首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 807 毫秒
1.
2.
This study presents new data on the orbitally calibrated Maeotian/Pontian and Pontian record of the Black Sea Basin (Paratethys) obtained by time-series analysis of magnetic susceptibility (MS) data from relatively deep-water Upper Miocene sediments exposed in the Zheleznyi Rog section (Taman Peninsula, Russia). In the studied interval, a ∼145-m-long sedimentary sequence, spectral analysis revealed statistically significant signals with 6.1–8.2 m and 3.0–4.0 m wavelength. These signals correspond to the obliquity and precession cycles, respectively. This study correlates the main steps of Messinian Salinity Crisis (MSC) of the Mediterranean to the Black Sea Pontian record based on astronomical tuning of the study sequence and evaluation of integrated biostratigraphic, paleomagnetic and sedimentological data. Based on cyclostratigraphic results, Maeotian/Pontian beds with Actinocyclus octonarius accumulated from ∼6.3 to 6.1 Ma. Most of the Novorossian sediments correspond to the first MSC step. The TG 22 (5.79 Ma) and TG 20 (5.75 Ma) glacial events occur in the uppermost Novorossian record and are marked by extraordinary high values of MS. The Portaferian, dated at the base as ∼5.65 Ma and the top as ∼5.45 Ma, corresponds to the second MSC step. The Novorossian/Portaferian transition is marked by the hiatus of approximately 150–160 kyr, which agrees well with the concept of the intra-Pontian unconformity in the Black Sea Basin and a sea-level drop in the Mediterranean from 5.6 to 5.46 Ma. The ages for the base and the top of the Bosphorian were estimated as ∼5.45 Ma and ∼5.27 Ma, respectively. The base of the Bosphorian corresponds to the third Lago Mare episode caused by the high sea-level connection between the Mediterranean and Eastern Paratethys.  相似文献   

3.
High-resolution multi-channel seismic data from continental slopes with minor sediment input off southwest Mallorca Island, the Bay of Oran (Algeria) and the Alboran Ridge reveal evidence that the Messinian erosional surface is terraced at an almost constant depth interval between 320 and 380 m below present-day sea level. It is proposed that these several hundred- to 2,000-m-wide terraces were eroded contemporaneously and essentially at the same depth. Present-day differences in these depths result from subsidence or uplift in the individual realms. The terraces are thought to have evolved during one or multiple periods of sea-level stagnancy in the Western Mediterranean Basin. According to several published scenarios, a single or multiple periods of relative sea-level stillstand occurred during the Messinian desiccation event, generally known as the Messinian Salinity Crisis. Some authors suggest that the stagnancy started during the refilling phase of the Mediterranean basins. When the rising sea level reached the height of the Sicily Sill, the water spilled over this swell into the eastern basin. The stagnancy persisted until sea level in the eastern basin caught up with the western Mediterranean water level. Other authors assigned periods of sea-level stagnancy to drawdown phases, when inflowing waters from the Atlantic kept the western sea level constant at the depth of the Sicily Sill. Our findings corroborate all those Messinian sea-level reconstructions, forwarding that a single or multiple sea-level stagnancies at the depth of the Sicily Sill lasted long enough to significantly erode the upper slope. Our data also have implications for the ongoing debate of the palaeo-depth of the Sicily Sill. Since the Mallorcan plateau experienced the least vertical movement, the observed terrace depth of 380 m there is inferred to be close to the Messinian depth of this swell.  相似文献   

