首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 562 毫秒
1.
近来利用微生物原位修复受石油污染的含水层已被广泛关注,然而地下水中含有许多离子成分,这些无机离子对微生物降解有机污染物的影响机制还不清楚。本文采用批量实验研究了淄博齐鲁石化污染地下水中常见的7种无机离子(NO3-、PO4 3-、SO4 2-、Cl-、Ca2+、Mg2+、Fe3+)对微生物生长及生物降解苯的影响规律,利用高通量测序技术进一步探究了苯降解菌的种群特征。结果表明:7种离子都存在一个最适宜微生物生长的离子浓度,低于或超过该浓度苯的去除率明显降低,其中NO3-、SO42-、Fe3+最适宜浓度为0. 4mmol/L,PO4 3-、Cl-、Ca2+、Mg2+最适宜浓度分别为0. 2mmol/L、0. 1mol/L、2. 5mmol/L、2mmol/L;从微生物含量及其变化幅度来看,地下水环境中的NO3-离子对微生物的生长及苯的去除影响最显著,其他离子的影响则较小,但微生物对Cl-的耐受浓度较高。高通量测序结果显示驯化出的苯降解菌主要属于脱硫弧菌属(Desulfovibrio sp)、脱硫芽胞弯曲菌属(Desulfosporosinus sp)、不动杆菌属(Acinetobacter sp)和假单胞菌属(Pseudomonas sp)中的菌株。研究结果可为石油污染地下水的原位生物修复提供一定的科学依据。  相似文献   

2.
在18℃的低温条件下,从不同菌源中富集、驯化、筛选得到两株高效苯酚降解菌株A4和B14,在转速为150r·min-1、温度为18℃、pH为6~9的条件下,两株菌对苯酚起始浓度为300mg/L的苯酚降解率分别为90.43%和99.02%.在中性条件下,对苯酚起始浓度小于300mg/L的苯酚降解率均保持在98%以上.经形态特征观察及生理生化实验初步鉴定,结果显示,A4为微球菌属,B14为假单胞菌属.对菌株的降解特性研究表明两株菌最适生长的pH值为6~9,A4菌株比B14菌株具有更广泛的pH适应性;菌株对苯酚的降解率随着生物投加量的增加而升高,在投菌量大于5mL·100 mL-1时,苯酚降解率接近100%;两株菌在通气状况良好的条件下,对苯酚的降解率及其生长情况明显优于缺氧条件.通过对比实验,A4菌株对外界环境的适应性明显强于B14,而后者的生长速率明显高于前者.  相似文献   

3.
从长期受硝基苯严重污染场地中筛选出一株以硝基苯为唯一碳源和氮源的降解菌,命名为ZG。对ZG 进行了16S rDNA 和nbzA 基因克隆与序列分析,并研究了该菌的降解特性。结果表明,ZG 菌为革兰氏阴性细菌,初步鉴定该菌株为pseudomonas putida。ZG 菌含有nbzA 基因,并且该基因在质粒上,说明该菌降解硝基苯是通过半还原途径。ZG 菌对硝基苯浓度、培养温度、pH 值等外界环境因素具有一定的适用范围,但随着硝基苯浓度升高,硝基苯的降解速率和降解率表现出下降的趋势。在最佳降解条件下,即硝基苯浓度300 mg /L、温度20℃、pH 为7,ZG 菌对硝基苯的降解率达到99. 98%。 ZG 菌可适用于不同的硝基苯污染场地。  相似文献   

4.
阿特拉津低温降解菌的筛选及降解机理研究   总被引:1,自引:1,他引:0  
以阿特拉津为唯一氮源, 在低温条件下(10℃),从吉林市污水处理厂的活性污泥中分离、筛选出1株能够高效降解地下水中阿特拉津的菌株W4.通过16S rDNA碱基测序和比对,初步确定该菌为假单胞菌属;通过室内降解条件优化,确定W4的最佳降解条件:初始pH范围为7~9,最佳碳源为蔗糖和乳糖,最佳碳源加入量为0.4 g/L.在最佳降解条件下,W4对初始质量浓度为34 mg/L、22 mg/L和10 mg/L的阿特拉津的生物降解反应符合零级反应动力学方程,对初始质量浓度为5 mg/L的阿特拉津的生物降解反应符合一级反应动力学方程.GC/MS分析结果显示,菌株W4降解阿特拉津遵循氯水解途径,代谢产物为2-羟基-4-乙胺基-6-异丙胺基-1,3,5-三嗪.  相似文献   

