Pescara, indicating differential motion of the thrust sheets. This rotation must be younger than 1.43 Ma.  相似文献   

10.
中国及邻区现代构造形变特征   总被引:5,自引:0,他引:5       下载免费PDF全文
本文根据大量浅源地震机制解, 地面地震地质调查、资源卫星影像判读和其它地球物理资料、讨论了我国及其邻区现代构造形变的区域特征.它具体反映在我国东部地区, 现代构造形变是以剪切破裂为主, 断层活动多为北北东—北东向的右旋走滑性质, 也有与之共轭的北西西—北西向的左旋走滑性质的断层活动.西部地区则以压缩形变为特征, 主要表现在以青藏高原为主体的凸向东北的四重弧形构造带上, 在第一和第四弧形带的东北部以挤压引起的逆断层活动为主, 第二和第三弧形带是在挤压作用下, 由于物质的横向推移而引起的走滑断层活动.此外现代构造形变的区域特征还反映在地壳厚度的分布轮廓上.造成我国及邻区这样一种现代构造形变特征的原因是与周围几个板块运动有密切关系的.   相似文献   

11.
2001年11月14日新疆青海交界东昆仑山8.1级地震构造背景初探   总被引:10,自引:2,他引:10  
2 0 0 1年 11月 14日中国新疆青海交界昆仑山中的 8.1级地震发生在东昆仑断裂的西段。这是一条大型活动块体边界断裂。青藏高原东北部向东逃逸而产生左旋剪切运动使该断裂成为一条青藏高原北部强震密集带。这次地震震中在北西西向东昆仑断裂与北东东向次级断裂的交汇部位 ,破裂表现为自西向东单向扩展的特点  相似文献   

12.
The tectonic evolution of the Apennine belt/southern Tyrrhenian Sea system is addressed through a paleomagnetic study of Lias to Langhian sediments from the Apenninic carbonate platform (southern Apennines, Italy). Reliable paleomagnetic data gathered from 21 sites document a regional-scale post-Langhian 80° counterclockwise (CCW) rotation. Since previous studies of the Plio-Pleistocene clays spread over the orogen had shown a ∼20°CCW rotation, we conclude that the southern Apennines rotated by 60° during Middle-Late Miocene. Our data provide evidence that the southeastward drift of Calabrian block (and synchronous spreading of the southern Tyrrhenian Sea) induced ‘saloon door’ like deformation of the southern Apennines and Sicily, which underwent similar magnitude (although opposite in sign) orogenic rotations. A paleomagnetically derived paleogeographic reconstruction shows that at 15 Ma (Late Langhian) the Alpine-Apennine belt collided with a NNE-oriented carbonate platform corridor surrounded by oceanic basins. We speculate that both the end of the Corsica-Sardinia rotation and the eastward jump of the locus of back-arc extension (from the Liguro-Provençal to the Tyrrhenian Sea) may have been consequences of this event.  相似文献   

