首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrocarbon migration and accumulation of the Suqiao deep buried-hill zone, in the Jizhong Subbasin, the Bohai Bay Basin, eastern China, was investigated from the perspective of paleo-fluid evidence by using fluid inclusions, quantitative fluorescence techniques (QGF), total scanning fluorescence method (TSF) and organic geochemical analysis. Results show that the current condensate oil-gas reservoirs in the study area once were paleo-oil reservoirs. In addition, the reservoirs have experienced at least two stages of hydrocarbon charge from different sources and/or maturities. During the deposition of the Oligocene Dongying Formation (Ed), the deep Ordovician reservoirs were first charged by mature oils sourced from the lacustrine shale source rocks in the fourth member of Shahejie and Kongdian Formations (Es4+Ek), and then adjusted at the end of Ed period subsequently by virtue of the tectonic movement. Since the deposition of the Neogene Minghuazhen Formation (Nm), the reservoirs were mainly charged by the gas that consisted of moderate to high-maturity condensate and wet gas sourced from the Es4+Ek lacustrine shale source rocks and mature coal-derived gas sourced from the Carboniferous-Permian (C-P) coal-bearing source rocks. Meanwhile, the early charged oil was subjected to gas flushing and deasphalting by the late intrusion of gas. The widely distributed hydrocarbon inclusions, the higher QGF Index, and FOI (the frequency of oil inclusions) values in both gas-oil and water zone, are indicative of early oil charge. In addition, combined with the homogenization temperatures of the fluid inclusions (<160 °C) and the existence of solid-bitumen bearing inclusions, significant loss of the n-alkanes with low carbon numbers, enrichments of heavier components in crude oils, and the precipitation of asphaltene in the residual pores suggest that gas flushing may have played an important role in the reservoir formation.  相似文献   

2.
A 150 km length, 6-second deep, seismic line across the west central and north parts of the South Caspian Basin was used to construct quantitative dynamical, thermal and hydrocarbon evolution patterns. The depth of the west part of the 2-D section of the South Caspian Basin is almost 30 km. The computer program GEOPETII was used to provide quantitative evolution models. The procedure provided an opportunity to investigate the development dynamics of: excess fluid pressure, porosity retention, rock fracturing, compaction, heat transfer, maturity, generation pressure, kinetic hydrocarbon generation, migration and accumulation, together with solubility effects on hydrocarbon transport. The results suggest that: (i) Temperature is 350–400°C in the deepest part of the section at a depth of 26–29 km; (ii) The highest values of excess pressure nearly twice hydrostatic fluid pressure are in Jurassic and Cretaceous formations in the west part of the section, which has now subsided to a depth of about 20–27 km; (iii) Major oil and gas generation began in the last 10-5 MYBP, the migration in free-phase and in water solution occurring dominantly in the last few million years; (iv) Trapping of hydrocarbons took place mainly, but not exclusively, in the 3–9 km depth interval in the sands of the Productive Series of the Pilocene, embedded in a shale sequence; (v) Oil and gas filling of the shallow reservoirs by oil and gas is on-going today, indicating an extremely high productivity for any reservoir found in the offshore area; (vi) There is overlap with depth of oil and gas reservoirs, and the total amount of hydrocarbons estimated to be trapped is considerable; (vii) The high overpressure expected makes for a drilling hazard, but one which it is worthwhile to overcome if the anticipated oil and gas accumulations are encountered.  相似文献   

