首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The circulation of methane-rich fluids at cold seeps often leads to the precipitation of seep carbonates close to the seafloor along continental margins, which can be used as records of past fluid seepage. Rare earth element (REE) concentrations in seep carbonates have been used to trace fluid sources and provide information on associated biogeochemical processes at cold seeps. The REE concentrations of a series of carbonates collected from cold seeps in the southwestern Dongsha area of the northern South China Sea are analyzed in this study. The total REE contents (ΣREE) of the seep carbonates analyzed show a wide variation from 17 ppm to 523 ppm with an average ΣREE value of 54 ppm, which are higher than the typical marine carbonate values of ∼28 ppm commonly reported and also higher than those of the carbonates from other cold seep areas. A positive correlation between Fe–Mn content and ΣREE was observed. These results suggest that the seep carbonates of this study were primarily controlled by the methane-derived fluid from which they precipitated. The Fe-rich dolomite and siderite, which are the main components of the carbonates, are responsible for the enrichment of the REE. A slight positive Ce anomaly observed in the shale-normalized REE patterns of the studied seep carbonates suggests that they formed in anoxic conditions, and the correlations between Ce/Ce* and LaN/SmN, Ce/Ce* and DyN/SmN, Ce/Ce* and ΣREE further reveal that the REE characteristics of most seep carbonate samples preserve the original redox conditions in which they precipitated and late diagenesis has had little effect on the REE. However, the REE characteristics of sub-samples DS2-2B, DS1-6A and DS1-7A are very different from those of the other sub-samples, indicating a greater impact of late diagenesis and post-oxidation favored REE enrichment.  相似文献   

2.
Marine dolostones of Carboniferous Huanglong Formation constitute major gas reservoir rocks in eastern Sichuan Basin. However, the investigation with respect to sources of dolomitizing and diagenetic fluids is relatively underexplored. The current study attempts to investigate the REE characteristics of dolomites using seawater normalization standard, and therefore discusses the origins of dolomitizing and diagenetic fluids, on the basis of continuous 47.33-m-long core samples from the second member of Huanglong Formation (C2h2) in eastern Sichuan Basin. Low Th, Sc, and Hf concentrations (0.791 × 10−6, 4.751 × 10−6, and 0.214 × 10−6, respectively), random correlation between total REE concentration (ΣREE) and Fe or Mn abundance, and seawater-like Y/Ho ratios (mean value of 45.612) indicate that the carbonate samples are valid for REE analysis. Based on petrographic characteristics, four dolomite types are identified, including micritic-sized dolomite (type Dol-1), fine-to medium-sized dolomite (type Dol-2), medium-to coarse-sized dolomite (type Dol-3), and coarse-to giant-sized saddle dolomite (type Dol-4). Dol-1 dolomites, characterized by positive Ce anomaly (mean value of 6.398), light REE (LREE) enrichment, and heavy REE (HREE) depletion with mean LREE/HREE ratio of 12.657, show micritic calcite-like REE patterns, indicating seawater origin of their dolomitizing fluids. Dol-1 dolomites were formed in sabkha environment whereas the dolomitizing fluids originated from evaporative brine water due to their micritic crystal sizes and tight lithology. Dol-2 dolomites, particularly subtype Dol-2a barely developing vuggy porosity, also show micritic calcite-like REE patterns, suggesting their dolomitizing fluids were seawater or seawater-derived fluids. This inference is confirmed by low Fe and Mn concentrations, which range from 651 μg/g to 1018 μg/g (mean value of 863 μg/g) and 65 μg/g to 167 μg/g (mean value of 105 μg/g), respectively, whereas homogenization temperatures (Th, mean value of 103 °C) indicate that Dol-2 dolomites were formed under burial environment. Dol-3 dolomites, in form of cements of Dol-2 dolomites, show similar REE patterns to their host minerals (i.e., Dol-2 dolomites), indicating their parent source was possibly derived from Dol-2 dolomites. Dol-3 dolomites have high Fe and Mn concentrations with mean values of 3346 μg/g (ranging from 2897 μg/g to 3856 μg/g) and 236 μg/g (ranging from 178 μg/g to 287 μg/g), respectively, indicating the involvement of meteoric water. Meanwhile, it confirms that the dissolution in Dol-2 dolomites was caused by meteoric water leaching. Positive Eu anomalies (mean value of 1.406) in Dol-4 dolomites, coupled with high homogenization temperatures (mean value of 314 °C), suggest that Dol-4 dolomites precipitated from hydrothermal fluids. High Fe and Mn concentrations (mean values of 2521 μg/g and 193 μg/g, respectively) in Dol-4 dolomites likely results from interactions of hydrothermal fluids with deep burial clastic rocks.  相似文献   