4.
L. Vidal  T. Bickert  G. Wefer  U. R  hl 《Marine Geology》2002,180(1-4):71-85
High-resolution benthic oxygen isotope and XRF (Fe and Ca) records from Site 1085 drilled in the Mid-Cape basin (ODP Leg 175) are used to investigate global climate changes during the Late Miocene in relation to Messinian geological events. The cyclic fluctuations of the time series at Site 1085 enable us to establish a reliable chronology for the time interval 7.3–4.7 Ma. Spectral analysis of the δ18O record indicates that the 41-kyr period of orbital obliquity dominates the Late Miocene record. A global climate record was extracted from the oxygen isotopic composition of benthic foraminifera. Both long- and short-term variabilities in the climate record are discussed in terms of sea-level and deep-water temperature changes. The time interval 7.3–6.25 Ma characterized by low-amplitude δ18O variations is followed by a period marked by maximum in the δ18O values (6.25–5.57 Ma). At about 5.56 Ma, a rapid decrease in δ18O values is documented that may reflect a warming of deep-water temperature associated with a global warming period. Comparison between the timing of the oceanic isotope events and the chronology of the Mediterranean Salinity Crisis suggest that global eustatic processes were not essential in the Mediterranean Salinity Crisis history. From our data, we infer that the global warmth documented in the Early/mid-Pliocene probably started during the Late Miocene (at 5.55 Ma). At the same time, the onset of evaporite deposition in the central basin of the Mediterranean Sea took place. Sharp changes in the sedimentation rates, mainly driven by terrigenous input at this site, are observed during the Messinian Stage.  相似文献   

5.
《Marine Geology》1999,153(1-4):147-160
Magnetostratigraphic and biostratigraphic results are presented from Neogene deposits in the Taza–Guercif Basin, located at the southern margin of the Rifian Corridor in Morocco. This corridor was the main marine passageway which connected the Mediterranean with the Atlantic during Messinian times. Correlation of the biostratigraphy and polarity sequence of the Taza–Guercif composite section to the astronomical time scale, allows an accurate dating of three subsequent events in the Rifian Corridor. (1) The oldest marine sediments marking the opening of the Rifian Corridor were deposited at 8 Ma. At this age, a deep (600 m) marine basin developed in the Taza–Guercif area, marked by deposition of precession-controlled turbidite–marl cycles. (2) Paleodepth reconstructions indicate that a rapid (5 m/ka) shallowing of the marine corridor took place at the Tortonian/Messinian boundary, at an age of 7.2 Ma. This shallowing phase is primarily related to active tectonics, although a small glacio-eustatic sea level lowering also took place. (3) The Taza–Guercif Basin was emergent at an age of 6.0 Ma and, subsequently, continental sedimentation continued well into the Early Pliocene. We suggest that shallowing and restricting the marine passageway through the Rifian Corridor actually initiated the Messinian salinity crisis, well before the deposition of the Messinian evaporites in the Mediterranean.  相似文献   

6.
The interpretation of high-resolution 2D marine seismic profiles together with the analysis of sea-bottom cores allowed a stratigraphic and structural framework of the Provence continental shelf to be proposed. The integration of onshore and offshore stratigraphy, structure and geomorphology provided new insights into Messinian paleotopography and paleohydrography. A geological map of the offshore Provence continental shelf, isobath map of the base Plio-Quaternary surface are presented for the first time in this area. The base Plio-Quaternary surface is a polyphased unconformity that is composed of deep canyons developed by fluvial erosion during the Messinian event, and wave-cut surfaces formed during post-Messinian transgressions. The study evidenced a deep, E–W-trending canyon (Bandol canyon) connected to the head of the Cassidaigne canyon, and filled with up to 600 m-thick Plio-Quaternary deposits. The development of canyons on the Provence margin during the Messinian event was dominantly controlled by the lithology and structure of pre-Messinian formations. A map of the Messinian paleo-drainage network is proposed to explain the presence of deep canyons in the Eastern area and the lack of incision in the Western area. An underground karst drainage scheme is proposed, linked with the current submarine Port-Miou spring.  相似文献   