3.
As a result of a long-lasting and complex geological history, organic-matter-rich fine-grained rocks (black shales) with widely varying ages can be found on Ukrainian territory. Several of them are proven hydrocarbon source rocks and may hold a significant shale gas potential.Thick Silurian black shales accumulated along the western margin of the East European Craton in a foreland-type basin. By analogy with coeval organic-matter-rich rocks in Poland, high TOC contents and gas window maturity can be expected. However, to date information on organic richness is largely missing and maturity patterns remain to be refined.Visean black shales with TOC contents as high as 8% and a Type III-II kerogen accumulated along the axis of the Dniepr-Donets rift basin (DDB). They are the likely source for conventional oil and gas. Oil-prone Serpukhovian black shales accumulated in the shallow northwestern part of the DDB. Similar black shales probably may be present in the Lviv-Volyn Basin (western Ukraine).Middle Jurassic black shales up to 500 m thick occur beneath the Carpathian Foredeep. They are the likely source for some heavy oil deposits. TOC contents up to 12% (Type II) have been recorded, but additional investigations are needed to study the vertical and lateral variability of organic matter richness and maturity.Lower Cretaceous black shales with a Type III(-II) kerogen (TOC > 2%) are widespread at the base of the Carpathian flysch nappes, but Oligocene black shales (Menilite Fm.) rich in organic matter (4–8% TOC) and containing a Type II kerogen are the main source rock for oil in the Carpathians. Their thermal maturity increases from the external to the internal nappes.Oligocene black shales are also present in Crimea (Maykop Fm.). These rocks typically contain high TOC contents, but data from Ukraine are missing.  相似文献   

4.
腰英台油田区是松辽盆地南部近几年发现的具有超亿吨级储量规模的大型含油气区。结合勘探实践对腰英台地区青山口组油气成藏条件分析表明,油气成藏的主控因素包括烃源、储层和输导三个方面。油气成藏主要围绕乾安次凹生烃中心,烃源岩控制油藏的聚集与分布;断裂一方面作为输导体系,另一方面控制着不同类型油藏的平面分布;沉积微相控制砂体的平面分布以及砂体的储集物性。最终指出了近源带、断裂带、砂体发育带三者叠置区是下步勘探的有利方向。  相似文献   

5.
以致密砂岩气藏成藏机理为指导,综合利用烃源岩有机地化和储层孔渗参数等资料,对台西盆地致密砂岩气藏发育条件进行了探索性研究。在概括烃源岩、储集层及封盖保存等基本地质条件对油气聚集控制的基础上,通过分析致密砂岩气藏的形成机理,认为台西盆地具备良好的致密砂岩气藏发育条件,存在巨大的天然气勘探潜力,盆地东部陆区白垩系—中新统下部、西部海域南日坳陷白垩系—始新统、澎湖坳陷始新统下部为致密砂岩气藏发育有利层位,是台西盆地天然气勘探的新领域。  相似文献   

6.
Differences in fluids origin, creation of overpressure and migration are compared for end member Neogene fold and thrust environments: the deepwater region offshore Brunei (shale detachment), and the onshore, arid Central Basin of Iran (salt detachment). Variations in overpressure mechanism arise from a) the availability of water trapped in pore-space during early burial (deepwater marine environment vs arid, continental environment), and b) the depth/temperature at which mechanical compaction becomes a secondary effect and chemical processes start to dominate overpressure development. Chemical reactions associated with smectite rich mud rocks in Iran occur shallow (∼1900 m, smectite to illite transformation) causing load-transfer related (moderate) overpressures, whereas mechanical compaction and inflationary overpressures dominate smectite poor mud rocks offshore Brunei. The basal detachment in deepwater Brunei generally lies below temperatures of about 150 °C, where chemical processes and metagenesis are inferred to drive overpressure development. Overall the deepwater Brunei system is very water rich, and multiple opportunities for overpressure generation and fluid leakage have occurred throughout the growth of the anticlines. The result is a wide variety of fluid migration pathways and structures from deep to shallow levels (particularly mud dykes, sills, laccoliths, volcanoes and pipes, fluid escape pipes, crestal normal faults, thrust faults) and widespread inflationary-type overpressure. In the Central Basin the near surface environment is water limited. Mechanical and chemical compaction led to moderate overpressure development above the Upper Red Formation evaporites. Only below thick Early Miocene evaporites have near lithostatic overpressures developed in carbonates and marls affected by a wide range of overpressure mechanisms. Fluid leakage episodes across the evaporites have either been very few or absent in most areas. Locations where leakage can episodically occur (e.g. detaching thrusts, deep normal faults, salt welds) are sparse. However, in both Iran and Brunei crestal normal faults play an important role in the transmission of fluids in the upper regions of folds.  相似文献   

