首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The South China Sea formed by magma-poor, or intermediate volcanic rifting in the Paleogene. We investigate the structure of the continent-ocean transition (COT) at its southern margin, off NW Palawan between the continental blocks of Reed Bank and the islands of Palawan and Calamian. Several surveys, recorded by the BGR from 1979 to 2008, established a comprehensive database of regional seismic lines, accompanied with magnetic and gravity profiles.We interpret two major rifted basins, extending in the NE direction across the shelf and slope, separated by a structural high of non volcanic origin.The continent-ocean transition is interpreted at the seaward limit of the continental crust, when magnetic spreading anomalies terminate some 80-100 km farther north. The area in between displays extensive volcanism - as manifest by extrusions that occasionally reach and cut the seafloor, by dykes, and by presumed basaltic lava flows - occurring after break-up.The COT is highly variable along the NW Palawan slope: One type shows a distinct outer ridge at the COT with a steep modern seafloor relief. The other type is characterised by rotated fault blocks, bounded by listric normal faults ramping down to a common detachment surface. Half-grabens developed above a strongly eroded pre-rift basement. The seafloor relief is smooth across this other type of COT.We suggest the pre-rift lithospheric configuration had major influence on the formation of the COT, besides transfer zones. Volcanic domains, confined to the north of competent crustal blocks correlate with the style of the COT.Gravity modelling revealed an extremely thinned crust across the shelf. We propose a depth-dependent extension model with crust being decoupled from mantle lithosphere, explaining the discrepancy of subsidence observed across the South China Sea region.  相似文献   

2.
Crustal rheology controls the style of rifting and ultimately the architecture of rifted margins. Here we review the formation of three magma-poor margin pairs, Iberia-Newfoundland, the central segment of the South Atlantic Rift, and the South China Sea by integrating observational data into a numerical forward modelling framework. We utilise a 2D version of the finite element code SLIM3D, which includes nonlinear temperature- and stress-dependent elasto-visco-plastic rheology and is able to reproduce a wide range of rift-related deformation processes such as flexure, lower crustal flow, and faulting.Extension in cold, strong, or thin crust is accommodated by brittle faults and ductile shear zones that facilitate narrow rifts with asymmetric fault geometries. Hot, weak, or thick continental crust is dominated by ductile deformation and often extends symmetrically into a wide rift system. This simple recipe provides the standard framework to understand initial rift geometry, however, it is insufficient to account for the dynamics of intermediate and late rift stages that shape the final margin architecture.Asymmetric conjugate margins where one side is wide and the other narrow can be formed via both wide and narrow rift styles, which we reproduce with weak and strong crustal rheologies, respectively. Exemplified by the Iberia-Newfoundland conjugates and the Central South Atlantic, we define three characteristic rift phases: an initial phase of simultaneous faulting, an intermediate phase of rift migration that involves sequential fault activity, and finally, the breakup phase. Crustal rheology plays an overarching role in governing the dynamics of these asymmetric margins: we illustrate that weak rheologies generally prolong the phase of simultaneous faulting, while rift migration is enabled by initial fault asymmetry as well as relatively weak crust.Formation of the predominantly symmetric and wide margins of the South China Sea was controlled by extraordinarily weak crust that extended the phase of simultaneous faulting until breakup. The weak crustal rheology of this region relates to the South China Sea's pre-rift history where plate convergence lead to crustal thickening and magmatic additions in a back-arc regime shortly before the onset of rifting.  相似文献   