7.
A tectono-sedimentary scenario for the Southern Sardinia (Italy) Cenozoic graben system is proposed using field observations and the interpretation of onshore and offshore seismic profiles. The major structural events are tied to the general geodynamic evolution of the Western Central Mediterranean. Thus, the extensional late Oligocene–Aquitanian event is a consequence of an ‘Apenninic’ westward subduction process associated with a volcanic arc (29–30 to 15–16 My) which is particularly well exposed in Sardinia. Deposition of Sub-aerial clastics, was followed by transgression of the rift depression at the beginning of the Aquitanian. Subduction terminated at the opening of the oceanic Provençal Basin and the rotation of Sardinia–Corsica during Burdigalian time (20–21 to 15–16 My). The Messinian compressional event (NE–SW oriented), documented from microtectonic data, strongly affected the Oligo-Miocene basin. The superimposed Plio-Quaternary Campidano Graben, which is probably related to the formation of the Tyrrhenian Basin, contains more than 600 m of syntectonic deposits. A change in polarity of the master faults bounding the Oligo-Miocene rift created a central horst-type twist zone separating two depocenters in the Oristano and Cagliari regions. Emplacement of large volcanic bodies and inversion of the basin during the Messinian in Cagliari area has reduced the areas with potential for hydrocarbon exploration. The two remaining prospective zones are the Oristano sub-basin and the offshore, south of Cagliari where burial of lower Miocene marine organic matter may have been sufficient to generate hydrocarbons. Potential reservoirs could be pre-rift Mesozoic or Eocene strata but are mainly excellent Miocene sands derived from erosion of the granitic basement in tilted blocks.  相似文献   

8.
The Gibraltar Strait is the very narrow neck which connects the Atlantic Ocean and the Mediterranean Sea. The causes and mode of its opening at the end of the Messinian Salinity Crisis are still a matter of debate, and models based on eustatic rise and/or topographic lowering due to either erosion or faulting are generally evoked. We investigated the presence of faults based on a morphological and structural analysis of the Camarinal Sill, the shallowest passage in the Gibraltar Strait (<100 m water depth in places). This sill connects the Spanish and Moroccan shelves, and probably represents a structural high inherited from the Miocene compressive tectonics which took place in the external zones of the Betic-Rif orogenic arc. Our high-resolution bathymetric data enabled us to identify and interpret the origin of major morphological features in the area, including canyons, channels and a landslide, which we name the Tarifa landslide. Topographic arguments suggest that the Camarinal Sill is crossed by two main E-W- to ENE-WSW-directed fault zones which bound areas with different distribution, orientation and slopes of both scarps and crests. We name these the Hercules and Tarik fault zones, north and south of the sill respectively. The Hercules fault zone probably incorporates a normal movement component, whereas kinematic indicators are poor along the Tarik fault zone. The age of faulting is poorly constrained in both cases. Together with existing evidence of faults onland, the presence of these fault zones implies that they could be responsible for, or have contributed to, the opening of the Gibraltar Strait.  相似文献   

9.
The structural evolution of the Messinian evaporites in the Levantine Basin   总被引:2,自引:0,他引:2  
The Levantine Basin in the South-eastern Mediterranean Sea is a world class site for studying the initial stages of salt tectonics driven by differential sediment load, because the Messinian evaporites are comparatively young, the sediment load varies along the basin margin, they are hardly tectonically overprinted, and the geometry of the basin and the overburden is well-defined. In this study we analyse depositional phases of the evaporites and their structural evolution by means of high-resolution multi-channel seismic data. The basinal evaporites have a maximum thickness of about 2 km, precipitated during the Messinian Salinity Crisis, 5.3–5.9 Ma ago. The evaporite body is characterized by 5 transparent layers sequenced by four internal reflections. We suggest that each of the internal reflection bands indicate a change of evaporite facies, possibly interbedded clastic sediments, which were deposited during temporal sea level rises. All of these internal reflections are differently folded and distorted, proving that the deformation was syn-depositional. Thrust angles up to 14° are observed. Backstripping of the Pliocene–Quaternary reveals that salt tectonic is mainly driven by the sediment load of the Nile Cone. The direction of lateral salt displacement is mainly SSW–NNE and parallel to the bathymetric trend. Apparent rollback anticlines off Israel result rather from differential subsidence than from lateral salt displacement. In the south-eastern basin margin the deposition of the Isreali Slump Complex (ISC) is coeval with the onset of salt tectonic faulting, suggesting a causal link between slumping processes and salt tectonics.