7.
Differences in fluids origin, creation of overpressure and migration are compared for end member Neogene fold and thrust environments: the deepwater region offshore Brunei (shale detachment), and the onshore, arid Central Basin of Iran (salt detachment). Variations in overpressure mechanism arise from a) the availability of water trapped in pore-space during early burial (deepwater marine environment vs arid, continental environment), and b) the depth/temperature at which mechanical compaction becomes a secondary effect and chemical processes start to dominate overpressure development. Chemical reactions associated with smectite rich mud rocks in Iran occur shallow (∼1900 m, smectite to illite transformation) causing load-transfer related (moderate) overpressures, whereas mechanical compaction and inflationary overpressures dominate smectite poor mud rocks offshore Brunei. The basal detachment in deepwater Brunei generally lies below temperatures of about 150 °C, where chemical processes and metagenesis are inferred to drive overpressure development. Overall the deepwater Brunei system is very water rich, and multiple opportunities for overpressure generation and fluid leakage have occurred throughout the growth of the anticlines. The result is a wide variety of fluid migration pathways and structures from deep to shallow levels (particularly mud dykes, sills, laccoliths, volcanoes and pipes, fluid escape pipes, crestal normal faults, thrust faults) and widespread inflationary-type overpressure. In the Central Basin the near surface environment is water limited. Mechanical and chemical compaction led to moderate overpressure development above the Upper Red Formation evaporites. Only below thick Early Miocene evaporites have near lithostatic overpressures developed in carbonates and marls affected by a wide range of overpressure mechanisms. Fluid leakage episodes across the evaporites have either been very few or absent in most areas. Locations where leakage can episodically occur (e.g. detaching thrusts, deep normal faults, salt welds) are sparse. However, in both Iran and Brunei crestal normal faults play an important role in the transmission of fluids in the upper regions of folds.  相似文献   

8.
The prolific, oil-bearing basins of eastern Venezuela developed through an unusual confluence of Atlantic, Caribbean and Pacific plate tectonic events. Mesozoic rifting and passive margin development created ideal conditions for the deposition of world-class hydrocarbon source rocks. In the Cenozoic, transpressive, west-to-east movement of the Caribbean plate along the northern margin of Venezuela led to the maturation of those source rocks in several extended pulses, directly attributable to regional tectonic events. The combination of these elements with well-developed structural and stratigraphic fairways resulted in remarkably efficient migration of large volumes of oil and gas, which accumulated along the flanks of thick sedimentary depocenters.At least four proven and potential hydrocarbon source rocks contribute to oil and gas accumulations. Cretaceous oil-prone, marine source rocks, and Miocene oil- and gas-prone, paralic source rocks are well documented. We used reservoired oils, seeps, organic-rich rocks, and fluid inclusions to identify probable Jurassic hypersaline-lacustrine, and Albian carbonate source rocks. Hydrocarbon maturation began during the Early Miocene in the present-day Serrania del Interior, as the Caribbean plate moved eastward relative to South America. Large volumes of hydrocarbons expelled during this period were lost due to lack of effective traps and seals. By the Middle Miocene, however, when source rocks from the more recent foredeeps began to mature, reservoir, migration pathways, and topseal were in place. Rapid, tectonically driven burial created the opportunity for unusually efficient migration and trapping of these later-expelled hydrocarbons. The generally eastward migration of broad depocenters across Venezuela was supplemented by local, tectonically induced subsidence. These subsidence patterns and later migration resulted in the mixing of hydrocarbons from different source rocks, and in a complex map pattern of variable oil quality that was further modified by biodegradation, late gas migration, water washing, and subsequent burial.The integration of plate tectonic reconstructions with the history of source rock deposition and maturation provides significant insights into the genesis, evolution, alteration, and demise of Eastern Venezuela hydrocarbon systems. We used this analysis to identify additional play potential associated with probable Jurassic and Albian hydrocarbon source rocks, often overlooked in discussions of Venezuela. The results suggest that oils associated with likely Jurassic source rocks originated in restricted, rift-controlled depressions lying at high angles to the eventual margins of the South Atlantic, and that Albian oils are likely related to carbonate deposition along these margins, post-continental break up. In terms of tectonic history, the inferred Mesozoic rift system is the eastern continuation of the Espino Graben, whose remnant structures underlie both the Serrania del Interior and the Gulf of Paria, where thick evaporite sections have been penetrated. The pattern of basin structure and associated Mesozoic deposition as depicted in the model has important implications for the Mesozoic paleogeography of northern South America and Africa, Cuba and the Yucatan and associated new play potential.  相似文献   