13.
The western Qinling-Songpan tectonic node is located at the intersection of three major tectonic units of Tibetan plateau, the South China Block and the Ordos Block, and is at the forefront of the northeastern margin of Tibetan plateau. It has unique geological and dynamic characteristics from the surface to the deep underground. Based on the model for ductile flow in the lower crust, the geomorphological form is used to estimate the viscosity of the lower crust, and how the rheological process of the deep lithosphere acts on the upper crust deformation and structural geomorphology. And combined with GPS velocity field data, the current crustal deformation is analyzed to further study the regional dispersive deformation process. The results show that the viscosity of the north and northeast of the Zoige-Hongyuan Basin is smaller than that of the east and southeast. Therefore, the lower crust flow has a tendency of flowing to the northeastern low viscosity zone. We believe that when the lower crust flows from the central plain of the Qinghai-Tibet Plateau to the rigid Sichuan Basin with a higher viscosity of the lower crust, it cannot flow into the basin, and part of the lower crust flow accumulate here, causing the upper crust to rise, and the uplifting led to the formation of the Longmen Mountains and a series of NNE-striking faults as well. When the lower crust flows to the northeast direction with a low viscosity, the brittle upper crust is driven together. Because of the remote effects from the Ordos Basin and the Longxi Basin, the mountains in this region are built slowly and the stepped arc-shaped topography of the current 3 000-meter contour line and the 2 000-meter contour line are developed. At the same time, a series of NWW-trending left-lateral strike-slip faults are developed. This explains the seismogenic tectonic model of the western Qinling-Songpan tectonic node as from NWW-trending left-lateral strike-slip faulting to the NNE-trending right-lateral strike-slip faulting and both having a thrust component. The current crustal movement direction revealed by the GPS velocity field is consistent with the direction of historical crust evolution of the lower crust revealed by the viscosity, implying that there is a good coupling relationship between the lower crust and upper crust. The results provide a basis for studying the development of fault systems with different strikes and properties, the formation of orogenic belts, the macroscopic geomorphological evolution characteristics, and the rheological and uplift dynamics of the lithosphere in the northeastern margin of the Tibetan plateau. In addition, our research differs from the previous studies in the spatial and temporal scale. Previous studies included either the entire Qinghai-Tibet Plateau or only the eastern margin of the Qinghai-Tibet Plateau. However, our analysis on the contours and topographical differences in the topography of the western Qinling-Songpan tectonic knot reveals that the study area is controlled by the lower crust flow. Our results are confirmed by various observations such as seismology, magnetotellurics and geophysical exploration. Moreover, the previous studies did not point out enough that the elevation contours are elliptical, and the elliptical geomorphology further illustrates that the formation and evolution of the Qinghai-Tibet Plateau has rheological characteristics and also conforms to the continuous deformation mode. Meanwhile, in terms of time scale, the evolution time of the study area is divided into three types of simulation time according to geochronology. And the GPS velocity field is introduced to observe the present-day crustal deformation.  相似文献   

14.
New paleomagnetic results from Neogene sedimentary sequences from the Betic chain (Spain) are here presented. Sedimentary basins located in different areas were selected in order to obtain paleomagnetic data from structural domains that experienced different tectonic evolution during the Neogene. Whereas no rotations have been evidenced in the Late Tortonian sediments in the Guadalquivir foreland basin, clockwise vertical axis rotations have been measured in sedimentary basins located in the central part of the Betics: the Aquitanian to Messinian sediments in the Alcalà la Real basin and the Tortonian and Messinian sediments in the Granada basin. Moreover, counterclockwise vertical axis rotations, associated to left lateral strike-slip faults have been locally measured from sedimetary basins in the eastern Betics: the Middle Miocene to Lower Pliocene sites from the Lorca and Vera basins and, locally, the Tortonian units of the Huercal-Overa basin. Our results show that, conversely from what was believed up to now, paleomagnetic rotations continued in the Betics after Late Miocene, enhancing the role of vertical axis rotations in the recent tectonic evolution of the Gibraltar Arc.  相似文献   

15.
The palaeolake evolution across the Tibetan Plateau and adjacent areas has been extensively studied, but the timing of late Pleistocene lake highstands remains controversial. Robust dating of lacustrine deposits is of importance in resolving this issue. This paper presents 14 C or optically stimulated luminescence(OSL) age estimates from two sets of late Quaternary lacustrine sequences in the Qaidam Basin and Tengger Desert(northeastern Tibetan Plateau). The updated dating results show:(1) the radiocarbon dating technique apparently underestimated the age of the strata of >30 ka BP in Qaidam Basin;(2) although OSL and 14 C dating agreed with each other for Holocene age samples in the Tengger Desert area, there was a significant offset in dating results of sediments older than ~30 ka BP, largely resulting from radiocarbon dating underestimation;(3) both cases imply that most of the published radiocarbon ages(e.g., older than ~30 ka BP) should be treated with caution and perhaps its geological implication should be revaluated; and(4) the high lake events on the Tibetan Plateau and adjacent areas, traditionally assigned to MIS 3a based on 14 C dating, are likely older than ~80 ka based on OSL chronology.  相似文献   

