首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用自然资源部古地磁与古构造重建重点实验室新引进的GeoLas HD型193nm ArF准分子激光剥蚀系统和Agilent 7900型四极杆电感耦合等离子质谱仪,成功建立了LA-ICP-MS锆石微区U-Pb定年及微量元素分析测试方法。以标准锆石91500为外标,在32 μm束斑直径、5.0 J/cm2能量密度和5 Hz剥蚀频率等实验条件下,对Ple?ovice、Temora1和Qinghu锆石标样开展了U-Pb定年实验,所测年龄结果与各标样推荐值在误差范围允许的条件下一致,并且Ple?ovice年龄结果在不同时间段内保持稳定。同时对未知年龄样品11-5开展了不同实验室测年结果对比研究,所测结果与中国地质大学(武汉)地质过程与矿产资源国家重点实验室所测年龄在误差允许范围内一致。以NIST SRM 610为外标,29Si为内标,分析测试了锆石91500和NIST SRM 612标准样品的微量元素含量,实验测试结果与推荐值一致。在此基础上探索总结了不同剥蚀斑束直径对U-Pb年龄结果的影响,认为在同样的能量密度和剥蚀频率条件下,16~44 μm的剥蚀直径可以获取可靠的锆石U-Pb年龄,但32~44 μm相比16~24 μm小斑束直径所测得的年龄更加精准。   相似文献   

2.
In this study we evaluated the capability of a 213 nm laser ablation system coupled to a quadrupole-based ICP-MS in delivering accurate and precise U-Pb ages on zircons and monazites. Four zircon samples ( ca. 50 Ma to ca. 600 Ma) and four monazite samples ( ca. 30 Ma to ca. 1390 Ma) of known ages were analysed utilising laser ablation pits with diameters of 20 μm and 60 μm. Instrument mass bias and laser induced time-dependent elemental fractionation were corrected for by calibration against a matrix-matched reference material. Tera-Wasserburg plots of the calculated U-Pb data were employed to assess, and correct for, common Pb contributions. The results indicated that the LA-ICP-MS technique employed in this study allowed precise and accurate U-Pb isotope dating of zircon and monazite on sample areas 20 μm in diameter. At this spot size, the precisions achieved for single spot 206Pb/238U ages, were better than 5% (2s) for monazites and zircons with ages down to 30 Ma and 50 Ma, respectively. The precisions reported are comparable to those generally reported in SIMS and LA-MC-ICP-MS U-Pb isotope determinations.  相似文献   

3.
Ilmenite (FeTiO3) is a common accessory mineral and has been used as a powerful petrogenetic indicator in many geological settings. Elemental fractionation and matrix effects in ilmenite (CRN63E‐K) and silicate glass (NIST SRM 610) were investigated using 193 nm ArF excimer nanosecond (ns) laser and 257 nm femtosecond (fs) laser ablation systems coupled to an inductively coupled plasma‐mass spectrometer. The concentration‐normalised 57Fe and 49Ti responses in ilmenite were higher than those in NIST SRM 610 by a factor of 1.8 using fs‐LA. Compared with the 193 nm excimer laser, smaller elemental fractionation was observed using the 257 nm fs laser. When using 193 nm excimer laser ablation, the selected range of the laser energy density had a significant effect on the elemental fractionation in ilmenite. Scanning electron microscopy images of ablation craters and the morphologies of the deposited aerosol materials showed more melting effects and an enlarged particle deposition area around the ablation site of the ns‐LA‐generated crater when compared with those using fs‐LA. The ejected material around the ns crater predominantly consisted of large droplets of resolidified molten material; however, the ejected material around the fs crater consisted of agglomerates of fine particles with ‘rough' shapes. These observations are a result of the different ablation mechanisms for ns‐ and fs‐LAs. Non‐matrix‐matched calibration was applied for the analysis of ilmenite samples using NIST SRM 610 as a reference material for both 193 nm excimer LA‐ICP‐MS and fs‐LA‐ICP‐MS. Similar analytical results for most elements in ilmenite samples were obtained using both 193 nm excimer LA‐ICP‐MS at a high laser energy density of 12.7 J cm?2 and fs‐LA‐ICP‐MS.  相似文献   