The superposition of ‘thin-skinned’ tectonics and ‘thick-skinned’ tectonics becomes apparent in several locations: The fold belt off the Israeli Mediterranean slope mainly results from active strike-slip tectonics, which becomes evident in faults which reach from the seafloor well below the base of the evaporites. Owing to the wrenching of the crustal segments which are bounded by deep-rooted fault lines like the Damietta–Latakia, Pelusium and Shelf Edge Hinge line the setting is transpressional south of 32°N, where the fault lines bend further towards the west. This adds a component of ‘thick-skinned’ transpression to the generally ‘thin-skinned’ compressional regime in the basin. Above 1.5 km of evaporites, a mud volcano is observed with the mud source seemingly within the evaporite layer. At the eastern Cyprus Arc, the convergence zone of the African and the Anatolian plates, deep-rooted compression heavily deformed the base of the evaporites, whereas at the Eratosthenes Seamount mainly superficial compression affecting the Post-Messinian sediments and the top of the evaporites is observed.  相似文献   


10.
This paper documents and describes through the use of 3D seismic data a prolific mud volcano province within the Eastern Mediterranean. As many as 386 mud volcanoes were mapped within the post-salt succession of the western slope of the Nile Cone, offshore Egypt, using high resolution 3D seismic data. The mud volcanoes within this field display significant geometrical variability in diameter (c. 550 m to c. 5660 m), height (c. 25 m to c. 510 m) and volume (c. 0.1 km3 to c. 3.3 km3) and lie at depths ranging from c. > 6000 m subsea to c. 3100 m at the seafloor. A close spatial relationship between mud volcanoes and base-salt depressions and regions of anomalous thinning within the immediate pre-salt succession, combined with documented core samples taken from mud volcanoes within this region present a powerful argument for a pre-salt source of mud. 3D seismic interpretation and volumetric analysis of these mud volcanoes and their source region permit the definition and quantification of their depletion zones. A conceptual model for a dynamic liquefaction and sediment withdrawal process is proposed whereby mud is fed into a central conduit as the depletion zone propagates radially and episodically outwards resulting in a the formation of a concentric depletion zones. Prolonged mud volcanism within this region over the last ∼5.3 Ma implies the potential for long lived pre-salt overpressure and continued mud volcanism following the catastrophic hydrodynamic impact of the Messinian Salinity Crisis. It is suggested that the scale of mud volcanism means that this region should be considered as among the largest mud volcano provinces in the world.  相似文献   

11.
We use simple quantitative analyses to evaluate controversial water level scenarios for the Mediterranean “Lower Evaporites” of the Messinian salinity crisis. Our results indicate that a shallow-water scenario for the Lower Gypsum units – with Mediterranean water level lower than the sill at Gibraltar – would imply unrealistic salt thicknesses on the order of 3 km. Some outflow to the open ocean must have persisted, implying that the Mediterranean was a deep-water basin during Lower Gypsum formation. Since glacio-eustatic fluctuations do not seem to have had a major influence on Lower Gypsum deposits, Mediterranean water level was even substantially higher than the Gibraltar sill. Our analyses furthermore show that precessional changes in the freshwater budget may explain the observed cyclic lithological changes of gypsum and non-evaporitic sediments. Potential precipitation of gypsum in the deep Mediterranean basins would have critically depended on the availability of oxygen and thus on the stratification of the water column. Finally, our results indicate that the deep Mediterranean halite units could have been deposited under shallow conditions, assuming that they correspond to the ~ 70 kyr time interval between glacials TG12 and TG14, when Mediterranean outflow to the Atlantic was blocked.  相似文献   