5.
从青藏高原班戈桥地区土壤中分离到一株能利用原油为碳源生长的细菌(BGQ-6). 通过16S rRNA基因序列比对及Biolog GEN Ⅲ鉴定板确定该菌株为Rhodococcus qingshengii. 将生长至对数期的菌株接入MM培养基, 10 ℃、150 rpm条件下培养15 d后, 通过GC法检测到该菌对原油的总降解率为74.14%, 且对直链烷烃、支链烷烃、环烷烃和芳香烃等60种烃类有较高的降解率. 通过特异性基因扩增检测到该菌株基因组中具有4个alkB和1个almA两种烷烃羟化酶基因.  相似文献   

6.
枯草芽孢杆菌(Bacillus subtilis)HBS-4是从油田中分离出来的一株能高效降解有机物萘的菌株。当萘的初始浓度为100mg时,该菌株在pH为8.0,温度为40℃下具有较好的降解效果,作用69h能降解50%以上的萘。通过HBS-4菌株降解萘的动力学研究,在Williams结构模型的基础上建立了HBS-4作用萘的四组分动力学模型,并用此模型解释菌株HBS-4在降解萘的过程中,葡萄糖含量、菌液浓度、pH、Eh随时间的变化特征。  相似文献   

7.
降解多氯联苯嗜盐菌的分离和降解特性   总被引:4,自引:0,他引:4  
从深海底泥中提取出生长盐度在15%~20%的十二株嗜盐菌,对其进行分离、纯化和富集,进行了形态观察和革兰氏染色,最终选取了一株生长状态良好的菌株进行降解多氯联苯的影响实验。通过改变菌株降解PCBs的条件——pH值、接种量以及多氯联苯的浓度,得到降解多氯联苯的最适条件:在30℃下此菌株降解的最适pH值为7~8,最佳接种量为5 mL,多氯联苯的浓度为3 mg/L以下时,72 h的降解率可以达到90%以上。  相似文献   

8.
王蕊  刘菲  秦莉红  陈鸿汉 《地球科学》2012,37(2):307-312
利用厌氧微生物降解法, 以醋酸根为碳源, 考察了高氯酸盐在不同浓度的硝酸盐还原环境下的生物降解能力, 分析硝酸盐对高氯酸盐生物降解的影响.实验结果表明, 10mg/L的高氯酸盐在不同浓度硝酸盐环境下均可被富集培养物降解.20mg/L硝酸盐还原环境中, 高氯酸盐的降解未受到抑制; 在碳源充足的条件下, 100mg/L、200mg/L及500mg/L的硝酸盐环境中, 高氯酸盐降解出现滞后期, 分别为7d、13d和38d.反应初期, 高氯酸盐降解滞后是由于硝酸盐为优先级别较高的电子受体, 更易于被微生物利用.随着硝酸盐快速降解和亚硝酸盐的累积, 高氯酸盐降解停滞可能是由于电子竞争和较高浓度的亚硝酸盐对高氯酸盐降解菌酶活性产生毒性抑制这两方面共同作用的结果.   相似文献   