4.
激光剥蚀-电感耦合等离子体质谱(LA-ICP-MS)技术是目前最常用的锆石U-Pb同位素年龄测定方法之一。该方法能够对单颗粒锆石内部年龄差异实现快速、准确的原位微区分析。文章总结了近年来激光剥蚀系统、ICP-MS技术以及LA-ICP-MS锆石U-Pb定年方法、相关应用实例研究的进展和现状。系统评述了激光发生器,剥蚀池,剥蚀参数(激光波长、脉冲宽度、剥蚀气体、孔径大小)以及四极杆和扇形磁场质谱仪对锆石U-Pb年龄数据的精度和准确度的影响。详细介绍了基于锆石年龄标准样品、标准溶液及其他标样的外标定量校准方法,单个U/Pb比值计算方法,普通铅校正方法以及同位素年龄与微量元素同时测定的方法。目前LA-ICP-MS锆石U-Pb定年技术主要应用于碎屑锆石的沉积物源区示踪和岩浆事件的年代学约束研究。  相似文献   

5.
在秦皇岛市柳江地区出露最古老的沉积岩为青白口系长龙山组石英砂岩,该石英砂岩与下伏的新太古代钾质花岗岩呈不整合接触。LA-ICPMS锆石U-Pb测年显示该区长龙山组石英砂岩中碎屑锆石年龄分布在2635~2487Ma之间,其物质源区较单一。与北京—蓟县标准剖面相比,本研究区在较长的一段地质时期为古陆壳的剥蚀区,直至新元古代早期,又沉积了长龙山组滨海相碎屑岩。碎屑锆石Hf同位素组成显示,它们的源区物质虽然有不同程度的壳幔混合,但主要来自于古老的地壳物质再循环,暗示在~2.5Ga其碎屑物质源区的地壳已经达到一定的规模和厚度。  相似文献   

6.
砂岩型铀矿微区原位U-Pb同位素定年技术方法研究   总被引:2,自引:2,他引:0  
铀矿物定年一直是成矿年代学中的难点,随着微区原位U-Pb同位素定年技术的发展,可以直接针对矿石矿物(铀矿物)进行同位素定年;但是其中的砂岩型铀矿由于其存在状态复杂,在原位定年中剥蚀要求高,也缺乏合适的外部校正标准物质,所以定年准确度有待提高。本文研究了两种微区原位U-Pb同位素测年的方法,对砂岩型铀矿定年进行了尝试,试图解决铀矿测年中的无基体匹配问题并提高砂岩型铀矿定年水平。一是建立了一种激光剥蚀多接收电感耦合等离子体质谱仪联合电子探针进行微区原位U-Pb同位素测年的技术(LA-MC-ICP-MS&EMPA)。通过优化实验方法,对秦岭陈家庄花岗岩型铀矿进行了测试,获得与同位素稀释热电离质谱法(ID-TIMS)一致的年龄结果,证明了微区原位U-Pb同位素测年无基体匹配标准物质分析的可行性;并利用此法获得鄂尔多斯盆地红庆河和塔然高勒砂岩型铀矿的微区原位U-Pb同位素年龄信息。二是尝试了利用飞秒激光剥蚀多接收电感耦合等离子体质谱法(fsLA-MC-ICP-MS)对红庆河和宁夏宁东砂岩型铀矿样品进行微区原位U-Pb同位素定年,并获得了微区原位U-Pb同位素年龄,表明飞秒激光剥蚀技术在砂岩型铀矿定年中有很好的应用前景。本文提出,比较单一且年龄偏老的单矿物样品可以选择LA-MC-ICP-MS&EMPA联合法进行分析,需要高空间分辨率的样品建议使用fsLA-MC-ICP-MS法。  相似文献   

7.
Columbite-tantalite LA-ICP-MS U-Pb dating is a fast and useful method to determine the age of rare-metal deposits and fingerprint the provenance of columbite-tantalite ore concentrates. Accurate LA-ICP-MS U-Pb dating requires matrix-matched reference materials. We analysed three columbite-tantalite samples (SN3, HND and RL2) from China using ID-TIMS and LA-ICP-MS to assess their potential as reference materials for in situ U-Pb dating. Coltan 139 and these three columbite-tantalite samples with variable compositions yielded internally consistent LA-ICP-MS U-Pb ages when using each other for calibration and the weighted mean 206Pb/238U ages are comparable to respective ID-TIMS ages. Composition-dependent U-Pb fractionation seems to be insignificant under the LA-ICP-MS conditions used. Sample SN3 has a low percentage of heterogeneity for 206Pb/238U ages (4%) with low common Pb contributions (f206 < 1%) and shows a good potential in calibrating unknown samples as primary reference material for LA-ICP-MS analysis. Samples RL2 and HND have altered sections characterised by high LREE contents, flat LREE patterns and old 206Pb/238U apparent ages, and are not suited as reference materials. The low 207Pb/206Pb intercepts for samples RL2 and HND lack geological meaning but provide strong evidence that the disturbed U-Pb systematics with anomalous apparent 206Pb/238U ages is a secondary feature.  相似文献   