3.
The South China Sea is the largest marginal basin of SE Asia, yet its mechanism of formation is still debated. A 1000-km long wide-angle refraction seismic profile was recently acquired along the conjugate margins of the SW sub-basin of the South China Sea, over the longest extended continental crust. A joint reflection and refraction seismic travel time inversion is performed to derive a 2-D velocity model of the crustal structure and upper mantle. Based on this new tomographic model, northern and southern margins are genetically linked since they share common structural characteristics. Most of the continental crust deforms in a brittle manner. Two scales of deformation are imaged and correlate well with seismic reflection observations. Small-scale normal faults (grabens, horsts and rotated faults blocks) are often associated with a tilt of the velocity isocontours affecting the upper crust. The mid-crust shows high lateral velocity variation defining low velocity bodies bounded by large-scale normal faults recognized in seismic reflection profiles. Major sedimentary basins are located above low velocity bodies interpreted as hanging-wall blocks. Along the northern margin, spacing between these velocity bodies decreases from 90 to 45 km as the total crust thins toward the Continent–Ocean Transition. The Continent–Ocean Transitions are narrow and slightly asymmetric – 60 km on the northern side and no more than 30 km on the southern side – indicating little space for significant hyper-stretched crust. Although we have no direct indication for mantle exhumation, shallow high velocities are observed at the Continent–Ocean Transition. The Moho interface remains rather flat over the extended domain, and remains undisturbed by the large-scale normal faults. The main décollement is thus within the ductile lower crust.  相似文献   

4.
The continental margins of the southwest subbasin in the South China Sea mark a unique transition from multi-stages magma-poor continental rifting to seafloor spreading. We used reflection and refraction profiles across the margins to investigate the rifting process of the crust. Combining with the other seismic profiles acquired earlier, we focused on the comparative geological interpretation from the result of multichannel seismic analysis and wide-angle seismic tomography. Our result provides the evidence of upper crustal layer with abundant fractures below the acoustic basement with a P-wave velocity from 4.0 to 5.5 km s?1. It indicates extensive deformation of the brittle crust during the continental rifting and can make a good explanation for the observed extension discrepancy in the rift margins of the South China Sea. The seismic chronostratigraphic result shows the possibility of the intra-continental extension center stayed focused for quite a long time in Eocene. Additionally, our evidence suggested that continental margin of the southwest subbasin had experienced at least three rifting stages and the existence of the rigid blocks is an appropriate explanation to the asymmetric rifting of the South China Sea.  相似文献   

5.
南海北部陆缘张裂--岩石圈拆沉的地壳响应   总被引:4,自引:0,他引:4  
南海北部陆缘在中生代晚期曾形成宏伟的华夏陆缘造山带。火成岩岩石学、岩相古地理学和地球物理学证据显示,该造山带不仅具有巨厚(50~60 km)的陆壳,而且还有巨厚(160~180 km)的岩石圈根,在地势上曾出现过高3 500~4 000 m 的华夏山系。陆缘裂陷盆地的形成发育历史、地壳-岩石圈深部结构、火成岩地球化学特征及理论计算均表明,南海北部陆缘从晚白垩世以来发生的张裂作用起始于华夏陆缘造山带的拉伸塌陷,岩石圈拆沉是南海北部陆缘张裂的重要的引发机制。因此,南海北部陆缘张裂既不同于弧后扩张,也不受控于大西洋式的海底扩张,而是该区大陆构造演化和深部壳幔相互作用的结果。  相似文献   