9.
从制革废水中筛选到1株既能还原Cr(Ⅵ)又能降解苯酚的不动杆菌属(Acinetobacter)菌株WX-19。菌株降解苯酚和还原Cr(Ⅵ)的最适温度为30℃,最适pH为7.0~8.0。0.2~0.5 mol/L NO3-、SO42-和Cl-能够促进WX-19的生长及其对Cr(Ⅵ)的还原。利用PCR、克隆和基因测序的方法从WX-19中检测到苯酚羟化酶基因(GenBank No.JF730215),与Pseudomonas sp.DHS3Y的苯酚羟化酶基因的同源性为88.5%。在含5 mg/LCr(Ⅵ)的基础盐培养基中,菌株WX-19可以利用苯酚为唯一碳源生长,并还原Cr(Ⅵ);在含有葡萄糖的基础盐培养基中,添加苯酚有利于菌株WX-19的生长和Cr(Ⅵ)还原。  相似文献   

10.
通过对取自MBR膜生物反应器中的活性污泥加入菲进行富集培养、驯化,分离、纯化出一株能以菲为唯一碳源和能源的短杆状革兰氏阴性菌J-1,细菌长2~5μm,宽1~3μm;研究了初始底物浓度、温度、pH对菌株J-1降解菲的影响,探讨了菌株J-1胞内酶对菲降解的底物抑制动力学。试验表明:菌株J-1在48h内能将不同浓度菲的水溶液中的菲完全降解;菲浓度增加,达到完全降解的时间延长。温度对细菌的降解能力影响较大,菌株J-1对菲降解的最佳温度为28℃。1.15mg·L-1的菲,28℃时48h内能完全降解,而相同时间内10℃时的降解率仅为36.65%。菌株J-1对pH的波动具有一定的适应性,pH在一定范围内(6.0~8.4)变化对菲降解的影响不大,降解反应的最佳pH为7.2。菌株J-1对菲的降解符合一级动力学反应方程。较高的底物浓度对酶促降解反应具有抑制作用,酶促反应的最大速率常数vm=1.17mg·L-1·h-1,米氏常数Km=61.70mg·L-1;底物抑制常数kS=49.60mg·L-1;最佳底物浓度[S]opt=55.32mg·L-1。  相似文献   

11.
为了探究热活化过硫酸盐(PS)技术对水中氧氟沙星(OFX)的氧化降解作用,考察了反应温度、体系的初始pH、PS的初始浓度、OFX的初始浓度对OFX降解效果的影响;并在单因素实验的基础上,选取反应时间、体系的初始pH、PS的初始浓度和OFX的初始浓度4个因素进行了响应面优化实验。结果表明:最佳降解条件为,反应温度60℃、PS初始浓度4.0 mmol/L、pH=4.7、OFX初始浓度0.03 mmol/L、反应时间60 min,此时OFX的降解率为81.29%;4个因素对热活化PS降解OFX均有影响,其影响显著性从大到小为反应时间、OFX的初始浓度、PS的初始浓度、初始pH。利用响应曲面法模拟出反应体系的最佳条件,经实验验证,OFX降解率为93.78%,与预测最佳结果95.00%基本相符,表明模型可靠有效。  相似文献   

12.
为了进一步研究氮掺杂碳材料活化过硫酸盐降解4-氯苯酚的方法,首先以廉价易得的废弃工业糖浆作为碳源,以氨水作为氮源,利用溶胶-凝胶法合成了3种氮掺杂碳材料(NC-700,NC-800和NC-900),并利用扫描电子显微镜(SEM)、X射线衍射(XRD)、拉曼光谱(Raman)、X射线光电子能谱(XPS)等技术对氮掺杂碳材料进行表征分析;然后考察了NC-800投加量、过硫酸盐(PDS)投加量和初始pH等因素对4-氯苯酚去除率的影响,并进行了电子自旋共振(ESR)和自由基淬灭实验。结果表明:3种材料均可有效活化PDS降解4-氯苯酚,其中NC-800活化PDS去除4-氯苯酚效率最高;当NC-800投加量为100 mg/L、PDS投加量为5 mmol/L时,反应30 min后,50 mg/L的4-氯苯酚的总去除率达99.10%;初始pH对4-氯苯酚去除率无明显影响;NC-800活化过硫酸盐降解4-氯苯酚遵循非自由基途径,单线态氧为降解4-氯苯酚的活性物质。循环使用实验证明NC-800具有一定的稳定性,4次循环使用后,4-氯苯酚去除率仍可达到73.80%。  相似文献   