8.
Rapid Pb-Pb dating of natural rutile crystals by laser ablation multiple-collector inductively coupled plasma mass spectrometry (LA-MC-ICPMS) is investigated as a tool for constraining geological temperature-time histories. LA-MC-ICPMS was used to analyse Pb isotopes in rutile from granulite-facies rocks from the Reynolds Range, Northern Territory, Australia. The resultant ages were compared with previous U-Pb zircon and monazite age determinations and new mica (muscovite, phlogopite, and biotite) Rb-Sr ages from the same metamorphic terrane. Rutile crystals ranging in size from 3.5 to 0.05 mm with ?20 ppm Pb were ablated with a 300-25 μm diameter laser beam. Crystals larger than 0.5 mm yielded sufficiently precise 206Pb/204Pb and 207Pb/204Pb ratios to correct for the presence of common Pb, and individual rutile crystals often exhibited sufficient Pb isotopic heterogeneity to allow isochron calculations to be performed on replicate analyses of a single crystal. The mean of 12 isochron ages is 1544 ± 8 Ma (2 SD), with isochron ages for single crystals having uncertainties as low as ±1.3 Myr (2 SD). The 207Pb-206Pb ages calculated without correction for common Pb are typically <0.5% higher than the common-Pb-corrected isochron ages reflecting the very minor amounts of common Pb present in the rutile. The LA-MC-ICPMS method described samples only the outer 0.1-0.2 mm of the rutile crystals, resulting in a grain size-independent apparent closure temperature (Tc) for Pb diffusion in rutile that is less than the Tc of monazite ?0.1 mm in diameter, but significantly higher than the Rb-Sr system in muscovite (550 °C), phlogopite (435 °C) and biotite (400 °C). Even small rutile crystals are extremely resistant to isotopic resetting. For the established slow cooling rate of ca. 3 °C/Myr, the Tc for Pb diffusion in the analysed rutile is ca. 630 °C. This is in excellent agreement with recent experimental results that indicate that rutile has a higher Tc than previously thought (ca. 600-640 °C for rutile 0.1-0.2 mm diameter cooled at 3 °C/Myr; near 600 °C [Cherniak D.J., 2000. Pb diffusion in rutile. Contrib. Mineral. Petrol. 139, 198-207], versus 400 °C [Mezger, K., Hanson G.N., Bohlen S.R., 1989a. High precision U-Pb ages of metamorphic rutile: applications to the cooling history of high-grade terranes. Earth Planet. Sci. Lett. 96, 106-118.] for 1 °C/Myr), and with current Tc estimates for monazite and other high temperature geochronometers, which have been revised upwards in recent years. The new rutile ages, together with the other geochronological data from the region, support the interpretation that the Reynolds Range underwent prolonged slow cooling on a conductive geotherm, under nearly steady-state conditions. Slow cooling at ca. 3 °C/Myr persisted for at least 40 Myr followed the peak of high-T/low-P metamorphism to granulite-facies conditions, and probably continued at ca. 2-3 °C/Myr for ca. 200 Myr overall.  相似文献   