9.
High sedimentation rates (as much as 2500 m/Ma) during Pliocene-Pleistocene, with a resultant undercompacted section as thick as 10,000 m, and lower than normal geothermal gradients are the main characteristics which have created all the means for generation and preservation of oil at deep layers in the Lower Kura Depression.Oils collected from eight different oil fields for analyses seem to have originated from a common source rock which probably is clastic, deposited in relatively subanoxic to suboxic transitional marine environment receiving low to moderate input of terrestrial organic matter.Oils from shallow (< 3000 m) and cold (< 70–80°C) reservoirs have been altered to various extent by bacterial activity.A computer-aided basin modeling study has been carried out to outline the spatial variation of the oil window and thus help in further identification of possible source rocks for the reservoired oil in the Lower Kura Depression. Results suggest that the potential hydrocarbon source horizons of the Miocene and Pliocene Red Bed Series of the so called Productive Succession are, even at depocenter areas, immature with respect to oil generation, and thus, are very unlikely to have been source rocks for the reservoired oils. However, the Oligocene-Lower Miocene Maykop rocks are marginally mature to mature depending on locality and the Eocene and older rocks are mature with respect to oil generation at all representative field locations. Oil generation commenced at the end of Pliocene and continues at present at depths between 6000 and 12,000 m.An unusually deep (> 10,000 m) oil window in the depocenter areas has been caused by the depressed isotherms due to extremely high sedimentation rates (up to 3000 m/Ma) for the last two million years. The main phase of oil generation is taking place at depths greater than what most of the wells in the study are have reached.  相似文献   

10.
Calcite veins and cements occur widely in Carboniferous and Permian reservoirs of the Hongche fault zone, northwestern Junggar Basin in northwest China. The calcites were investigated by fluid inclusion and trace-element analyses, providing an improved understanding of the petroleum migration history. It is indicated that the Hongche fault behaved as a migration pathway before the Early Cretaceous, allowing two oil charges to migrate into the hanging-wall, fault-core and footwall reservoirs across the fault. Since the Late Cretaceous, the Hongche fault has been sealed. As a consequence, meteoric water flowed down only into the hanging-wall and fault-core reservoirs. The meteoric-water incursion is likely an important cause for degradation of reservoir oils. In contrast, the footwall reservoirs received gas charge (the third hydrocarbon event) following the Late Cretaceous. This helps explain the distribution of petroleum across the fault. This study provides an example of how a fault may evolve as pathway and seal over time, and how reservoir diagenetic minerals can provide clues to complex petroleum migration histories.  相似文献   