3.
The Esino Limestone of the western Southern Alps represents a differentiated Ladinian-Lower Carnian (?) carbonate platform comprised of margin, slope and peritidal inner platform facies up to 1000 m thick. A major regional subaerial exposure event lead to coverage by another peritidal Lower Carnian carbonate platform (Breno Formation). Multiphase dolomitization affected the carbonate sediments. Petrographic examinations identified at least three main generations of dolomites (D1, D2, and D3) that occur as both replacement and fracture-filling cements. These phases have crystal-size ranges of 3–35 μm (dolomicrite D1), 40–600 μm (eu-to subhedral crystals D2), and 200 μm to 5 mm (cavity- and fracture-filling anhedral to subhedral saddle dolomite D3), respectively.The fabric retentive near-micritic grain size coupled with low mean Sr concentration (76 ± 37 ppm) and estimated δ18O of the parent dolomitizing fluids of D1 suggest formation in shallow burial setting at temperature ∼ 45–50 °C with possible contributions from volcanic-related fluids (basinal fluids circulated in volcaniclastics or related to volcanic activity), which is consistent with its abnormally high Fe (4438 ± 4393 ppm) and Mn (1219 ± 1418 ppm) contents. The larger crystal sizes, homogenization temperatures (D2, 108 ± 9 °C; D3, 111 ± 14 °C) of primary two-phase fluid inclusions, and calculated salinity estimates (D2, 23 ± 2 eq wt% NaCl; D3, 20 ± 4 eq wt% NaCl) of D2 and D3 suggest that they formed at later stages under mid-to deeper burial settings at higher temperatures from dolomitizing fluids of higher salinity, which is supported by higher estimated δ18O values of their parent dolomitizing fluids. This is also consistent with their high Fe (4462 ± 4888 ppm; and 1091 ± 1183 ppm, respectively) and Mn (556 ± 289 ppm and 1091 ± 1183 ppm) contents, and low Sr concentrations (53 ± 31 ppm and 57 ± 24 ppm, respectively).The similarity in shale-normalized (SN) REE patterns and Ce (Ce/Ce*)SN and La (Pr/Pr*)SN anomalies of the investigated carbonates support the genetic relationship between the dolomite generations and their calcite precursor. Positive Eu anomalies, coupled with fluid-inclusion gas ratios (N2/Ar, CO2/CH4, Ar/He), high F concentration, high F/Cl and high Cl/Br molar ratios suggest an origin from diagenetic fluids circulated through volcanic rocks, which is consistent with the co-occurrence of volcaniclastic lenses in the investigated sequence.  相似文献   

4.
《Marine Chemistry》2007,103(1-2):1-14
We succeeded in determining the Ce isotopic composition (138Ce/142Ce) in seawater with an error of 2σm = 0.3–0.7 of ε unit. In this study, 1000–3000 L of seawater samples were passed through MnO2 fibers to concentrate Ce and Nd for precise measurement of their isotope ratios. Four surface seawater samples of the northwestern Pacific and a coastal sample in Tokyo Bay were analyzed. Most Ce isotope ratios in the surface water showed positive εCe values (+ 0.8 to + 1.4) in the northwestern Pacific Ocean. These values indicate that Ce in the surface water originates from the continental crust preferentially over mantle-derived materials. We examined binary mixing model between the continental crust and mid-ocean ridge basalt. However the model could not explain both isotopic compositions and concentrations, which implies that the atmospheric input was a possible pathway for Ce into the ocean. A negative εCe value was observed in Tokyo Bay, suggesting mantle-derived sources.  相似文献   