9.
《Chemical Geology》2002,182(2-4):605-618
New developments in U–Pb dating of zircons by laser ablation (LA) ICPMS are described and, for the first time, a direct comparison of detrital zircons dated by LA ICPMS and SIMS methods is presented. True real-time mass bias correction is made by aspirating a Tl/U tracer at the same time as laser ablation. The method is similar to that described in Horn et al. (2000), except that enriched 233U rather than 235U is used in the tracer solution. Correction for laser-induced Pb/U elemental fractionation is based on a mathematical treatment of time-resolved data that is independent of laser ablation characteristics and does not require external standardisation. Internal corrections for mass bias and elemental fractionation eliminate the effects of variable sample matrix on isotopic ratios and improve the accuracy of U–Pb dating by laser ablation ICPMS. With the proper error propagation, the precision of U–Pb age determinations is only slightly worse than SIMS-based ion probe dating. However, LA ICPMS is capable of much more rapid analysis of the large number of zircons required for sediment provenance studies. There is excellent agreement between concordant laser ablation ICPMS and SIMS analyses of detrital zircons extracted from lower Silurian metasandstone from the Ulven Group (Skarfjell Formation) in the west Norwegian Caledonian nappes. Both LA ICPMS and SIMS U–Pb zircon ages indicate that sedimentary detritus of the Ulven Group was supplied from a terrain containing zircons of Archean, Proterozoic and early Ordovician age.  相似文献   

10.
J.L. Paquette  M. Tiepolo   《Chemical Geology》2007,240(3-4):222-237
Monazite [(LREE)PO4], a common accessory mineral in magmatic and metamorphic rocks, is complementary to zircon in U–Th–Pb geochronology. Because the mineral can record successive growth phases it is useful for unravelling complex geological histories. A high spatial resolution is required to identify contrasted age domains that may occur at the crystal-scale. Bulk mineral techniques such as ID-TIMS, applied to single monazite grains recording multiple overgrowths or isotope resetting can result in partly scattered discordant analytical points that produce inaccurate intercept ages. Laser ablation (LA)-ICPMS has been demonstrated to be a useful technique for U–Th–Pb dating of zircons, and this study tests its analytical capabilities for dating monazite. A sector field high resolution ICPMS coupled with a 193 nm ArF excimer laser ablation microprobe is capable of achieving a high spatial resolution and producing stable and reliable isotope measurements.

The U–Th–Pb systematic was applied to monazite grains from several samples: a lower Palaeozoic lens from high-grade terrains in Southern Madagascar, Neogene hydrothermal crystals from the Western Alps, a Palaeoproterozoic very high temperature granulite from central Madagascar and a Variscan leucogranite from Spain, directly on a polished thin section. The major aim was to compare and/or reproduce TIMS and EMP ages of monazite from a variety of settings and ages. The three independent 206Pb/238U, 207Pb/235U and 208Pb/232Th ratios and ages were calculated. Isotope fractionation effects (mass bias, laser induced fractionation) were corrected using a chemically homogeneous and U–Pb concordant monazite as external standard.

This study demonstrates that excimer laser ablation (ELA)-ICPMS allows U–Th–Pb dating of monazite with a high level of repeatability, accuracy and precision as well as rapidity of analysis. A spatial resolution almost comparable to that of EMP in terms of crater width (5 μm) produced precise 208Pb/232Th, 206Pb/238U and 207Pb/235U ratios for dating Palaeozoic to Precambrian monazites. The advantages of (ELA)-ICPMS isotope dating are precision, accuracy and the ability to detect discordance. In the case of late Miocene hydrothermal monazites from the Alps, a larger spot size of 25 μm diameter is required, and precise and accurate ages were obtained only for 208Pb/232Th systematics. Results from the Variscan granite show that in situ U–Th–Pb dating of monazites with (ELA)-ICPMS is possible using a 5 μm spot directly on thin sections, so that age data can be placed in a textural context.  相似文献   


11.
本文以稀土矿床中的常见副矿物氟碳铈矿为研究对象,通过优化实验条件和仪器参数,分别采用激光剥蚀多接收电感耦合等离子体质谱法(LA-MC-ICP-MS)和同位素稀释热电离质谱法(ID-TIMS)对氟碳铈矿样品SAM进行U-Pb定年技术研究,并将此两种方法得到的结果进行对比。LA-MC-ICP-MS得到的U-Pb年龄为(409±18)Ma(N=27,MSWD=4.5),ID-TIMS得到的206Pb/238U U-Pb年龄为(407.8±3.3)Ma(N=3,MSWD=0.029),两种方法得到的U-Pb年龄结果在误差范围内一致。通过比较两种方法的实验流程和结果,总结了各自的优缺点,为氟碳铈矿U-Pb定年方法选择提供了参考依据。  相似文献   