11.
The Dniepr-Donets Basin (DDB) hosts a multi-source petroleum system with more than 200 oil and gas fields, mainly in Carboniferous clastic rocks. Main aim of the present study was to correlate accumulated hydrocarbons with the most important source rocks and to verify their potential to generate oil and gas. Therefore, molecular and isotopic composition as well as biomarker data obtained from 12 oil and condensate samples and 48 source rock extracts was used together with USGS data for a geological interpretation of hydrocarbon charging history.Within the central DDB, results point to a significant contribution from (Upper) Visean black shales, highly oil-prone as well as mixed oil- and gas-prone Serpukhovian rocks and minor contribution from an additional Tournaisian source. Devonian rocks, an important hydrocarbon source within the Pripyat Trough, have not been identified as a major source within the central DDB. Additional input from Bashkirian to Moscovian (?) (Shebelinka Field) as well as Tournaisian to Lower Visean rocks (e.g. Dovgal Field) with higher contents of terrestrial organic matter is indicated in the SE and NW part, respectively.Whereas oil–source correlation contradicts major hydrocarbon migration in many cases for Tournaisian to Middle Carboniferous reservoir horizons, accumulations within Upper Carboniferous to Permian reservoirs require vertical migration up to 4000 m along faults related to Devonian salt domes.1-D thermal models indicate hydrocarbon generation during Permo-Carboniferous time. However, generation in coal-bearing Middle Carboniferous horizons in the SE part of the basin may have occurred during the Mesozoic.  相似文献   

12.
The identification of a deeply-buried petroleum-source rock, owing to the difficulty in sample collection, has become a difficult task for establishing its relationship with discovered petroleum pools and evaluating its exploration potential in a petroleum-bearing basin. This paper proposes an approach to trace a deeply-buried source rock. The essential points include: determination of the petroleum-charging time of a reservoir, reconstruction of the petroleum generation history of its possible source rocks, establishment of the spatial connection between the source rocks and the reservoir over its geological history, identification of its effective source rock and the petroleum system from source to trap, and evaluation of petroleum potential from the deeply-buried source rock. A case study of the W9-2 petroleum pool in the Wenchang A sag of the Pearl River Mouth Basin, South China Sea was conducted using this approach. The W9-2 reservoir produces condensate oil and gas, sourced from deeply-buried source rocks. The reservoir consists of a few sets of sandstone in the Zhuhai Formation, and the possible source rocks include an early Oligocene Enping Formation mudstone and a late Eocene Wenchang Formation mudstone, with a current burial depth from 5000 to 9000 m. The fluid inclusion data from the reservoir rock indicate the oil and the gas charged the reservoir about 18–3.5 Ma and after 4.5 Ma, respectively. The kinetic modeling results show that the main stages of oil generation of the Wenchang mudstone and the Enping mudstone occurred during 28–20 Ma and 20–12 Ma, respectively, and that the δ13C1 value of the gas generated from the Enping mudstone has a better match with that of the reservoir gas than the gas from the Wenchang mudstone. Results from a 2D basin modeling further indicate that the petroleum from the Enping mudstone migrated upward along the well-developed syn-sedimentary faults in the central area of the sag into the reservoir, but that the petroleum from the Wenchang mudstone migrated laterally first toward the marginal faults of the sag and then migrated upward along the faults into shallow strata. The present results suggest that the trap structure in the central area of the sag is a favorable place for the accumulation of the Enping mudstone-derived petroleum, and that the Wenchang mudstone-derived petroleum would have a contribution to the structures along the deep faults as well as in the uplifted area around the sag.  相似文献   

13.
The eastern main sub-sag (E-MSS) of the Baiyun Sag was the main zone for gas exploration in the deep-water area of the Zhujiang River (Pearl River) Mouth Basin at its early exploration stage, but the main goal of searching gas in this area was broken through by the successful exploration of the W3-2 and H34B volatile oil reservoirs, which provides a new insight for exploration of the Paleogene oil reservoirs in the E-MSS. Nevertheless, it is not clear on the distribution of “gas accumulated in the upper layer, oil accumulated in the lower layer” (Gasupper-Oillower) under the high heat flow, different source-rock beds, multi-stages of oil and gas charge, and multi-fluid phases, and not yet a definite understanding of the genetic relationship and formation mechanism among volatile oil, light oil and condensate gas reservoirs, and the migration and sequential charge model of oil and gas. These puzzles directly lead to the lack of a clear direction for oil exploration and drilling zone in this area. In this work, the PVT fluid phase, the origin of crude oil and condensate, the secondary alteration of oil and gas reservoirs, the evolution sequence of oil and gas formation, the phase state of oil and gas migration, and the configuration of fault activity were analyzed, which established the migration and accumulation model of Gasupper-Oillower co-controlled by source and heat, and fractionation controlled by facies in the E-MSS. Meanwhile, the fractionation evolution model among common black reservoirs, volatile reservoirs, condensate reservoirs and gas reservoirs is discussed, which proposed that the distribution pattern of Gasupper-Oillower in the E-MSS is controlled by the generation attribute of oil and gas from source rocks, the difference of thermal evolution, and the fractionation controlled by phases after mixing the oil and gas. Overall, we suggest that residual oil reservoirs should be found in the lower strata of the discovered gas reservoirs in the oil-source fault and diapir-developed areas, while volatile oil reservoirs should be found in the deeper strata near the sag with no oil-source fault area.  相似文献   