16.
With the continuous collision of the India and Eurasia plate in Cenozoic, the Qilian Shan began to uplift strongly from 12Ma to 10Ma. Nowadays, Qilian Shan is still uplifting and expanding. In the northern part of Qilian Shan, tectonic activity extends to Hexi Corridor Basin, and has affected Alashan area. In the southern part of Qilian Shan, tectonic activity extends to Qaidam Basin, forming a series of thrust faults in the northern margin of Qaidam Basin and a series of fold deformations in the basin. The southern Zongwulong Shan Fault is located in the northeastern margin of Qaidam Basin, it is the boundary thrust fault between the southern margin of Qilian Shan and Qaidam Basin. GPS studies show that the total crustal shortening rate across the Qilian Shan is 5~8mm/a, which absorbs 20% of the convergence rate of the Indian-Eurasian plate. Concerning how the strain is distributed on individual fault in the Qilian Shan, previous studies mainly focused on the northern margin of the Qilian Shan and the Hexi Corridor Basin, while the study on the southern margin of the Qilian Shan was relatively weak. Therefore, the study of late Quaternary activity of southern Zongwulong Shan Fault in southern margin of Qilian Shan is of great significance to understand the strain distribution pattern in Qilian Shan and the propagation of the fault to the interior of Qaidam Basin. At the same time, because of the strong tectonic activity, the northern margin of Qaidam Basin is also a seismic-prone area. Determining the fault slip rate is also helpful to better understand the movement behaviors of faults and seismic risk assessment.Through remote sensing image interpretation and field geological survey, combined with GPS topographic profiling, cosmogenic nuclides and optically stimulated luminescence dating, we carried out a detailed study at Baijingtu site and Xujixiang site on the southern Zongwulong Shan Fault. The results show that the southern Zongwulong Shan Fault is a Holocene reverse fault, which faulted a series of piedmont alluvial fans and formed a series of fault scarps.The 43ka, 20ka and 11ka ages of the alluvial fan surfaces in this area can be well compared with the ages of terraces and alluvial fan surfaces in the northeastern margin of Tibetan Plateau, and its formation is mainly controlled by climatic factors. Based on the vertical dislocations of the alluvial fans in different periods in Baijingtu and Xujixiang areas, the average vertical slip rate of the southern Zongwulong Shan Fault since late Quaternary is(0.41±0.05)mm/a, and the average horizontal shortening rate is 0.47~0.80mm/a, accounting for about 10% of the crustal shortening in Qilian Shan. These results are helpful to further understand the strain distribution model in Qilian Shan and the tectonic deformation mechanism in the northern margin of Qaidam Basin. The deformation mechanism of the northern Qaidam Basin fault zone, which is composed of the southern Zongwulong Shan Fault, is rather complicated, and it is not a simple piggy-back thrusting style. These faults jointly control the tectonic activity characteristics of the northern Qaidam Basin.  相似文献   

17.
Field data and seismic reflection profiles of various resolutions, calibrated by deep well logs, have been used to unravel the tectonic evolution of the Crati Basin (southern Italy). The study area is located in the northern portion of the Calabrian Arc, a well-developed arc-shaped feature of the circum-Mediterranean belts, consisting of a series of ophiolite-bearing tectonic units and overlying basement nappes. NW–SE oriented left-lateral strike-slip faults exerted a major control on the tectonic evolution of northern-central Calabria, from Middle Miocene to Lower Pleistocene times. Such faults, arranged in an en-échelon geometry and dissecting the pre-existing Late Oligocene–Early Miocene orogenic belt, led to a structural setting including major N-S striking synforms – as the offshore Paola Basin and the Crati Basin are interpreted based on our results – separated by a broad antiformal ridge. Since the Middle Pleistocene, both E- and W-dipping normal faults developed in the southernmost sector of the Crati Basin, probably as a consequence of both uplift of the orogenic edifice and Tyrrhenian back-arc extension. The pre-existing regional strike-slip faults became inactive in this sector of the belt. However, working as persistent barriers, it is envisaged here that they inhibited the southern propagation of the newly formed normal faults, which therefore propagated towards the north. A minimum value of cumulative displacement of ca. 600 m has been unraveled for the central sector of the Crati Basin since Middle Pleistocene times. This yields a vertical strain rate of ca. 0.9 mm/y during the last 700 ka.  相似文献   