12.
This article proposes a methodology to analyse the composition of very small carbonate samples such as larval fish otoliths. The chemical composition of otoliths, which are carbonate structures in the inner ear, is often used to explore population dynamics in fishes. Recent advances in laser ablation‐inductively coupled plasma‐mass spectrometry have suggested its potential application to this field. In this study, analyses were performed using a 193 nm ArF Resonetics LA system, coupled to an Agilent 7700X‐ICP‐MS, with the following ablation parameters: a beam diameter of 5 μm, energy of 3 mJ, 2.7 J cm?2, laser repetition rate of 10 Hz and translation speed of 2.5 μm s?1. NIST SRM 610 glass was used as the primary calibration material. Performing this protocol, characterisation of a USGS GP‐4 reference material was achieved with suitable precision and accuracy, but the USGS MACS‐3 reference material appeared more heterogeneous under the ablation conditions tested. Calibration was performed using two different beam diameters (5 and 11 μm). Capelin (Mallotus villosus) otoliths measuring between 10 and 20 μm in diameter were tested. Even though a smaller beam diameter and lower energy were used compared with those normally employed to analyse larger otoliths, the method was successful.  相似文献   

13.
A new natural rutile reference material is presented, suitable for U‐Pb dating and Zr‐in‐rutile thermometry by microbeam methods. U‐Pb dating of rutile R632 using laser ablation ICP‐MS with both magnetic sector field and quadrupole instruments as well as isotope dilution‐thermal ionisation mass spectrometry yielded a concordia age of 496 ± 2 Ma. The high U content (> 300 μg g?1) enabled measurement of high‐precision U‐Pb ages despite its young age. The sample was found to have a Zr content of 4294 ± 196 μg g?1, which makes it an excellent complementary reference material for Zr‐in‐rutile thermometry. Individual rutile grains have homogeneous compositions of a number of other trace elements including V, Cr, Fe, Nb, Mo, Sn, Sb, Hf, Ta and W. This newly characterised material significantly expands the range of available rutile reference materials relevant for age and temperature determinations.  相似文献   

14.
LA-MC-ICP-MS独居石微区原位U-Pb同位素年龄测定   总被引:7,自引:0,他引:7  
独居石富含U、Th, 同时具有较低的初始普通Pb含量, 是U-Pb和Th-Pb同位素定年的理想对象。由于普遍存在于多种岩石中, 独居石的U-Th-Pb定年具有广阔的应用前景。本文报道利用193 nm ArF准分子激光剥蚀系统和NEPUNE多接收器电感耦合等离子体质谱仪, 对独居石进行微区原位U-Pb同位素年龄测定的新方法。运用这一新方法对独居石样品AL01、BL02和CL03进行微区原位U-Pb同位素年龄测定, 获得AL01和BL02号样品的206Pb/238U年龄加权平均值分别为(288.3±1.1) Ma (n=19)和(446.8±2.3) Ma (n=41); CL03号样品的U-Pb等时线年龄为(396.8±8.8) Ma (n=55), 取得了令人满意的结果。  相似文献   

15.
To evaluate in situ Pb dating by laser ablation multiple-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS), we analysed apatite, sphene, and monazite from Paleoproterozoic metamorphic rocks from West Greenland. Pb isotope ratios were also determined in the National Institute of Standards and Technology (NIST) 610 glass standard and were corrected for mass fractionation by reference to the measured thallium isotope ratio. The NIST 610 glass was used to monitor Pb isotope mass fractionation in the low Tl/Pb accessory minerals. Replicate analyses of the glass (1 to 2 min) yielded ratios with an external reproducibility comparable to conventional analyses of standard reference material 981 by thermal ionisation mass spectrometry (TIMS). Mineral grains were generally analysed with a 100-μm laser beam, although some monazite crystals were analysed at smaller spot sizes (10 and 25 μm). The common Pb isotope ratios required for age calculations were either measured on coexisting plagioclase by LA-MC-ICP-MS or could be ignored, as individual crystals exhibit sufficient Pb isotopic heterogeneity to perform isochron calculations on replicate analyses of single crystals. Mean mineral ages with the 204Pb ion beam measured in the multiplier were as follows: apatite, 1715 ± 23 m.y.; sphene, 1789 ± 11 m.y.; and monazite, 1783 to 1888 m.y., with relative uncertainties on individual monazite ages of <0.2% but highly reproducible age determinations on single monazite crystals (?1%). Isochron ages calculated from several mineral analyses without assumption of common Pb also yield precise age determinations. Apatite and monazite Pb ages determined by in situ Pb isotope analysis are identical to those determined by conventional TIMS analysis of bulk mineral separates, and the analytical uncertainties of these short laser analyses with no prior mechanical or chemical separation are comparable to those obtained by TIMS. Detailed examination of the sphene in situ age data does, however, show a small discrepancy between the LA-MC-ICP-MS and TIMS ages (∼1% younger). High-resolution mass scans of the sphene during ablation clearly showed several small and as yet unidentified isobaric interferences that overlap with the 207Pb peak at the resolution conditions for measurement of isotope ratios. These might account for the age discrepancy between the LA-MC-ICP-MS and TIMS sphene ages. LA-MC-ICP-MS is a rapid, accurate, and precise method for in situ determination of Pb isotope ratios that can be used for geochronological studies in a manner similar to an ion microprobe, albeit currently at a somewhat degraded spatial resolution. Further modifications to the LA-MC-ICP-MS system, such as improved sensitivity, ion transmission, and LA methodology, may lead to this type of instrument becoming the method of choice for many types of in situ Pb isotope dating.  相似文献   