14.
通过对南五凹钻井所揭示的阜宁组进行岩性、地球化学、古生物及地震相等综合分析证实,南五凹阜宁组发育中深湖相泥质烃源岩,且该套烃源岩形成于"广湖咸水"沉积环境。"广湖"即湖盆分布广泛,中深湖相泥质烃源岩在凹陷深洼处和缓坡带均有发育,平面上面积大,纵向上厚度大,具备生成油气的物质基础。"咸水"即烃源岩形成时期湖盆受到了海侵影响,致使水体性质偏咸。南五凹与中国东部古新世—始新世期间曾遭受海侵影响的其他湖盆类似,其形成的咸化烃源岩具有"排烃早"的特征。南五凹阜宁组湖相烃源岩"广湖咸水"沉积特征对于油气勘探具有重要意义。  相似文献   

15.
Stress, fluid and temperature are three of the major factors that impact natural gas migration and accumulation. In order to study the influences of tectonic stress field on natural gas migration and accumulation in low-permeability rocks, we take the Kuqa Depression as an example and analyze the evolution of the structure and tectonic stress field at first. Then we study the influences of tectonic stress field at different tectonic episodes on fractures and fluid potentials through the numerical simulation method on the section across the KL2 gas field. We summarize two aspects of the impact of the tectonic stress field on natural gas migration and accumulation. Firstly, under the effects of the tectonic stress field, the rock dilation increases with the added stress and strain, and when the shear stress of rock exceeds its shear strength, the shear fractures are well developed. On one hand, the faults which communicate with the hydrocarbon source rocks become the main pathways for natural gas migration. On the other hand, these positions where fractures are well developed near faults can become good reservoirs for natural gas accumulation. Secondly, because fluid potentials decrease in these places near the faults where fractures are well developed, natural gas can migrate rapidly along the faults and accumulates. The impact of tectonic stress fields on natural gas migration and accumulation allows for hydrocarbon migration and accumulation in the low-permeability rocks in an active tectonic compressive setting.  相似文献   

16.
在对南黄海盆地海相中、古生界烃源条件和后期保存条件研究的基础上,运用盆地模拟手段并结合前人研究成果,对海相地层烃源岩的排烃史进行了模拟,计算了海相地层油气资源量,从而进行了海相油气资源潜力的分析;同时通过对海相上构造层和下构造层两套含油气系统成藏条件的研究,预测了盆地内海相油气资源的有利运聚区,进而指出南黄海盆地海相油气勘探的有利区,为下一步南黄海盆地的勘探部署提供了依据。研究表明,南黄海盆地海相下构造层和海相上构造层栖霞组、龙潭组—大隆组烃源岩推测为好的烃源岩,海相上构造层青龙组烃源岩推测为中等—好的烃源岩;盆地海相地层具有一定的油气资源潜力,油气资源总量为35.37×10^8t,且在纵向上,油气资源主要来自海相下构造层烃源岩系,在平面上主要分布于南部坳陷;盆地海相地层存在两类油气资源勘探有利区,其中,最有利区位于中部隆起区南部、南部坳陷区和勿南沙隆起区北部。  相似文献   