12.
M. S. Barash 《Oceanology》2011,51(2):306-314
Among the abiotic factors that determined via the paleoceanographic processes development and evolution of the oceanic biota in the Neogene, noteworthy are the tectonic, volcanic, climatic and extraterrestrial events. The most important tectonic events of such kind include the subsidence of the Faroe-Iceland Threshold 14–13 Ma ago, the closure of the Tethys Ocean in the east 19–12 Ma ago, the orogenesis in the western Mediterranean region and closure of the Mediterranean Sea (Messinian Crisis) 5.59–5.33 Ma ago, the formation of the Central American Isthmus 6.0–3.5 Ma ago, and the opening of the Bering Strait that occurred (according to different data) in the period of 7.4 to 3.1 Ma ago. The most significant climatic consequence resulted from the formation of the Circum-Antarctic Current, the irregular growth of the Antarctic ice shield, the cooling in the Arctic region 3.2–3.1 Ma ago, and the development of continental glaciations in the Northern Hemisphere approximately 2.5 Ma ago. The variations in the atmospheric CO2 content are correlative with the climatic fluctuations. The entire Cenozoic climatic record reflects the influence of the orbital parameters of the Earth. The Neogene was marked by several significant extraterrestrial events: the fireball falling in southwestern Germany in the middle Miocene 14.8–14.5 Ma ago probably accompanied by enhanced volcanic activity particularly in the rift valley of eastern Africa; the drastically increased influx of interplanetary dust due to the disruption caused by a large asteroid in the late Miocene 8.3 ± 0.5 Ma ago, the fall of a large (>1 km in diameter) asteroid in the Eltanin Fault zone of the Southern Ocean in the terminal Pliocene 2.15 Ma ago; and the explosion of a supernova star, which was probably responsible for the partial extinction of marine organisms at the Pliocene-Pleistocene transition approximately 2 Ma ago.  相似文献   

13.
In previous publications, the relationship between the Sirte Abyssal Plain as foreland and the Mediterranean Ridge as accretionary complex was considered to be simple: the foreland is undeformed, the accretionary complex consumes the foreland, the Messinian evaporites control the internal structure of the growing complex. The compilation of our own and published data results in a more complex tectonic pattern and a new geodynamic interpretation. The Sirte Abyssal Plain is imprinted by extensional tectonics which originated independently from and prior to the approaching process of accretion. The structural setting of the pre-Messinian and Messinian Sirte Abyssal Plain is responsible for the highly variable thickness of Messinian evaporites. The foreland setting in the Sirte Abyssal Plain also controls the internal structure of the Mediterranean Ridge, at least between the deformation front and Bannock Basin, following sediment deformation within the accretionary wedge with a dominating inherited SW-NE orientation. The taper angle of the post-Messinian Mediterranean Ridge is unusually small compared with other accretionary wedges. In the studied area, within a distance of about 45 km from the deformation front, there is no appreciable dip in the décollement. Therefore, the slope of the outer 45 km of the Mediterranean Ridge is considered to be caused only by gravitational spreading of Messinian evaporites deposited on the slope of pre-Messinian accretionary wedge. As a consequence, the Mediterranean Ridge underlying such slope is interpreted to belong to the foreland. The allochthonous evaporites overlie autochthonous evaporites of the Sirte Abyssal Plain. The NE-dipping décollement (and thus of the true tectonically driven deformation front) is expected to initiate at about the present position of Bannock Basin. The Sirte Abyssal Plain, the adjacent Cyrene Seamount and neighbouring seafloor relief on the African continental margin are considered to be the product of tectonic segmentation of the continental crust.  相似文献   