16.
本文利用Coherent GeoLasHD型193 nm ArF准分子激光剥蚀系统和Agilent 7900型四极杆电感耦合等离子体质谱仪, 建立了LA-ICP-MS石榴子石U-Pb定年方法。利用该方法, 对采自冀北地区晚古生代镁铁质-超镁铁质混杂岩体中的异剥钙榴岩和闽西南马坑式铁矿含矿石榴子石矽卡岩这两种岩石中的石榴子石开展U-Pb定年研究。在冀北地区晚古生代镁铁质-超镁铁质混杂岩体中的异剥钙榴岩中, 获得石榴子石下交点年龄为(387.6±5.4) Ma (D496-1, MSWD=1.1, N=30)和(409.3±7.8) Ma (D493-1, MSWD=2.0, N=60), 在马坑铁矿石榴子石矽卡岩中, 获得石榴子石下交点年龄为(128.6±2.1) Ma (ZK7921-b24, MSWD=2.0, N=60)和(128.7±3.2) Ma (ZK7922-b1, 用锆石91500校正, MSWD=1.8, N=42); 在潘田铁矿的石榴子石矽卡岩中, 获得石榴子石的下交点年龄为(128.7±1.7) Ma (PT-b1, MSWD=1.7, N=30)和(132.1±1.3) Ma (PT-b1样品, 用锆石91500校正, MSWD=1.6, N=30)(除了指明使用锆石标样91500校正石榴子石未知样品外, 其他皆用石榴子石标样Willsboro校正石榴子石未知样品的U/Pb分馏)。以上结果与Sm-Nd等时线年龄及前人报道的锆石U-Pb年龄在误差范围内一致。对马坑式铁矿石榴子石矽卡岩U-Pb定年结果表明, 利用石榴子石标样Willsboro和锆石标样91500作为外标样校正同一样品中石榴子石U/Pb同位素分馏, 获得的下交点年龄一致, 206Pb/238U年龄的加权平均值也一致, 说明石榴子石与锆石之间的基体效应较小, 在缺乏石榴子石标样时, 可用锆石标样91500代替。在上述研究基础上分析了石榴子石U-Pb定年方法在矽卡岩型矿床成矿时代研究及异剥钙榴岩年代学研究中的应用潜力, 认为石榴子石U-Pb定年方法在矽卡岩型矿床及异剥钙榴岩年代学研究中具有巨大的应用推广前景, 具有重要的理论指导和实际应用意义。  相似文献   

17.
U-Pb zircon and rutile multigrain ages and 207Pb/206Pb zircon evaporation ages are reported from high-pressure felsic and metapelitic granulites from northern Bohemia, Czech Republic. The granulites, in contrast to those from other occurrences in the Bohemian Massif, do not show evidence of successive HT/MPLP overprints. Multigrain size fractions of nearly spherical, multifaceted, metamorphic zircons from three samples are slightly discordant and yield a U-Pb Concordia intercept age of 348 ± 10 Ma, whereas single zircon evaporation of two samples resulted in 207Pb/206Pb ages of 339 ± 1.5 and 339 ± 1.4 Ma, respectively. A rutile fraction from one sample has a U-Pb Concordia intercept age of 346 ± 14 Ma. All ages are identical, within error, and a mean age of 342 ± 5 Ma was adopted to reflect the peak of HP metamorphism. Because rutile has a lower closing temperature for the U-Pb isotopic system than zircon, the results and the P-T data imply rapid uplift and cooling after peak metamorphism. The above age is identical to ages for high-grade metamorphism reported from the southern Bohemian Massif and the Granulite Massif in Saxony. It can be speculated that all these granulites were part of the same lower crustal unit in early Carboniferous, being separated later due to crustal stacking and subsequent late Variscan orogenic collapse.  相似文献   

