首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phase equilibrium experiments were performed on typical ‘oceanic’ and ‘cratonic’ peridotite compositions and a Ca, Al-rich orthopyroxene composition, to test the proposal that garnet lherzolites exsolved from high-temperature harzburgites, and to further our understanding of the origin of ancient cratonic lithospheres. ‘Oceanic’ peridotites crystallize a garnet harzburgite assemblage at pressures above 5 GPa in the temperature range 1450–1600°C, but at 5 GPa and temperatures less than 1450°C, crystallize clinopyroxene to become true lherzolites. ‘Cratonic’ peridotites crystallize a garnet harzburgite assemblage at pressures above 5 GPa in the temperature range 1300–1600°C. Garnet-free harzburgite crystallizes from both ‘cratonic’ and ‘oceanic’ peridotite at temperatures above 1450°C and pressures below 4.5–5 GPa. Phase relations for the high Ca, Al-rich orthopyroxene composition essentially mirror those for ‘oceanic’ peridotite.The complete solution of garnet and clinopyroxene into orthopyroxene observed in all three starting compositions at temperatures near or above the mantle solidus at pressures less than 6 GPa supports the hypothesis that garnet lherzolite could have exsolved from harzburgite. The inferred cooling path for the original high-temperature harzburgite protoliths of garnet lherzolites differs depending on bulk composition. The precursor harzburgite protoliths of garnet lherzolites and harzburgites with ‘cratonic’ bulk compositions apparently experienced simple isobaric cooling from formation temperatures near the peridotite solidus to those at which most of these peridotites were sampled in the mantle (< 1200°C). The cooling histories for harzburgite protoliths of sheared garnet lherzolites with ‘oceanic’ compositional affinity are speculated to have involved convective circulation of mantle material to depths deeper than those at which it was originally formed.Phase equilibria and compositional relationships for orthopyroxenes produced in phase equilibrium experiments on peridotite and komatiite are consistent with an origin for ‘cratonic’ peridotite as a residue of Archean komatiite extraction, which has since cooled and exsolved clinopyroxene and garnet to become the common low-temperature, coarse-grained peridotite thought to comprise the bulk of the mantle lithosphere beneath the Archean Kaapvaal craton.  相似文献   

2.
云南地壳和上地幔的岩石学结构   总被引:4,自引:0,他引:4       下载免费PDF全文
通过对地表出露变质岩、深部地震测深资料和高温高压岩石波速测试资料的综合分析 ,研究了云南地壳和上地幔岩石组成。结果表明 ,云南上、中、下地壳分别由绿片岩相 (顶部为沉积层 )、角闪岩相和麻粒岩相变质岩组成或分别由与之相当的花岗岩类、闪长岩类、辉长岩类组成 ,部分地区地壳底部有镁铁质榴辉岩存在。上地幔由橄榄岩组成 ,部分地区 (兰坪思茅坳陷和滇中坳陷 )壳幔过渡带可能由镁铁质榴辉岩和橄榄岩组成  相似文献   

3.
Garnet compositions are used to understand mantle petrogenesis and to reconstruct the lithostratigraphy of the shallow mantle (<200 km). However, garnets in polymict peridotites from the Kaapvaal craton (>2500 Ma) have a centimeter-scale elemental and stable isotopic variability suggestive of a mixed mantle provenance. The chemical heterogeneity of the garnets is similar to that reported from rocks sampled over a considerable depth and temperature range within the lower lithosphere. For example garnets found in polymict peridotites are similar to garnets found in sheared and granular peridotites, ‘cold’ and ‘hot’ lherzolites, peridotitic (P-type) diamond inclusions, and garnets from polybaric (50-200 km) peridotites (i.e. spinel, garnet and diamond facies). These data indicate that the Kaapvaal cratonic root has been disturbed by complex processes possibly associated with crack propagation and entrainment that juxtaposed garnet-bearing lithologies of diverse petrogenesis, provenance and depth. This has preserved chemical disequilibrium in the high pressure minerals in what is, in effect, a mantle breccia possibly associated with kimberlite precursors.  相似文献   

4.
We employ a niching genetic algorithm to invert ∼30,000 differential ScS/S attenuation values for a new spherically symmetric radial model of shear quality factor (Qμ) with high sensitivity to the lower mantle. The new radial Qμ model, QLM9, possesses greater sensitivity to Qμ at large mantle depths than previous studies. On average, lower mantle Qμ increases with depth, which supports models of increasing viscosity with depth [B.M. Steinberger, A.R. Calderwood. Mineral physics constraints on viscous flow models of mantle flow, J. Conf. Abs., 6, 2001., 2001.]. There are two higher-Qμ regions at ∼1000 and ∼2500 km depth, which roughly correspond to high-viscosity regions observed by Forte and Mitrovica [A.M. Forte and J.X. Mitrovica, Deep-mantle high-viscosity flow and thermochemical structure inferred from seismic and geodynamic data, Nature 410, 1049–1056, 2001.]. There is a lower-Qμ layer at the core–mantle boundary and a relatively low-Qμ region in the mid-lower mantle. With several caveats, we infer a divergence of the solidus and geotherm in the lower mantle and a convergence within Dʺ by relating Qμ to homologous temperature.  相似文献   