13.
硫酸盐还原菌(Sulfate reduction bacteria)是一类在土壤或水体重金属污染生物修复中能够发挥重要作用的微生物类群。本实验采用摇瓶培养和还原率的测定方法,研究了一株采自海岸潮间带土壤的SRB芽孢杆菌还原Cr6+的效率及培养条件对其还原Cr6+效率的影响。结果显示该菌株可在Cr6+浓度600 mg/L条件下正常生长,300 mg/L浓度下的生长最佳,Cr6+还原率高达75%。培养液中的碳源、氮源和pH对该菌株的Cr6+还原率有显著影响,其中以乙酸钠或柠檬酸钠为碳源,硝酸钠为氮源的还原效率最高;初步结果显示,菌株Cr23是一株环境适应性和Cr6+还原能力较强的SRB,具可应用于土壤或水体铬污染修复的潜力。  相似文献   

14.
通过静态实验研究了配位体对地下环境中Fe(Ⅱ)衰减硝基苯的影响。实验结果表明,配位体的种类、浓度均对Fe(Ⅱ)衰减硝基苯有重要影响。在Fe(Ⅱ)浓度为5 mmol/L的条件下,以半胱氨酸为配位体形成的络合物对硝基苯衰减效果最好,对硝基苯的去除率为86.16%;在配位体浓度变化的条件下,配位体浓度为50 mmol/L时,对硝基苯的衰减效果相对较好,去除率均在65%以上;另外,在Fe(Ⅱ)和配位体浓度一定的条件下,硝基苯的浓度对其衰减也有影响,100 mg/L的硝基苯衰减效果最好,之后随着硝基苯浓度增加,衰减效果呈现逐渐变差的趋势;在Fe(Ⅱ)的络合物衰减硝基苯的过程中,Fe(Ⅱ)被氧化成Fe(Ⅲ)。  相似文献   

15.
常影  姜宁  雷抗  孙艳丰  周睿 《世界地质》2014,33(3):702-707
零价铁和硝基苯反应后生成二价铁和苯胺,而苯胺也是地下水污染物。硫酸根自由基具有强氧化性,可以降解苯胺。而二价铁可以活化过硫酸盐产生硫酸根自由基,进而去除苯胺。本文研究了二价铁浓度、过硫酸盐浓度、苯胺初始浓度、体系初始pH、反应温度等因素对二价铁活化过硫酸盐去除水中苯胺处理效率的影响。结果表明:1)Fe2+活化过硫酸盐生成SO-4·能快速并有效氧化降解苯胺,对于目标浓度为1 000 mg/L的苯胺而言,Fe2+浓度为3.3 mmol/L,Na2S2O8浓度为4.4 mmol/L时,对苯胺有较佳降解效果,苯胺的降解率为86.33%。2体系对较低浓度的苯胺降解效果较好,当污染物初始浓度由1 000 mg/L降低到500 mg/L和100 mg/L时,苯胺降解率由86.33%升高为90.27%和97.16%。3初始pH对苯胺的降解率影响较大,中性条件下(pH=7左右)降解率较好,高初始pH(pH=9,11)和低初始pH条件(pH=3,5)下均低于中性条件下苯胺的降解效率。4体系的温度变化对降解率影响不明显。  相似文献   

16.
Isolation and degradation ability of the DDT-degrading bacterial strain KK   总被引:1,自引:1,他引:0  
A 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT)-degrading bacterium was isolated from soil samples that had been enriched with DDT over a prolonged period of time; these samples were collected from the sewer sludge of a pesticide factory and from DDT-contaminated fields. This consortium was acclimated by repeated passage through a mineral salt medium containing increasing concentrations of DDT. We examined the effects of various factors such as the pH, temperature, concentration of DDT, and the presence of an additional carbon source on the degradation rate of DDT. Based on the analysis of the phenotype, physiological and biochemical characteristics, and 16S rDNA, the strain KK was identified to belong to the bacteria Alcaligenes. The results showed that at the end of 10 days, the rate of degradation of DDT by the strain KK was 66.5%. When the additional carbon source concentration, pH, concentration of DDT, and cultivation temperature is 0.5%, 6, 10 mg l−1, and 30°C, respectively, the biodegradation rate peaks. The results also suggested that (1) bacterial growth increases positively with an increase in the carbon source concentration; (2) the appropriate pH is between 8.0 and 10.0; and (3) the optimal temperature and DDT concentration are 30°C and 10 mg l−1, respectively.  相似文献   