6.
Rifting of continental margins is generally diachronous along the zones where continents break due to various factors including the boundary conditions which trigger the extensional forces, but also the internal physical boundaries which are inherent to the composition and thus the geological history of the continental margin. Being opened quite recently in the Tertiary in a scissor-shape manner, the South China Sea (SCS) offers an image of the rifting structures which varies along strike the basin margins. The SCS has a long history of extension, which dates back from the Late Cretaceous, and allows us to observe an early stretching on the northern margin onshore and offshore South China, with large low angle faults which detach the Mesozoic sediments either over Triassic to Early Cretaceous granites, or along the short limbs of broad folds affecting Palaeozoic to Early Cretaceous series. These early faults create narrow troughs filled with coarse polygenic conglomerate grading upward to coarse sandstone. Because these low-angle faults reactivate older trends, they vary in geometry according to the direction of the folds or the granite boundaries. A later set of faults, characterized by generally E–W low and high angle normal faults was dominant during the Eocene. Associated half-graben basement deepened as the basins were filling with continental or very shallow marine sediments. This subsequent direction is well expressed both in the north and the SW of the South China Sea and often reactivated earlier detachments. At places, the intersection of these two fault sets resulting in extreme stretching with crustal boudinage and mantle exhumation such as in the Phu Khanh Basin East of the Vietnam fault. A third direction of faults, which rarely reactivates the detachments is NE–SW and well developed near the oceanic crust in the southern and southwestern part of the basin. This direction which intersects the previous ones was active although sea floor spreading was largely developed in the northern part, and ended by the Late Miocene after the onset of the regional Mid Miocene unconformity known as MMU and dated around 15.5 Ma. Latest Miocene is marked by a regional basement drop and localized normal faults on the shelf closer to the coast. The SE margin of the South China Sea does not show the extensional features as well as the Northern margin. Detachments are common in the Dangerous Grounds and Reed Bank area and may occasionally lead to mantle exhumation. The sedimentary environment on the extended crust remained shallow all along the rifting and a large part of the spreading until the Late Miocene, when it suddenly deepened. This period also corresponds to the cessation of the shortening of the NW Borneo wedge in Palawan, Sabah, and Sarawak. We correlate the variation of margin structure and composition of the margin; mainly the occurrence of granitic batholiths and Mesozoic broad folds, with the location of the detachments and major normal faults which condition the style of rifting, the crustal boudinage and therefore the crustal thickness.  相似文献   

7.
大陆岩石圈在张裂和分离时的变形模式   总被引:4,自引:0,他引:4  
通过对南海南北共轭边缘地壳剖面的对比研究,发现大陆岩石圈的物理性质是分层的:上、中地壳呈脆性,下地壳表现出塑性,而岩石圈上地幔则仍呈脆性。因此,在它受张性应力场作用时,其变形和破裂分离方式也是分层进行的:上、中地壳能发生犁式断裂,产生的断块沿断面转动在地表产生一系列半地堑,并使地壳厚度减薄;如拉张应力继续作用时,上、中地壳将沿犁式断裂被拉开,从而形成上、下板块边缘,并彼此分开。下地壳则发生塑性变形,使地壳厚度减薄,并最终将其拉断。岩石圈上地幔亦可产生陡倾断裂,形成的断块沿断面转动亦使其厚度减薄,并最终沿陡倾断裂被拉断。这就是我们称之为岩石圈变形和破裂分 离时的分层变形及分层破裂分离模式。  相似文献   

8.
南海西北部与红河地区地球物理场及其地壳深部结构特征   总被引:10,自引:0,他引:10  
分析了南海西北部与红河地区地球物理场特征,计算了研究区重、磁资料的一阶小波细节变换、四阶小波逼近变换。根据重力场资料以及南海北部盆地钻井取样的测试结果,同时参考在研究区进行的地震勘探结果,对研究区的地壳结构进行了反演计算。结果表明,研究区域地壳结构较为复杂,地壳厚度在17—38km之间,总的趋势由陆向洋地壳厚度逐渐减薄,反映出该区域地壳具有陆壳、过渡壳的性质,同时存在上地幔隆起区及凹陷区。用地震层折成像结果与重力资料计算出的地壳分布趋势进行了对比验证。根据地幔对流结果探讨了研究区深部地球动力学特征及其与深部地壳结构的关系。  相似文献   

9.
TAIGER project deep-penetration seismic reflection profiles acquired in the northeastern South China Sea (SCS) provide a detailed view of the crustal structure of a very wide rifted continental margin. These profiles document a failed rift zone proximal to the shelf, a zone of thicker crust 150 km from the shelf, and gradually thinning crust toward the COB, spanning a total distance of 250–300 km. Such an expanse of extended continental crust is not unique but it is uncommon for continental margins. We use the high-quality images from this data set to identify the styles of upper and lower crustal structure and how they have thinned in response to extension and, in turn, what rheological variations are predicted that allow for protracted crustal extension. Upper crustal thinning is greatest at the failed rift (βuc ≈ 7.5) but is limited farther seaward (βuc ≈ 1–2). We interpret that the lower crust has discordantly thinned from an original 15–17 km to possibly less than 2–3 km thick beneath the central thick crust zone and more distal areas. This extreme lower crustal thinning indicates that it acted as a weak layer allowing decoupling between the upper crust and the mantle lithosphere. The observed upper crustal thickness variations and implied rheology (lower crustal flow) are consistent with large-scale boudinage of continental crust during protracted extension.  相似文献   