17.
We describe (1) bedding-parallel veins of fibrous calcite (beef) and (2) thrust detachments, which we believe provide good evidence for fluid overpressure in source rocks for petroleum. Our examples are from the surface or subsurface of the Magallanes-Austral Basin, which lies at the southern tip of South America. There, the best source rocks for petroleum are of Early Cretaceous age. In the central parts of the basin these source rocks have become overmature, but at the eastern edge, onshore and offshore, they are today either immature or in the oil window.In Tierra del Fuego, the foothills of the Andes consist mainly of sedimentary rocks, which have undergone thin-skinned thrusting. In the Vicuña area (Chile), Early Cretaceous source rocks have reached the surface above thrust detachments, which are visible on seismic data and well data. At the surface, we have found calcite beef, containing hydrocarbons (solid and/or fluid), in the Rio Jackson and Vicuña formations, which have reached the wet gas window. In the Rio Gallegos area (Argentina), the source rocks have not reached the surface, but seismic and well data provide good evidence for thin-skinned thrusting above flat-lying detachments in Early Cretaceous source rock, where it is in the early oil window. In contrast, there is little or no deformation where the source rock is still immature. Thus the deformation front coincides with the maturity front. Next to the central parts of the basin, where the source rocks have reached the surface within the Andes proper, they have undergone low-grade metamorphism. Within these source rocks, we have found beef veins, but of quartz, not calcite. To the east, within the foreland basin, seismic and well data provide evidence for a few compressional structures, including thin-skinned detachments in the deeply buried source rock. Finally, in the northern part of the basin (Santa Cruz province, Argentina), where it is shallower, the source rocks have reached the surface in the foothills, above a series of back-thrusts. At Lago San Martín, the source rocks have reached the oil window and they again contain calcite beef.In conclusion, where we have examined Early Cretaceous source rocks at the surface, they contain either calcite beef (if they have reached the late oil window or wet gas window) or quartz beef (if they are overmature). Independent evidence for overpressure, in the form of source-rock detachments, comes from subsurface data, especially at the southern end of the basin, where the source rocks are not overmature and deformation is relatively intense. Thus we argue that hydrocarbon generation has led to overpressure, as a result of chemical compaction and load transfer, or volume changes, or both.  相似文献   

18.
YC21-1 is a gas-bearing structure found within the Yanan sag in the Qiongdongnan Basin, South China Sea. While the structure bears many geological similarities to the nearby YC13-1 gas field, it nevertheless does not contain commercially viable gas volumes. The main reservoirs of the YC21-1 structure contain high overpressures, which is greatly different from those of the YC13-1 structure. The pressure coefficients from drillstem tests, wireline formation tests and mud weights are above 2.1. Based on well-log analysis, illite content and vitrinite reflectance data of mudstones in well YC21-1-2, combining with tectonic and sedimentation characteristics, the timing and causes of overpressure generation are here interpreted. The results indicate the existence of two overpressure segments in the YC21-1 structure. The first overpressure segment resides mainly within the lower and the middle intervals of the Yinggehai Formation, and is interpreted to have been mainly caused by clay diagenesis, while disequilibrium compaction and hydrocarbon generation may also have contributed to overpressure generation. The second overpressure segment comprising the Sanya Formation (Pressure transition zone) and the Lingshui and Yacheng Formations (Hard overpressure zone) is interpreted to owe its presence to kerogen-to-gas cracking. According to petrography, homogenization temperature and salinity of fluid inclusions, two stages of oil-gas charge occurred within the main reservoirs. On the basis of overpressure causes and oil-gas charge history, combining with restored tectonic evolution and fluid inclusion characteristics, a complex accumulation and leakage process in the YC21-1 gas bearing structure has been interpreted. Collective evidence suggests that the first oil charge occurred in the Middle Miocene (circa 16.3–11.2 Ma). Small amount of oil generation and absence of caprocks led to the failure of oil accumulation. Rapid subsidence in the Pliocene and Quaternary gave rise to a sharp increase in geotemperature over a short period of time, leading to prolific gas-generation through pyrolysis and, consequently, overpressure within the main reservoirs (the second overpressure segment). During this period, the second gas charge occurred in the Pliocene and Quaternary (circa 4.5–0.4 Ma). The natural gas migrated in several phases, consisting of free and water soluble phases in a high-pressure environment. Large amounts of free gas are considered to have been consumed due to dissolution within formation water in highly pressured conditions. Water soluble gas could not accumulate in high point of structure. When the pore-fluid pressures in main reservoirs reached the fracture pressure of formation, free gas could leak via opened fractures within cracked caprocks. A repeated fracturing of caprocks may have consumed natural gas stored in formation water and have made water-soluble gas unsaturated. Therefore, the two factors including caprocks fracturing and dissolution of formation water are interpreted to be mainly responsible for the failure of natural gas accumulation in the YC21-1 structure.  相似文献   