5.
We analyzed the REE, Mn and Al concentrations and Nd isotopic ratios in marine suspensions collected on filters (0.65 μm porosity) with in situ pumping systems in the tropical northeastern Atlantic (20°N, 18–31°W). Previously we reported the same parameters on large sinking particles collected with moored sediment traps at the sites. Shale-normalized REE patterns of the filtered suspensions are characterized by a larger light REE (LREE) to heavy REE (HREE) enrichment compared to the trapped material and a Ce anomaly that evolves positively with depth. Depth profiles of REE/Al show maximum values at 50–100 m, where the Mn/Al ratio also reaches a maximum. The profile of the Nd isotopic ratios of the filtered suspensions shows variations similar to those of the seawater. These results suggest that the filtered suspensions preferentially scavenge the LREE, especially Ce, and that the particulate Mn oxides are potential REE carriers. The relationship between the Ce anomaly and the Ce/Al ratio demonstrates that the particulate Ce anomaly is formed by (1) the LREE adsorption onto the particulate Mn oxides in the surface water, (2) Ce(III) oxidation to insoluble Ce(IV)O2 and (3) preferential desorption of strict trivalent REE from the Mn oxides in deep water. Estimated authigenic Nd contents, using Nd isotopic ratios, decrease with depth. This is consistent with the adsorption of the REE in surface water and their desorption in deep water, suggested by the Ce anomaly formation. All the results show that the suspended particles record more clearly the authigenic REE contribution than the trapped material does. The suspended matter plays a key role in the scavenging of particle-reactive elements.  相似文献   

6.
西南印度洋中脊热液产物稀土元素组成变化及其来源   总被引:1,自引:1,他引:0  
对西南印度洋中脊热液区不同热液产物稀土元素(REE)进行了分析,探讨了热液产物形成过程中稀土元素组成变化及其来源。研究结果表明:不同热液产物稀土元素总量变化范围从3.47×10-7到4.80×10-5,轻重稀土比值(LREE/HREE)从2.06到6.16,表明轻重稀土有较大程度分异,δEu异常(δEu=0.86~3.88)和δCe异常(δCe=0.40~0.86)显示热液产物中REE呈Eu富集和Ce亏损特征。稀土元素球粒陨石标准化模式呈现两种类型:(1)呈轻微富集LREE的平坦模式,REE大于2×10-5;(2)呈显著富集LREE和正Eu异常模式,REE小于5×10-7。模式1类似于洋壳火山岩REE配分模式,而模式2与西南印度洋中脊黑烟囱REE模式相似,也与典型洋中脊热液喷口流体和硫化物LREE富集和正Eu异常模式类似。热液产物中稀土元素含量变化和模式特征以及Mg与LREE极强正相关关系可能反映了西南印度洋中脊硫化物形成在热液流体与海水混合沉淀的初始阶段,后期经历了广泛的热液流体再循环和海水蚀变过程。  相似文献   