18.
Granites sampled from Garzê-Litang thrust, Longmen Shan thrust, Garzê and Litang strike-slip faults in the eastern Tibetan Plateau have been analyzed with apatite fission track thermochronological method in this study. The measured fission track apparent ages, combined with the simulated annealing mod- eling of the thermal history, have been used to reconstruct the thermal evolutionary histories of the samples and interpret the active history of the thrusts and faults in these areas. Thermal history mod- eling shows that earlier tectonic cooling occurred in the Garzê-Litang thrust in Miocene (~20―16 Ma) whereas the later cooling occurred mainly in the Longmen Shan thrust since ~5 Ma. Our study sug- gests that the margin of eastern Tibetan Plateau was extended by stages: through strike-slip faults deformations and related thrusts, the upper crust formed the Garzê-Litang margin in the Miocene epoch and then moved to the Longmen Shan margin since ~5 Ma. During this process, the deformations of different phases in the eastern Tibetan Plateau were absorbed by the thrusts within them and conse- quently the tectonic events of long-distance slip and extrusion up to hundreds of kilometers have not been found.  相似文献   

19.
The Ganzi-Yushu-Xianshuihe Fault Zone (GYXFZ) is a typical active strike-slip fault that has triggered many large historic earthquakes, including the 2010 Mw 6.9 Yushu earthquake in the central Tibetan Plateau. This fault zone extends for ca. 800 km from the central Tibetan Plateau to its southeastern margin and varies in trend from WNW-ESE in the northwestern segment of the fault zone to NNW-SSE in the southeastern segment, having the geometry of an arc projecting northeastwards. In this study, we present evidence for the systematical sinistral deflection and/or offset of the Yangtze River and its branch stream channels and valleys along the GYXFZ. Topographic analysis of three-dimensional (3D) perspective images constructed using digital elevation model (DEM) data, 0.5 m-resolution WorldView and GeoEye images, and 15 m-resolution Landsat-Enhanced Thematic Mapper (ETM+) images, together with analysis of geological structures, reveals the following: (i) the main river channels and valleys of the Yangtze River drainage system show systematic sinistral deflections and/or offsets along the GYXFZ; (ii) various amounts of sinistral offset have accumulated on the tributary stream channels, valleys, and gullies of the Yangtze River along the fault, with a linear relation, D = aL, between the upstream length L from the deflected point and the offset amount D with a certain coefficient a; (iii) the maximum amount of sinistral offset is up to ca. 60 km, which was accumulated in the past 13–5 Ma; and (iv) the long-term average strike-slip rate is ca. 4.6–12 mm/year. Geological and geomorphic evidence, combined with geophysical data, demonstrates that the GYXFZ is currently active as one of the major seismogenic faults in the Tibetan Plateau, dominated by left-lateral strike-slip motion. Our findings supply important evidence for the tectonic evolution of strike-slip faults in the Tibetan Plateau since the Eurasia-India continental collision.  相似文献   

20.
本文采用欧拉反褶积、场源参数成像(SPI)、场源边界提取(SED)、莫霍面反演、地壳三维可视化等多源方法,对青藏高原东北缘地区的布格重力场进行反演与分析,深入研究该地区的深部结构与变形特征,探讨区域深部孕震环境及动力学机制.研究表明,青藏高原东北缘的布格重力场整体呈负异常值,具有明显的分区性,表现出鄂尔多斯盆地异常值相对偏高、阿拉善块体次之、青藏高原块体极低的特点,其中海源断裂系形成了一条宽缓的弧形重力梯度条带,梯度值达1.2 mGal·km^-1.欧拉结果显示,鄂尔多斯盆地相比于青藏高原块体而言,场源点具有较强的均一性,场源强度值高(密度值高)且深度稳定在25~32 km范围内,而高原块体的中下地壳尺度广泛分布着低密度异常体.SPI图可知,海源弧形断裂系位于“浅源异常”弧形区,反映其地壳较为活跃,易发生中强地震.SED图揭示青藏高原地壳向东北扩展,经过几大断裂系的调节后运动矢量向东或东南转化,SED与GPS、SKS运动特征大致相同,说明地表-地壳-地幔的运动特征有着较强的一致性.青藏高原东北缘地区壳幔变形是连贯的,加之莫霍面由北向南、由东向西是逐渐加深的,因此属于垂向连贯变形机制,不符合下地壳管道流动力学模式.区域形成了似三联点构造格局,其中海源弧形断裂系的深部地壳结构复杂,高低密度异常体复杂交汇,是青藏高原、阿拉善、鄂尔多斯三大块体相互作用的重要枢纽,其运动学特征总体为中段走滑尾端逆冲,而断裂系正处于大型的弧形莫霍面斜坡带之上,具备强震的深部孕震环境,因此大尺度的运动调节与深部孕震条件共同促使了该地区中强震的多发.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号