10.
西太平洋边缘海盆的形成与演化   总被引:14,自引:1,他引:14  
从地球深部地幔流动引起的地质作用出发,结合裂谷的发展演化规律,认为地幔向东(或南东)的蠕散和流动促使亚洲大陆边缘地壳拉伸、变薄以致破裂,由大陆裂谷发展至弧后裂谷,形成西太平洋边缘海盆。最后提出边缘海盆发展演化的4个阶段,即:新生阶段(郯庐裂谷系)、幼年阶段(冲绳海槽)、青壮年阶段(日本海)和成熟阶段(南海)。  相似文献   

11.
南海区域岩石圈的壳-幔耦合关系和纵向演化   总被引:11,自引:2,他引:11  
南海区域岩石圈由地壳层和上地幔固结层两部分组成。具典型大洋型地壳结构的南海海盆区莫霍面深度为9~13km,并向四周经陆坡、陆架至陆区逐渐加深;陆缘区莫霍面一般为15~28km,局部区段深达30~32km,总体呈与水深变化反相关的梯度带;东南沿海莫霍面深约28~30km,往西北方向逐渐增厚,最大逾36km。南海区域上地幔天然地震面波速度结构明显存在横向分块和纵向分层特征。岩石圈底界深度变化与地幔速度变化正相关;地幔岩石圈厚度与地壳厚度呈互补性变化,莫霍面和岩石圈底界呈立交桥式结构,具有陆区厚壳薄幔—洋区薄壳厚幔的岩石圈壳-幔耦合模式。南海区域白垩纪末以来的岩石圈演化主要表现为陆缘裂离—海底扩张—区域沉降的过程,现存的壳-幔耦合模式显然为岩石圈纵向演化产物,其过程大致可分为白垩纪末至中始新世的陆缘裂离、中始新世晚期至中新世早期的海底扩张和中新世晚期以来的区域沉降等三个阶段。  相似文献   

12.
The identification of the structures and deformation patterns in magma-poor continental rifted margins is essential to characterize the processes of continental lithosphere necking. Brittle faults, often termed mantle detachments, are believed to play an essential role in the rifting processes that lead to mantle exhumation. However, ductile shear zones in the deep crust and mantle are rarely identified and their mechanical role remains to be established. The western Betics (Southern Spain) provide an exceptional exposure of a strongly thinned continental lithosphere, formed in a supra-subduction setting during Oligocene-Lower Miocene. A full section of the entire crust and the upper part of the mantle is investigated. Variations in crustal thickness are used to quantify crustal stretching that may reach values larger than 2000% where the ductile crust almost disappears, defining a stage of hyper-stretching. Opposite senses of shear top-to-W and top-to-E are observed in two extensional shear zones located close to the crust-mantle boundary and along the brittle-ductile transition in the crust, respectively. Where the ductile crust almost disappears, concordant top-to-E-NE senses of shear are observed in both upper crust and serpentinized mantle. Late high-angle normal faults with ages of ca. 21 Ma or older (40Ar/39Ar on white mica) crosscut the previously hyper-stretched domain, involving both crust and mantle in tilted blocks. The western Betics exemplify, probably better than any previous field example, the changes in deformation processes that accommodate the progressive necking of a continental lithosphere. Three successive steps can be identified: i/a mid-crustal shear zone and a crust-mantle shear zone, acting synchronously but with opposite senses of shear, accommodate ductile crust thinning and ascent of subcontinental mantle; ii/hyper-stretching localizes in the neck, leading to an almost disappearance of the ductile crust and bringing the upper crust in contact with the subcontinental mantle, each of them with their already acquired opposite senses of shear; and iii/high-angle normal faulting, cutting through the Moho, with related block tilting, ends the full exhumation of the mantle in the zone of localized stretching. The presence of a high strength sub-Moho mantle is responsible for the change in sense of shear with depth. Whereas mantle exhumation in the western Betics occurred in a backarc setting, this deformation pattern controlled by a high-strength layer at the top of the lithosphere mantle makes it directly comparable to most passive margins whose formation lead to mantle exhumation. This unique field analogue has therefore a strong potential for the seismic interpretation of the so-called “hyper-extended margins”.  相似文献   