7.
The Flemish Pass Basin is a deep-water basin located offshore on the continental passive margin of the Grand Banks, eastern Newfoundland, which is currently a hydrocarbon exploration target. The current study investigates the petrographic characteristics and origin of carbonate cements in the Ti-3 Member, a primary clastic reservoir interval of the Bodhrán Formation (Upper Jurassic) in the Flemish Pass Basin.The Ti-3 sandstones with average Q86.0F3.1R10.9 contain various diagenetic minerals, including calcite, pyrite, quartz overgrowth, dolomite and siderite. Based on the volume of calcite cement, the investigated sandstones can be classified into (1) calcite-cemented intervals (>20% calcite), and (2) poorly calcite-cemented intervals (porous). Petrographic analysis shows that the dominant cement is intergranular poikilotopic (300–500 μm) calcite, which stared to form extensively at early diagenesis. The precipitation of calcite occured after feldspar leaching and was followed by corrosion of quartz grains. Intergranular calcite cement hosts all-liquid inclusions mainly in the crystal core, but rare primary two-phase (liquid and vapor) fluid inclusions in the rims ((with mean homogenization temperature (Th) of 70.2 ± 4.9 °C and salinity estimates of 8.8 ± 1.2 eq. wt.% NaCl). The mean δ18O and δ13C isotopic compositions of the intergranular calcite are −8.3 ± 1.2‰, VPDB and −3.0 ± 1.3‰, VPDB, respectively; whereas, fracture-filling calcite has more depleted δ18O but similar δ13C values. The shale normalized rare earth element (REESN) patterns of calcite are generally parallel and exhibit slightly negative Ce anomalies and positive Eu anomalies. Fluid-inclusion gas ratios (CO2/CH4 and N2/Ar) of calcite cement further confirms that diagenetic fluids originated from modified seawater. Combined evidence from petrographic, microthermometric and geochemical analyses suggest that (1) the intergranular calcite cement precipitated from diagenetic fluids of mixed marine and meteoric (riverine) waters in suboxic conditions; (2)the cement was sourced from the oxidation of organic matters and the dissolution of biogenic marine carbonates within sandstone beds or adjacent silty mudstones; and (3) the late phases of the intergranular and fracture-filling calcite cements were deposited from hot circulated basinal fluids.Calcite cementation acts as a main controlling factor on the reservoir quality in the Flemish Pass reservoir sandstones. Over 75% of initial porosity was lost due to the early calcite cementation. The development of secondary porosity (mostly enlarged, moldic pores) and throats by later calcite dissolution due to maturation of organic matters (e.g., hydrocarbon and coals), was the key process in improving the reservoir quality.  相似文献   

8.
Six manganese crusts, 13 manganese nodules, and 16 sediments were analyzed by instrumental neutron activation analysis. Data were generated on selected major and minor elements but geochemical evaluations are based only on Fe, Sc, U, Th, and the rare earth elements (REE). Manganese crusts and manganese nodules have comparable trivalent REE contents and show a shale‐like distribution pattern. Both crusts and nodules are characterized by a positive Ce anomaly but the anomaly is higher in nodules. REE contents in manganese nodules show a linear dependence on the Fe content, and it is concluded that these elements are incorporated in the Fe‐rich (δ‐MnO2) phase. In the crusts, the REE correlate with Sc and are therefore assumed to be associated with the clay minerals. Uranium contents are significantly higher in the crusts than in nodules whereas Th is slightly higher in the nodules. There is a clear positive correlation between U and Th in nodules but there are too few data to make a similar conclusion for crusts. Compositional data suggest a division of the sediments into two groups. The carbonate sediments have much lower REE contents and a more pronounced negative Ce anomaly than the clays, while both show a lithogenous component as indicated by a slight negative Eu anomaly.  相似文献   

9.
The Tyro and Bannock Basins, which are depressions in the eastern Mediterranean, contain hypersaline anoxic brines. These brines are of different composition: Tyro brine is primarily an early-stage halite (NaCl) brine, whereas Bannock brine includes the more soluble ions of late-stage evaporite minerals. Accordingly, the Bannock brine contains a much greater sulphate concentration than the Tyro Brine. This difference in sulphate concentration is reflected in the concentrations of ions such as Ca, Sr and Ba, which form sparingly soluble sulphate minerals.Equilibrium calculations using the Pitzer specific ion interaction model indicate that the brines in both basins are saturated with respect to gypsum (CaSO4-2H2O) and supersaturated to saturated with respect to dolomite (CaMg(CO3)2). The degree of saturation with respect to dolomite is greater in the Bannock Basin than it is in the Tyro Basin. Correspondingly, recent gypsum crystals and dolomite hardgrounds have been found in the Bannock Basin but not in the Tyro Basin.The Tyro brine is homogeneous in composition, whereas the Bannock brine demonstrates a clear two-layer brine structure. At the interface of the upper and the lower brine distinct positive anomalies occur in the total alkalinity and the concentration of phosphate, and negative anomalies occur in the concentrations of Mn2+ and the rare earth elements (REE). These anomalies and the observed association of gypsum/dolomite in the sediments are all consistent with a recent precipitation of dolomite and gypsum in the Bannock Basin. The brines in both basins are also saturated with respect to barite (BaSO4).The 87Sr/86Sr and δ34S ratios of the Bannock brines are amazingly consistent but differ dramatically from the values for modern or Messinian-age seawater. The Sr concentration and Sr and S isotope ratios in the gypsum crystals indicate that most of these crystals have resulted from precipitation/recrystallization from the brine and not from seawater. The observed variations between crystals are thought to reflect the recrystallization of (sub-) outcropping Messinian gypsum with a low 87Sr/86Sr ratio in the presence of seawater or brine fluids and with different extents of diagenesis.  相似文献   