19.
南黄海盆地北部坳陷北凹是一个大中型的中、新生代沉积凹陷,经过四十余年的油气勘探,至今仍无商业油气发现,仅发现诸城1-2一个含油气构造.北凹的油气勘探存在诸多问题,其中是否发育优质烃源岩、烃源岩能否生烃、油气是否运移至储层是关系到北凹油气勘探的基础地质问题.在对北凹主要烃源岩分析评价的基础上,采用流体包裹体系统分析技术,对北凹油气成藏特征展开研究.研究认为,北凹存在白垩系泰二段主力烃源岩,为中深湖相,生烃指标较好,分布面积较大,且现今已经成熟并排烃,生烃中心位于ZC-A井区.油气通过断裂发生垂向运移,已充注至始新统戴南组储层.流体包裹体荧光观察结果及显微测温结果均表明戴南组至少存在两期油充注,第一期发生在35 Ma左右,第二期为现今.  相似文献   

20.
The Alpine Foreland Basin is a minor oil and moderate gas province in central Europe. In the Austrian part of the Alpine Foreland Basin, oil and minor thermal gas are thought to be predominantly sourced from Lower Oligocene horizons (Schöneck and Eggerding formations). The source rocks are immature where the oil fields are located and enter the oil window at ca. 4 km depth beneath the Alpine nappes indicating long-distance lateral migration. Most important reservoirs are Upper Cretaceous and Eocene basal sandstones.Stable carbon isotope and biomarker ratios of oils from different reservoirs indicate compositional trends in W-E direction which reflect differences in source, depositional environment (facies), and maturity of potential source rocks. Thermal maturity parameters from oils of different fields are only in the western part consistent with northward displacement of immature oils by subsequently generated oils. In the eastern part of the basin different migration pathways must be assumed. The trend in S/(S + R) isomerisation of ααα-C29 steranes versus the αββ (20R)/ααα (20R) C29 steranes ratio from oil samples can be explained by differences in thermal maturation without involving long-distance migration. The results argue for hydrocarbon migration through highly permeable carrier beds or open faults rather than relatively short migration distances from the source. The lateral distance of oil fields to the position of mature source rocks beneath the Alpine nappes in the south suggests minimum migration distances between less than 20 km and more than 50 km.Biomarker compositions of the oils suggest Oligocene shaly to marly successions (i.e. Schoeneck, Dynow, and Eggerding formations) as potential source rocks, taking into account their immature character. Best matches are obtained between the oils and units a/b (marly shale) and c (black shale) of the “normal” Schöneck Formation, as well as with the so-called “Oberhofen Facies”. Results from open system pyrolysis-gas chromatography of potential source rocks indicate slightly higher sulphur content of the resulting pyrolysate from unit b. The enhanced dibenzothiophene/phenanthrene ratios of oils from the western part of the basin would be consistent with a higher contribution of unit b to hydrocarbon expulsion in this area. Differences in the relative contribution of sedimentary units to oil generation are inherited from thickness variations of respective units in the overthrusted sediments. The observed trend towards lighter δ13C values of hydrocarbon fractions from oil fields in a W-E direction are consistent with lower δ13C values of organic matter in unit c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号