13.
Seismic images of a collision zone offshore NW Sabah/Borneo   总被引:2,自引:0,他引:2  
Multichannel reflection seismic data from the southern South China Sea, refraction and gravity modelling were used to investigate the compressional sedimentary structures of the collision-prone continental margin off NW Borneo. An elongated imbricate deepwater fan, the toe Thrust Zone bounds the Northwest Borneo Trough to the southeast. The faults separating the individual imbricates cut through post-Early Miocene sediments and curve down to a carbonate platform at the top of the subsiding continental Dangerous Grounds platform that forms the major detachment surface. The age of deformation migrates outward toward the front of the wedge. We propose crustal shortening mechanisms as the main reason for the formation of the imbricate fan. At the location of the in the past defined Lower Tertiary Thrust Sheet tectonostratigraphic province a high velocity body was found but with a much smaller extend than the previously defined structure. The high velocity structure may be interpreted either as carbonates that limit the transfer of seismic energy into the sedimentary layers beneath or as Paleogene Crocker sediments dissected by remnants of a proto-South China Sea oceanic crust that were overthrust onto a southward migrating attenuated continental block of the Dangerous Grounds during plate convergence.  相似文献   

14.
The Southwest Subbasin (SWSB) is an abyssal subbasin in the South China Sea (SCS), with many debates on its neotectonic process and crustal structure. Using two-dimensional seismic tomography in the SWSB, we derived a detailed P-wave velocity model of the basin area and the northern margin. The entire profile is approximately 311-km-long and consists of twelve oceanic bottom seismometers (OBSs). The average thickness of the crust beneath the basin is 5.3 km, and the Moho interface is relatively flat (10–12 km). No high velocity bodies are observed, and only two thin high-velocity structures (~7.3 km/s) in the layer 3 are identified beneath the northern continent-ocean transition (COT) and the extinct spreading center. By analyzing the P-wave velocity model, we believe that the crust of the basin is a typical oceanic crust. Combined with the high resolution multi-channel seismic profile (MCS), we conclude that the profile shows asymmetric structural characteristics in the basin area. The continental margin also shows asymmetric crust between the north and south sides, which may be related to the large scale detachment fault that has developed in the southern margin. The magma supply decreased as the expansion of the SWSB from the east to the west.  相似文献   

15.
琼东南盆地中央坳陷带拆离断层及其控盆作用   总被引:4,自引:1,他引:3  
Using regional geological, newly acquired 2D and 3D seismic, drilling and well log data, especially 2D long cable seismic profiles, the structure and stratigraphy in the deep-water area of Qiongdongnan Basin are interpreted. The geometry of No.2 fault system is also re-defined, which is an important fault in the central depression belt of the deep-water area in the Qiongdongnan Basin by employing the quantitative analysis techniques of fault activity and backstripping. Furthermore, the dynamical evolution of the No.2 fault sys-tem and its controls on the central depression belt are analyzed. This study indicates that the Qiongdongnan Basin was strongly influenced by the NW-trending tensile stress field during the Late Eocene. At this time, No.2 fault system initiated and was characterized by several discontinuous fault segments, which controlled a series small NE-trending fault basins. During the Oligocene, the regional extensional stress field changed from NW-SE to SN with the oceanic spreading of South China Sea, the early small faults started to grow along their strikes, eventually connected and merged as the listric shape of the No.2 fault system as ob-served today. No.2 fault detaches along the crustal Moho surface in the deep domain of the seismic profiles as a large-scale detachment fault. A large-scale rollover anticline formed in hanging wall of the detachment fault. There are a series of small fault basins in both limbs of the rollover anticline, showing that the early small basins were involved into fold deformation of the rollover anticline. Structurally, from west to east, the central depression belt is characterized by alternatively arranged graben and half-graben. The central depression belt of the Qiongdongnan Basin lies at the extension zone of the tip of the V-shaped northwest-ern ocean sub-basin of the South China Sea, its activity period is the same as the development period of the northwestern ocean sub-basin, furthermore the emplacement and eruption of magma that originated from the mantle b  相似文献   