10.
Authigenic carbonates were collected from methane seeps at Hydrate Hole at 3113 m water depth and Diapir Field at 2417 m water depth on the northern Congo deep-sea fan during RV Meteor cruise M56. The carbonate samples analyzed here are nodules, mainly composed of aragonite and high-Mg calcite. Abundant putative microbial carbonate rods and associated pyrite framboids were recognized within the carbonate matrix. The δ13C values of the Hydrate Hole carbonates range from ?62.5‰ to ?46.3‰ PDB, while the δ13C values of the Diapir Field carbonate are somewhat higher, ranging from ?40.7‰ to ?30.7‰ PDB, indicating that methane is the predominant carbon source at both locations. Relative enrichment of 18O (δ18O values as high as 5.2‰ PDB) are probably related to localized destabilization of gas hydrate. The total content of rare earth elements (REE) of 5% HNO3-treated solutions derived from carbonate samples varies from 1.6 ppm to 42.5 ppm. The shale-normalized REE patterns all display positive Ce anomalies (Ce/Ce* > 1.3), revealing that the carbonates precipitated under anoxic conditions. A sample from Hydrate Hole shows a concentric lamination, corresponding to fluctuations in δ13C values as well as trace elements contents. These fluctuations are presumed to reflect changes of seepage flux.  相似文献   

11.
Authigenic carbonates are common at cold seep sites as a result of microbial oxidation of hydrocarbons. Seep carbonate samples were collected from the surface of the Bush Hill (Green Canyon Block 185, Gulf of Mexico), a mound containing gas hydrate. The carbonates consisted of oily, porous limestone slabs and blocks containing bioclasts and matrix. Analysis by X-ray diffraction shows that aragonite is the dominant mineral (89–99 wt% with an average of 94 wt%) in the matrix of seep carbonate. This cement occurs in microcrystalline, microspar, and sparite forms. The moderate 13C depletion of the seep carbonate (the most depleted one has δ13C value of −29.4‰, and 26 of 38 subsamples have δ13C values >−20.0‰) indicates that the non-methane hydrocarbons was incorporated during seep carbonate precipitation. Relative enrichment of 18O may be related to localized destabilization of gas hydrate or derived from 18O-enriched pore water originated from smectite–illite transition in the deep sediments. The total content of rare earth elements (REE) of the 5% HNO3-treated solution of the carbonates is from 0.40 ppm to 30.9 ppm. The shale-normalized REE patterns show varied Ce anomalies from significantly negative, slightly negative, and no to positive Ce anomalies. Variable content of trace elements, total REE, and Ce anomalies in different samples and even in the different carbonate mineral forms (microcrystalline, microspar and sparite) of the same sample suggest that the formation condition of the Bush Hill seep carbonate is variable and complex, which is possibly controlled by the rate of fluid flux.  相似文献   

12.
The geochemical composition of phosphorites and phosphatic sediments in the Baja California peninsula is studied and used to assess the environment in which phosphogenesis took place. The deposits are classified in three groups: (1) stratified phosphorites, (2) phosphatic sandy sediments from beaches and dunes, and (3) submarine sediments. Some of the elements that might have substituted Ca and PO4 during francolite mineralization were studied by means of ICP-AES. Significant differences are seen in the concentration of these metals (e.g., Cr = 72-406 μg g?1 and V = 17-198 μg g?1), indicating that their concentration is not only controlled by the P2O5 concentration, but also by paleo-environmental conditions existing during francolite precipitation. Shale normalized REE patterns suggest two main environments of formation: (1) a strong negative Ce anomaly (< ? 0.3) and La enrichment (La/Nd ≥ 1) enrichment, suggesting well oxygenated shelf environments and probably lower light REE weathering, and (2) a weak negative Ce anomaly (> ? 0.3) and La depletion (La/Nd ≤ 1) suggesting shallower waters or restricted circulation and probably LREE weathering.  相似文献   