14.
《Marine Geology》1999,153(1-4):137-146
Cyclical fluctuations in planktic foraminiferal assemblages have been recognized in the pre-evaporitic Messinian in a marginal basin of the western Mediterranean. The fluctuations coincide with a dominantly precession-controlled sedimentary cyclicity (sapropels). During sapropel deposition, high planktic foraminiferal diversities are indicative of relatively stable marine conditions, while during homogeneous marl deposition low diversities seem to indicate the presence of unfavourable, more saline surface water conditions. The dominance of a precession-related signal indicates that regional climate oscillations rather than (obliquity-related) glacio-eustatically controlled influxes of Atlantic and/or Mediterranean waters are responsible for the faunal fluctuations and sedimentary cyclicity. Our scenario links the persistence of normal marine conditions during sapropel formation with increased rainfall and run-off along the western Mediterranean at times that perihelion occurred in Northern Hemisphere summer. Less favourable, highly saline surface water conditions prevailed during periods of drier climate induced by opposite precessional extremes. The cyclical oceanographic fluctuations could also have governed periodic reef growth along the margins.  相似文献   

15.
We present for the first time a synthesis of the evidence of focused fluid flow in the Eastern Mediterranean, providing an updated record that includes recent and past occurrences through the last ca. 6 My of evolution of the basin. We do this by adding the interpretation of a previously unpublished regional 2D seismic dataset to the existing occurrences of focused fluid flow reported in the literature. Our interpretation shows a high number (141) of focused fluid flow features, which span the stratigraphic interval from late Miocene to Recent. Of these features, (82) are at the seabed, and (59) are buried. The previous published record is more difficult to quantify, but in comparison shows an overwhelming majority of seabed features, with only rare examples of buried features.The spectrum of the buried and seabed features covers pockmarks, pipes, mud volcanoes, clastic intrusions and collapse structures. Clustering of the fluid flow features is observed at different times in specific areas, including the Nile Cone, and the Levant, Herodotus, Cyprus and Latakia basins. With the buried record, we are able to highlight the evolution of the leakage points through time. Focused fluid flow venting has been occurring since the onset of the Messinian Salinity Crisis and the start of basinwide deposition of evaporites. We focus in particular on seismic indicators of leakage through evaporites, and of sub-evaporitic source for fluids and remobilised sediments. We also discuss the role of the evaporites as a seal to ascending fluids, and in which circumstances they can be breached.Fluids (and associated remobilised sediments) are sourced from different intervals, from the sub- and supra-evaporitic section, and possibly within the evaporites. Only a minor proportion of the fluid flow features are certainly sourced from below the Messinian evaporites, and most of them are located in the Nile-Levant-Eratosthenes areas. The few examples of pathways that are able to cross thick, undeformed and well preserved evaporites are typically correlated to overpressure release and hydrofracturing. This confirms that the evaporites do act regionally as a very good seal as expected, while fluids are able to cross the evaporites only in their most extreme expression, i.e. in near-lithostathic overpressure conditions. This is confirmed by our observations made in the Eastern Mediterranean, where in the presence of relatively undisturbed evaporites, cross-evaporite vertical fluid pathways are only observed at the high end of the flux-pressure range, and involve sediment remobilisation. Maps combining these different elements can be used to detect areas potentially more prone to breaching.  相似文献   