17.
A considerable increase in nitrate concentration in groundwater has been observed in many countries. This research focuses on nitrate removal using biodegradable snack ware (BSW) as both carbon source and biofilm support for denitrifiers. The denitrification efficiency of a laboratory-scale denitrification reactor packed with BSW was examined in a low-temperature condition. The nitrate removal efficiency supported by BSW decreased to approximately 40% at 12°C from nearly 100% at 25°C with 50?mg/L of nitrate-nitrogen in the influent and 2?h of hydraulic retention time (HRT). The complete nitrate removal was obtained when nitrate-nitrogen concentration was no more than 15?mg/L at 2?h of HRT and at 12°C. If the initial concentration of nitrate-nitrogen was 50?mg/L, 5?h of HRT was needed for the complete nitrate removal. Nitrite concentration in the treated water decreased evidently as HRT was increased from 2 to 5?h, or as nitrate-nitrogen concentration in the influent decreased to 15?mg/L from 50?mg/L. It was observed that varying HRT and nitrate concentration in the influent had no noticeable effect on dissolved organic carbon content in the effluent under the experimental conditions. This study indicated that the complete nitrate removal could be achieved readily even at 12°C using BSW as carbon source by changing HRT or the initial concentration of nitrate in the influent, which has some useful implications in environmental engineering practice.  相似文献   

18.
The ability of native bacteria to utilize diesel fuel as the sole carbon and energy source was investigated in this research. Ten bacterial strains were isolated from the oil refinery field in Tehran, Iran. Two biodegradation experiments were performed in low and high (500 and 10000 ppm, respectively) concentration of diesel fuel for 15 days. Only two isolates were able to efficiently degrade the petroleum hydrocarbons in the first test and degraded 86.67% and, 80.60 % of diesel fuel, respectively. The secondary experiment was performed to investigate the toxicity effect of diesel fuel at high concentration (10000 ppm). Only one strain was capable to degrade 85.20 % of diesel fuel at the same time (15 days). Phenotype and phylogeny analysis of this strain was characterized and identified as diesel-degrading bacteria, based on gram staining, biochemical tests, 16S rRNA gene sequence analysis. These results indicate that this new strain was Bacillus sp. and could be considered as Bacillus Cereus with 98 % 16 S rRNA gene sequence similarity. The results indicate that native strains have great potential for in situ remediation of diesel-contaminated soils in oil refinery sites.  相似文献   

19.
以钛酸四丁酯为前驱体,天然凹凸棒石为载体,采用溶胶凝胶法制备了TiO_2/凹凸棒石复合光催化剂,并用XRD、TEM对其进行表征.以亚甲基蓝染料为模拟污染物,采用300 W汞灯为紫外光源,以光催化实验来评价该催化剂的活性,并研究了H_2O_2的引入对光催化活性的影响.实验结果表明,H_2O_2能显著提高染料的脱色效率:亚甲基蓝的初始浓度为50 mg/L,催化体系为2 mmol/L H_2O_2+0.5 g/L TiO_2/凹凸棒石+UV(紫外线),光催化10 min后其脱色率为95%,相对于单独的0.5 g/L TiO_2/凹凸棒石+UV催化体系,其脱色率提高了约50%.全波段扫描显示,加入H_2O_2后,亚甲基蓝在290 nm对应的苯环吸收蜂急剧下降,665 nm对应的最大吸收峰则近乎消失,且没有新的吸收峰产生.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号