13.
西沙岛礁白云岩化特征与成因模式分析   总被引:1,自引:0,他引:1  
关于碳酸盐岩的白云岩化作用至今仍是一个争论颇大的科学问题。在2012-2013年期间,中海石油(中国)有限公司湛江分公司在西沙石岛钻取了长达1 268.02 m的“西科1井”岩心,在0~1 257.52 m主要由碳酸盐岩组成的岩心中存在有7个白云岩层。本文基于西科1井岩心样品的矿物组成、常量、微量及稀土元素含量等地球化学特征分析,探讨了西沙岛礁特有的白云岩化作用过程。结果表明:西科1井7层白云岩在成因上与埋深和压实成岩作用无关,其分布与海平面下降的地质事件有良好的对应关系,白云岩层元素地球化学特征表明白云岩成岩流体为浓缩的高盐度海水。根据白云岩层的矿物学和地球化学特征,提出了礁滩潟湖环境下高盐卤水渗透回流作用的白云岩化模式:伴随海平面的升降,礁体处于淹没与暴露的交替之中,海平面下降导致了礁滩潟湖的形成,由于西沙海区蒸发量大于降水量而使澙湖中海水盐度增高,最终形成富Mg卤水;澙湖中高盐度富Mg卤水在礁体内下渗和侧向扩散,Mg逐渐替代早期CaCO3晶格中Ca而形成白云石;海平面的升降变化和礁体淹没与暴露的交替导致了钻井岩心多个白云岩层的形成。海平面升降直接控制了岛礁碳酸盐岩的发育和白云岩化作用,导致海平面升降的古气候变化在岛礁的形成发育中起到主导作用。  相似文献   

14.
The Early Jurassic dolomitized carbonates in the Venetian Alp, represent a surface analogue of the hydrocarbon exploration targets in Adriatic offshore and Po Plain, Italy. Dolomitization affected the carbonate platform of Monte Zugna Formation (Lower Jurassic) and the Neptunian dikes breccia in the pelagic Maiolica Formation (Uppermost Jurassic–Lower Cretaceous) improving the poro-perm characteristics. Petrography, stable isotope, strontium isotope ratio, trace element and fluid inclusion analyses were carried out on samples from the Monte Grappa Anticline, which is the direct analogue for subsurface. The petrographic analyses showed a first pervasive, replacement dolomitization phase (D1) followed by volumetrically less important dolomite cement precipitation phases (D2, D3, DS). The same, quite wide range of oxygen isotope (?9 to ?2‰ V-PDB) is observed in all dolomite types. The δ13C range is in the positive field of marine derived carbonate (from +0.5 to +3.2‰ PDB). The trace element analysis showed a slight enrichment in Fe and Mn contents in the Monte Zugna dolostones with respect the original limestone. The same dolomite precipitation temperature (up to 105 °C Th) was observed in the replacement and cement dolomites, suggesting a unique dolomitization event. This temperature, largely higher than the maximum burial temperature (about 50 °C), supports a hydrothermal origin of the dolomitizing fluids, which had a seawater to brackish composition. The data collected suggest a hydrothermal dolomitization occurring during to the South Alpine thrusting according to the “squeegee model”. The interpretation is consistent with the dolomitization model proposed for similar Jurassic successions in the Central Southern Alps. This study indicates that the deformed foreland and thrust fold belts carbonates in Po Plain and Adriatic offshore are suitable to be dolomitized, and therefore reflect an efficient hydrocarbon exploration play.  相似文献   

15.
The REE compositions of hydrothermal deposits and basalt samples from the Southwest Indian Ridge (SWIR) were determined with ICP-MS.The results show that there are significant differences between different types of samples although all samples show relative LREE enrichment.The contents of REE in hydrothermal sulfides and alterated rocks samples are lower (from 7.036 × 10 6 to 23.660 × 10 6),while those in the white chimney deposits are relatively higher (ranging from 84.496 × 10 6 to 103.511 × 10 6).Both of them are lower than basalts.Chondrite-normalized REE distribution patterns show that sulfides and alterated rocks samples are characterized by significant positive Eu anomalies.On the contrary,white chimney deposits have obvious negative Eu anomalies,which may be caused by abundant calcite existing in the white chimney samples.Both the content and distribution pattern of REE in sulfides suggest that REE most possibly is originally derived from hydrothermal fluids,but influenced by the submarine reducing ore-forming environment,seawater convection,mineral compositions as well as the constraint of mineral crystallizations.  相似文献   