16.
The evolution of the North Aegean Sea is studied through the development of three deep basins: the North Aegean Trough, the North Skyros Basin and the Ikaria Basin. Bathymetric data, a 2D seismic dataset and the well-investigated stratigraphic records of the onshore deep basins of northern Greece and Western Turkey were used to make structural and seismic stratigraphic interpretations. The study area shows two sharp unconformities that correspond to the Eocene-Oligocene transition and the Miocene-Pliocene shift. These discontinuities were used as marker horizons for a more detailed structural and seismic stratigraphic interpretation resulting in the identification of several seismic units. A general seismic signature chart was established using onshore basin stratigraphy and well data, which was then used to constrain the ages of the different seismic units. The main features observed in the basins are interpreted as: 1) trans-tensional growth patterns in Pliocene and Quaternary sediments that combine NE–SW trending and steeply dipping fault zones that likely correspond to strike-slip corridors and E-W/WNW-ESE trending normal faults, 2) regional erosional truncations of Miocene sediments, likely related to the Messinian Salinity Crisis (MSC), 3) thick delta-turbidite deposits of Neogene age. Only the North Aegean Trough shows evidence of earlier development and polyphase deformation through inversion structures, and additional seismic units. Extension processes in the Aegean region have been driven by the Hellenic slab rollback since the middle Eocene. The widespread development of Neogene basins at the whole Aegean scale attests to a major tectonic change due to an acceleration of the trench retreat in the middle Miocene. The present study shows that the Neogene basins of the North Aegean Sea developed in dextral transtension with the northward migration of the associated NE-SW trending strike-slip faults. At regional scale, this tectonic pattern indicates that the westward escape of Anatolia started to interact with the trench retreat in the middle Miocene, around 10 Myr before the arrival of the North Anatolian Fault in the North Aegean Sea.  相似文献   

17.
Contourite deposits in the central sector of the middle slope of the Gulf of Cadiz have been studied using a comprehensive acoustic, seismic and core database. Buried, mounded, elongated and separated drifts developed under the influence of the lower core of the Mediterranean Outflow Water are preserved in the sedimentary record. These are characterised by depositional features in an area where strong tectonic and erosive processes are now dominant. The general stacking pattern of the depositional system is mainly influenced by climatic changes through the Quaternary, whereas changes in the depositional style observed in two, buried, mounded drifts, the Guadalquivir and Huelva Drifts, are evidence of a tectonic control. In the western Guadalquivir Drift, the onset of the sheeted drift construction (aggrading QII unit) above a mounded drift (prograding QI unit) resulted from a new Lower Mediterranean Core Water hydrodynamic regime. This change is correlated with a tectonic event coeval with the Mid Pleistocene Revolution (MPR) discontinuity that produced new irregularities of the seafloor during the Mid- to Late-Pleistocene. Changes in the Huelva Drift from a mounded to a sheeted drift geometry during the Late-Pleistocene, and from a prograding drift (QI and most part of QII) to an aggrading one (upper seismic unit of QII), highlight a new change in oceanographic conditions. This depositional and then oceanographic change is associated with a tectonic event, coeval with the Marine Isotope Stage (MIS) 6 discontinuity, in which a redistribution of the diapiric ridges led to the development of new local gateways, three principal branches of the Mediterranean Lower Core Water, and associated contourite channels. As a result, these buried contourite drifts hold a key palaeoceanographic record of the evolution of Mediterranean Lower Core Water, influenced by both neotectonic activity and climatic changes during the Quaternary. This study is an example of how contourite deposits and erosive elements in the marine environment can provide evidence for the reconstruction of palaeoceanographic and recent tectonic changes.  相似文献   

18.
The Oligocene-Miocene is a key interval that was characterized by a cooling trend associated with a progressive decrease of atmospheric CO2 concentrations that ends in the Present days.In the Central Mediterranean area, during this interval, three main carbonate platform domains developed in the foreland zone of the Apennines: the Latium-Abruzzi-Campana and Apulia domain in the central and south-eastern sectors of the chain and the Hyblea and Pelagian carbonate platforms in the south and south-western sectors. This work analyzes the impact and interplay of global and regional factors controlling the development of different carbonate factories and facies associations over the Chattian and the early Messinian time interval. Three well-studied examples of the central Mediterranean will be used: the Chattian ramp of Malta, the Latium-Abruzzi ramp, and the Bolognano ramp within the northern portion of the Apulian carbonate platform (outcropping on Majella Mountain).The Malta ramp represents the reference model for the heterozoan Oligo-Miocene carbonate factory, since it developed far from terrigenous input, in persistent oligotrophic conditions, and within a tropical climate. In contrast, the evolution of the central Apennine ramps is strictly related to the geodynamic evolution of the Apennines and simultaneously to global oceanographic changes.The Chattian Apennine ramps are affected by a basin conformation that favored the development of dominant currents and related dune fields. Successively, these ramps were exposed to strong Aquitanian volcanism that induced a shift towards an aphotic-dominated carbonate factory. Since the Burdigalian the development of the Apennines has affected the evolution of the investigated ramps through the eastward migration of foredeep systems and related nutrient input. This influence becomes more evident between the Tortonian and Messinian, during which reef-rimmed platforms developed in the rest of the Mediterranean while red algae still dominated in the Apennine ramps. Amongst the global events, the C-cycle perturbation, occurring between the late Burdigalian and Serravallian (Monterey event), leaves a clear sign on the two Apennine ramps.  相似文献   