16.
Understanding the development from syn-rift to spreading in the South China Sea (SCS) is important in elucidating the western Pacific's tectonic evolution because the SCS is a major tectonic constituent of the many marginal seas in the region. This paper describes research examining the transition from rifting to spreading along the northern margin of the SCS, made possible by the amalgamation of newly acquired and existing geophysical data. The northernmost SCS was surveyed as part of a joint Japan-China cooperative project (JCCP) in two phases in 1993 and 1994. The purpose of the investigation was to reveal seismic and magnetic characteristics of the transitional zone between continental crust and the abyssal basin. Compilation of marine gravity and geomagnetic data of the South China Sea clarify structural characteristics of its rifted continental and convergent margins, both past and present. Total and three component magnetic data clearly indicate the magnetic lineations of the oceanic basin and the magnetic characteristics of its varied margins. The analyses of magnetic, gravity and seismic data and other geophysical and geological information from the SCS led up to the following results: (1) N-S direction seafloor spreading started from early Eocene. There were at least four separate evolutional stages. Directions and rates of the spreading are fluctuating and unstable and spreading continued from 32 to 17 Ma. (2) The apparent difference in the present tectonism of the eastern and western parts of Continent Ocean Boundary (COB) implies that in the east of the continental breakup is governed by a strike slip faulting. (3) The seismic high velocity layer in the lower crust seems to be underplated beneath the stretched continental crust. (4) Magnetic anomaly of the continental margin area seems to be rooted in the uppermost sediment and upper part of lower crust based on the tertiary volcanism. (5) Magnetic quiet zone (MQZ) anomaly in the continental margin area coincides with COB. (6) The non-magnetic or very weakly magnetized layer is probably responsible for MQZ. One of the causes of demagnetization of the layer is due to hydrothermal alteration while high temperature mantle materials being underplated. Another explanation is that horizontal sequences of basalt each with flip-flop magnetization polarity cancel out to the resultant magnetic field on the surface. We are currently developing a synthetic database system containing datasets of seismicity, potential field data, crustal and thermal structures, and other geophysical data to facilitate the study of past, contemporary and future changes in the deep sea environment around Japan; i.e. trench, trough, subduction zones, marginal basins and island arcs. Several special characteristics are an object-oriented approach to the collection and multi-faceted studies of global data from a variety of sources.  相似文献   

17.
Crustal Thinning of the Northern Continental Margin of the South China Sea   总被引:2,自引:0,他引:2  
Magnetic data suggest that the distribution of the oceanic crust in the northern South China Sea (SCS) may extend to about 21 °N and 118.5 °E. To examine the crustal features of the corresponding continent–ocean transition zone, we have studied the crustal structures of the northern continental margin of the SCS. We have also performed gravity modeling by using a simple four-layer crustal model to understand the geometry of the Moho surface and the crustal thicknesses beneath this transition zone. In general, we can distinguish the crustal structures of the study area into the continental crust, the thinned continental crust, and the oceanic crust. However, some volcanic intrusions or extrusions exist. Our results indicate the existence of oceanic crust in the northernmost SCS as observed by magnetic data. Accordingly, we have moved the continent–ocean boundary (COB) in the northeastern SCS from about 19 °N and 119.5 °E to 21 °N and 118.5 °E. Morphologically, the new COB is located along the base of the continental slope. The southeastward thinning of the continental crust in the study area is prominent. The average value of crustal thinning factor of the thinned continental crust zone is about 1.3–1.5. In the study region, the Moho depths generally vary from ca. 28 km to ca. 12 km and the crustal thicknesses vary from ca. 24 km to ca. 6 km; a regional maximum exists around the Dongsha Island. Our gravity modeling has shown that the oceanic crust in the northern SCS is slightly thicker than normal oceanic crust. This situation could be ascribed to the post-spreading volcanism or underplating in this region.  相似文献   