16.
Rare earth elements (REEs) in the suspended particulate matter (SPM) of the Mandovi estuary indicated that the mean total-REEs (∑REE) and light REE to heavy REE ratios are lower than that of the average suspended sediment in World Rivers and Post-Archean average Australian shale. High ∑REE were associated with high SPM/low salinity and also with high SPM/high salinity. Although the ∑REE broadly agree with SPM levels at each station, their seasonal distributions along transect are different. SPM increased seaward in the estuary both during the monsoon and pre-monsoon, but consistently low at all stations during the post-monsoon. The mean ∑REE decreased marginally seaward and was <25% at sea-end station than at river-end station. Spatial variations in ∑REE are maximum (64%) during the pre-monsoon. Strong to moderate correlation of ∑REE with Al, Fe and Mn in all seasons indicates adsorption and co-precipitation of REEs with aluminosilicate phases and Fe, Mn-oxyhydroxides. The ratio of mean ∑REE in sediment/SPM is low during the monsoon (1.27), followed by pre-monsoon (1.5) and post-monsoon (1.62). The middle REE- and heavy REE-enriched patterns with positive Ce and Eu anomalies are characteristic at every station and season, both in SPM and sediment. They also exhibit tetrad effect with distinct third and fourth tetrads. Fe-Mn ore dust is the most dominant source for REEs. However, the seasonal changes in the supply of detrital silicates, Fe-Mn ore dust and particulates resuspended from bottom sediments diluted the overall effect of salinity on fractionation and distribution of REEs in the estuary.  相似文献   

17.
Fifty analyses of rare earth elements as well as mineralogical studies have been carried out on a suite of manganese nodules and crusts from the Central Indian Basin and the Western Indian Ocean. The aim was to identify the processes controlling the REE patterns of the phases hosting the REE in the manganese nodules, with an emphasis on an understanding of the Ce anomaly. This has involved separating the encrusting layers and nuclei physically as well as Fe-Mn oxides from the aluminosilicate phase chemically (using a 2 M HCl leach) prior to analysis.

The presence of nodule nuclei seems to have little influence (mostly <5% to a maximum of 30%) on the overall magnitude of the Ce anomalies in these nodules. The ratios of concentrations of elements in the acid leachates and the corresponding bulk values yield flat REE patterns indicating that the aluminosilicate phase contributes very little to the Ce anomalies. Interelement relations indicate that the Ce anomalies are largely controlled by the amorphous mineral phase FeOOH.xH2O. The relationship of Fe, Ce anomaly and δ-MnO2 further suggests that Ce is chemisorbed onto iron oxyhydroxides which are epitaxially intergrown with δ-MnO2.

The regional distribution of the Ce anomaly values appears to depend on many of the factors responsible for the uptake of other minor metals in nodules and crusts.  相似文献   


18.
The Anisian–Ladinian Latemar platform, northern Italy, presents a spectacularly exposed outcrop analogue for dolomitized carbonate reservoirs in relation to fracture-controlled igneous intrusions. Although the Latemar is one of the best studied carbonate platforms worldwide, timing and evolution of dolomitization and the link to fractures and dikes have not been explored in detail. Previous dolomite observations are based on a stratigraphically limited portion of the platform. This study extends observations to the complete exposed interval in which dolomite bodies occur, including those within the less accessible Valsorda valley.Numerous parallel mafic dikes crosscut the Latemar platform and border several of its large dolomite bodies (50 m wide, 100 m high). Within dikes and along dike-carbonate contacts, there are abundant dolomite veins that are geochemically related to surrounding dolomite bodies. Dolomitization is the result of limestone interaction with hydrothermal fluids delivered along these dikes. At dike boundaries, impermeable marble aureoles exist derived from contact metamorphism. The marble aureoles have locally shielded surrounding limestone from dolomitizing fluid. Dolomite occurs only where the ‘protective’ marble is missing or crosscut by fractures. Based on geometric relationships, we conclude that dikes and their damage zones formed the pathways for the dolomitizing fluids and functioned as boundaries for dolomite bodies.From field observations and petrography, we established a detailed paragenesis. Dolomitization started shortly after dike emplacement. There is an evolution in the Fe content of matrix dolomite and dolomite veins, from highly ferroan dolomite to non-ferroan (saddle) dolomite, alternating with episodes of silica cementation. Non-ferroan calcite precipitation followed dolomitization, possibly indicating concurrent depletion in Mg. This stage likely resulted in further limestone recrystallization rather than dolomitization. Stable and radiogenic isotopes suggest that the dolomitizing fluid comprised Carnian seawater with elevated Fe and Mg from interaction with other lithologies (possibly the nearby Predazzo intrusion).  相似文献   