19.
Submarine channel levee systems form important hydrocarbon reservoirs in many deep marine settings and are often deposited within a structurally active setting. This study focuses on recent submarine channels that developed within a deepwater fold and thrust belt setting from the Levant Basin, eastern Mediterranean Sea. Compressional deformation within the study area is driven by the up-dip collapse of the Nile cone above the ductile Messinian Evaporites. Structures such as folds and strike slip faults exert a strong control on channel location and development over time. From this study four end-member submarine channel–structure interactions can be defined: Confinement, diversion, deflection and blocking. Each of these channel–structure interactions results in a distinct submarine channel morphology and pattern of development compared to unconfined channel levee systems. Each interaction can also be used to assess timing relationships between submarine channel development and deformation.  相似文献   

20.
The Mediterranean margin of Libya can be divided into three physiographic provinces, the Pelagian Shelf, the Sirt Embayment, and Offshore Cyrenaica. The petroleum potential of the Pelagian Shelf has been investigated but the Sirt Embayment and Offshore Cyrenaica are almost unexplored. During 2004–2005, new 2D pre-stack time-migrated seismic data were acquired and used to examine the large-scale structural, depositional, and salt tectonic features of the Libyan shelf and slope. The data cover approximately 38,000 line kilometers in water depths ranging from under 50 to over 3000 m.Cenozoic strata along much of the Libyan margin have a demonstrable progradational character punctuated by surfaces of erosion and margin failure. Within the Sirt Embayment the most visible retrogradational surface becomes seismically coincident with the top of Messinian unconformity. This retrogradational surface extends for over 700 km along strike and cuts both sides of the Sirt Embayment. Over 5000 cubic kilometers of material are missing from above this surface. There are two ideas for how retrogradation occurred. One idea relates the retrogradation to margin erosion during the Messinian salinity crisis. The other idea suggests that a large part of the Libyan margin experienced a cataclysmic failure during the late Miocene.Some existing models for offshore Libya have interpreted a widespread layer of halite lying within the Messinian which thickens basinward. This interpretation was probably based on the fact seismic reflection continuity was lost over much of the Sirt Embayment on older data beneath the top Messinian unconformity. The loss of good reflection character adversely affected exploration efforts by obscuring deep structures. Recent seismic data and a current understanding of salt behavior do not support the interpretation of thick halite within the Messinian section. Regional observations do not indicate any mobile halite present in the Sirt Embayment. There is a relatively thin, high amplitude and high velocity layer of non-halite evaporites (mainly anhydrite) which caps the Messinian section. Where this high amplitude and high velocity layer is absent or eroded, seismic continuity within the Messinian interval is restored. Limited available well data support this interpretation.True mobile halite is interpreted to exist in offshore Libya only in the far west of the Pelagian Shelf near the Tunisian border. Beneath the Pelagian Shelf are a series of tight contractional folds that are interpreted to be salt cored. Basins adjacent to the folds display geometries characteristic of salt withdrawal. The fold crests formed bathymetric highs which served as nucleation sites for nummulitic shoal development. These shoals are the principal reservoirs of the Pelagian Shelf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号