18.
太平洋卫星测高重力场与地球动力学特征   总被引:6,自引:1,他引:6  
通过多卫星测高数据的综合处理,获得西太平洋卫星测高重力场,进行不同尺度、深度构造动力信息的分离,探讨诸边缘海盆的地球动力学问题。测高大地水准面反映了研究区板块相互作用的特点,其高频成分可以刻画各海盆的构造特征。测高空间重力异常也可刻画陆架构造及盆地分布,由其推算出的海底地形含有大量的海底构造信息。各边缘海盆的莫霍面埋深具有往南变浅的趋势,与菲律宾海各海盆的莫霍面埋深大致相当,说明岛弧两侧的构造动力强度基本相似。大尺度地幔流应力场总体上反映了欧亚板块向东南蠕散和太平洋板块向北西扩张的特点;日本海北侧和南海巽他陆架的中尺度上地幔对流与地幔柱之间有着密切关系,西菲律宾海的上地幔对流强化了日本-琉球-台湾-菲律宾岛弧的活动强度;小尺度地幔流主要限于软流圈层内部,在各海盆分散,而在冲绳海槽和马里亚纳海槽则会聚,可与均衡重力异常类比。还讨论了大、中、小地幔流体系的特点及相互之间的关系,籍以阐明海盆及海槽演化的地球动力学过程。  相似文献   

19.
The northeastern part of the South China Sea is a special region in many aspects of its tectonics. Both recent drilling into the Mesozoic and new reflection seismic surveys in the area provide a huge amount of data, fostering new understanding of the continental margin basins and regional tectonic evolution. At least four half-grabens are developed within the Northern Depression of the Tainan Basin, and all are bounded on their southern edges by northwestward-dipping faults. One of the largest half-grabens is located immediately to the north of the Central Uplift and shows episodic uplift from the late Oligocene to late Miocene. Also during that period, the Central Uplift served in part as a material source to the Southern Depression of the Tainan Basin. The Southern Depression of the Tainan Basin is a trough structure with deep basement (up to 9 km below sealevel or 6 km beneath the sea bottom) and thick Cenozoic sedimentation (>6 km thick). Beneath the Southern Depression we identified a strong landward dipping reflector within the crustal layer that represents a significant crustal fault. This reflector coincides with a sharp boundary in crustal thicknesses and Moho depths. We show that the northeasternmost South China Sea basin, which may have undergone unique evolution since the late Mesozoic, is markedly different from the central South China Sea basin and the Huatung Basin, both geologically and geophysically. The Cenozoic evolution of the region was largely influenced by pre-existing weaknesses due to tectonic inheritance and transition. The South China Sea experienced multiple stages of Cenozoic extension.  相似文献   

20.
南海北缘新生代盆地沉积与构造演化及地球动力学背景   总被引:32,自引:0,他引:32  
南海北缘新生代沉积盆地是全面揭示南海北缘形成演化及与邻区大地构造单元相互作用的重要窗口。通过对盆地沉积-构造特征分析,南海北缘新生代裂陷过程显示出明显的多幕性和旋转性的特点。在从北向南逐渐迁移的趋势下,东、西段裂陷过程也具有一定的差异,西部裂陷活动及海侵时间明显早于东部,裂陷中心由西向东呈雁列式扩展。晚白垩世-早始新世裂陷活动应是东亚陆缘中生代构造-岩浆演化的延续,始新世中、晚期太平洋板块俯冲方向改变导致裂陷中心南移,印度欧亚板块碰撞效应是南海中央海盆扩张方向顺时针旋转的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号