19.
The mechanisms responsible for the formation of huge volumes of dolomitized rocks associated with faults are not well understood. We present a case study for high-temperature dolomitization of an Early Cretaceous (Aptian–Albian) ramp in Benicàssim (Maestrat basin, E Spain). In this area, seismic-scale fault-controlled stratabound dolostone bodies extend over several kilometres away from large-scale faults. This work aims at evaluating different Mg sources for dolomitization, estimating the reactivity of dolomitizing fluids at variable temperature and quantifying the required versus available fluid volumes to account for the Benicàssim dolostones. Field relationships, stable 13C and 18O isotopes, as well as radiogenic 87Sr/86Sr isotopes, indicate that dolomitization at Benicàssim was produced by a high-temperature fluid (>80 °C). 13C and 18O isotopic compositions for dolomite vary from +0.5 to +2.9‰ V-PDB and from +21.1 to +24.3 V-SMOW, respectively. A Mg source analysis reveals that the most likely dolomitizing fluid was seawater-derived brine that interacted with underlying Triassic red beds and the Paleozoic basement. Geochemical models suggest that evolved seawater can be considerably more reactive than high-salinity brines, and the maximum reactivity occurs at about 100 °C. Mass-balance calculations indicate that interstitial fluids with high pressure and/or high temperature relative to the normal geothermal gradient cannot account for the volume of dolomite at Benicàssim. Instead a pervasive fluid circulation mechanism, like thermal convection, is required to provide a sufficient volume of dolomitizing fluid, which most likely occurred during the Late Cretaceous post-rift stage of the Maestrat basin. This study illustrates the importance of fluid budget quantification to critically evaluate genetic models for dolomitization and other diagenetic processes.  相似文献   

20.
南海自新生代以来发育了大量的碳酸盐岩台地和生物礁, 并普遍发生白云岩化作用, 具有广阔的油气勘探前景。文章通过开展岩相学观察、矿物学分析、常微量元素和碳氧同位素分析, 同时结合Fe组分及Fe同位素地球化学分析, 对南沙群岛南科1井白云岩的发育特征和成岩环境进行了系统研究。结果表明: 南科1井上中新统—下更新统白云岩主要形成于近地表环境中, 溶蚀孔隙发育, 残余结构明显。白云岩层中发育有多个与暴露成因有关的界面, 未发现石膏层的存在。同时, 白云岩普遍具有低Fe、Mn和Sr的特征以及与现代海水相似的REE分布模式, δ13C和δ18O多为正值, 但不存在相关性。整体来看, 白云岩可能形成于轻微蒸发海水的渗透回流作用, 还受到了与古气候变冷有关的海平面下降的控制。此外, 南科1井岩芯中多个层位发育铁白云石, 并且集中分布在暴露面附近。Fe组分和Fe同位素组成结果显示, 白云岩中Fe主要来源于海水中碳酸盐的沉淀, 成岩过程中基本不存在额外的陆源或热液来源的Fe混入。铁白云石主要形成于低温和浅埋藏环境中, 大气淡水对生物骨架、生物碎屑以及自生碳酸盐矿物的淋滤-溶解作用为其提供了重要的物质来源。作为生物礁体暴露地表期间的产物, 铁白云石的发育层位可能指示着低海平面时期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号