18.
Gem quality andradite-rich garnet (IUC-1), obtained from the Miocene trachyte dome near Ankara city (Turkey), has been identified as a potential natural secondary reference material for U-Pb dating. In this study, U-Pb dating was performed in five different laboratories using isotope dilution TIMS and laser ablation ICP-MS to determine the homogeneity of euhedral garnet crystals. The U-Pb ID-TIMS data for IUC-1 yielded 207Pb/235U and 206Pb/238U ages of 20.9 ± 0.4 and 20.6 ± 0.8 Ma respectively, and these values are consistent with U-Pb LA-ICP-MS analyses, in which different garnet crystals yielded ages of 20.8 ± 0.1, 20.7 ± 0.1, 20.7 ± 0.2 and 20.2 ± 0.1 Ma. An andradite (IUC-2) from the Serçeören wollastonite skarn (Turkey) can be used as a secondary reference material provided detailed imaging of the crystals is undertaken. ID-TIMS data yielded 207Pb/235U and 206Pb/238U ages of 20.4 ± 0.4 and 20.9 ± 1.0 Ma respectively, and yielded U-Pb ages on different grains of 20.5 ± 0.1, 20.7 ± 1.0, 20.8 ± 1.7 and 20.9 ± 1.6 Ma. The assigned weighted mean age of IUC-1 (20.4 ± 0.5 Ma, 2s) is proposed as a 2023 reference value. IUC-1 garnet is expected to contribute significantly to rapidly developing garnet geochronology in the near future.  相似文献   

19.
该文基于中国地质调查局天津地质调查中心研究团队近年来的研究工作及对相关文献的综合研究,对砂岩型铀矿中一些重要铀矿物如沥青铀矿(晶质铀矿)、铀石、钛铀矿等的微区原位成因矿物学和U-Pb年代学研究现状进行了深入分析,提出新的研究方向,即通过采用二次离子质谱法、激光剥蚀多接收器电感耦合等离子体质谱法与电子探针化学分析法和同位素稀释热电离质谱法相结合的方式,综合研究砂岩型铀矿中沥青铀矿(晶质铀矿)、铀石、钛铀矿等铀矿物和金红石、磷灰石等含铀矿物的微区原位成因矿物学和U-Pb年代学,探索砂岩型铀矿中矿石矿物的U-Pb同位素测年新方法,获取更精确的砂岩型铀矿成岩成矿的年代学信息。这对于全面准确地认识砂岩型铀矿床的生成和演化历史,建立砂岩型铀矿床的成矿新理论具有十分重要的科学意义。铀矿物测年新方法在砂岩型铀矿床的地质勘探中也有广阔的应用前景。  相似文献   

20.
Advances in the quantification of rare earth elements (REE) at the micrometric scale in uranium oxides by laser ablation‐inductively coupled plasma‐mass spectrometry are described. The determination of the best analytical conditions was tested using a uranium oxide (Mistamisk) the concentrations of REE in which were previously estimated by other techniques. Comparison between the use of U or Pb as an internal standard clearly showed a diameter‐dependent fractionation effect related to Pb at small crater diameters (16 and 24 μm), which was not found for U. The quantification of REE contents in uranium oxide samples using both matrix‐matched (uranium oxide) and non‐matrix‐matched (NIST SRM 610 certified glass) external calibrators displayed no significant difference, demonstrating a limited matrix effect for REE determination by LA‐ICP‐MS. Moreover, no major interferences on REEs were detected. The proposed methodology (NIST SRM 610 as external calibrator and U as internal standard) was applied to samples from uranium deposits from around the world. The results showed that LA‐ICP‐MS is a suitable analytical technique to determine REE down to the μg g?1 level in uranium oxides at the micrometre scale and that this technique can provide significant insights into uranium metallogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号