5.
We describe a new laboratory technique for measuring the compressional wave velocity and attenuation of jacketed samples of unconsolidated marine sediments within the acoustic (sonic) frequency range 1–10 kHz and at elevated differential (confining – pore) pressures up to 2.413 MPa (350 psi). The method is particularly well suited to attenuation studies because the large sample length (up to 0.6 m long, diameter 0.069 m) is equivalent to about one wavelength, thus giving representative bulk values for heterogeneous samples. Placing a sediment sample in a water‐filled, thick‐walled, stainless steel Pulse Tube causes the spectrum of a broadband acoustic pulse to be modified into a decaying series of maxima and minima, from which the Stoneley and compressional wave, velocity and attenuation of the sample can be determined. Experiments show that PVC and copper jackets have a negligible effect on the measured values of sediment velocity and attenuation, which are accurate to better than ± 1.5% for velocity and up to ± 5% for attenuation. Pulse Tube velocity and attenuation values for sand and silty‐clay samples agree well with published data for similar sediments, adjusted for pressure, temperature, salinity and frequency using standard equations. Attenuation in sand decreases with pressure to small values below Q?1 = 0.01 (Q greater than 100) for differential pressures over 1.5 MPa, equivalent to sub‐seafloor depths of about 150 m. By contrast, attenuation in silty clay shows little pressure dependence and intermediate Q?1 values between 0.0206–0.0235 (Q = 49–43). The attenuation results fill a notable gap in the grain size range of published data sets. Overall, we show that the Pulse Tube method gives reliable acoustic velocity and attenuation results for typical marine sediments.  相似文献   

6.
We have measured the velocities and attenuations of compressional and shear waves in 29 water-saturated samples of sandstones and shales at a confining pressure of 60 MPa and at frequencies of about 0.85 MHz. The measurements were made using a pulse echo method in which the samples (diameter 5 cm, length 1.5 cm to 2.5 cm) were placed between perspex buffer rods inside a high-pressure cell. The velocity of each seismic wave was determined from the traveltime difference of equivalent phase points (corrected for diffraction effects) of the signals reflected from the top and from the base of each sample. Attenuation was determined in a similar way by comparison of the diffraction corrected amplitudes of the signals. The attenuation data are presented as ‘quality factors’: Qp and Qs for compressional and shear waves respectively. The results show that Qs is strongly correlated with Vs, that Qp is weakly correlated with Vp, and that Qp is strongly correlated with Qs. Qp is strongly dependent on the volume percentage of the assemblage of intra-pore minerals, whether they are clays or carbonates. It is concluded that the attenuation mechanism is due to the local fluid flow arising from the differential dilation of the solid rock frame and the intra-pore mineral assemblage, which is a result of their very different elastic moduli.  相似文献   

7.
The Piranshahr metaperidotites in the northwestern end of the Zagros orogen were emplaced following the closure of the Neotethys ocean. The ophiolitic rocks were emplaced onto the passive margin of the northern edge of the Arabian plate as a result of northeastward subduction and subsequent accretion of the continental fragments. The metaperidotites have compositions ranging from low-clinopyroxene lherzolite to harzburgite and dunite. They are mantle residues with distinct geochemical signatures of both mid-ocean ridge and supra subduction zone (SSZ) affinities. The abyssal peridotites are characterized by high Al2O3 and Cr2O3 contents and low Mg-number in pyroxenes. The Cr-number in the coexisting spinel is also low. The SSZ mantle peridotites are characterized by low Al2O3 contents in pyroxenes as well as low Al2O3 and high Cr-number in spinel. Mineral chemical data indicate that the MOR- and SSZ-type peridotites are the residues from ∼15–20% and ∼30–35% of mantle melting, respectively. Considering petrography, mineralogy and textural evidence, the petrological history of the Piranshahr metaperidotites can be interpreted in three stages: mantle stable stage, serpentinization and metamorphism. The temperature conditions in the mantle are estimated using the Ca-in-orthopyroxene thermometer as 1210 ± 26 °C. The rocks have experienced serpentinization. Based on the textural observations, olivine and pyroxene transformed into lizardite and/or chrysotile with pseudomorphic textures at temperatures below 300 °C during the initial stage of serpentinization. Subsequent orogenic metamorphism affected the rocks at temperatures lower than 600 °C under lower-amphibolite facies metamorphism.  相似文献   

8.
The mechanisms contributing to the attenuation of earthquake ground motion in the distance range of 10 to 200 km are studied with the aid of laboratory data, coda wavesRg attenuation, strong motion attenuation measurements in the northeast United States and Canada, and theoretical models. The frequency range 1–10 Hz has been studied. The relative contributions to attenuation of anelasticity of crustal rocks (constantQ), fluid flow and scattering are evaluated. Scattering is found to be strong with an albedoB 0=0.8–0.9 and a scattering extinction length of 17–32 km. The albedo is defined as the ratio of the total extinction length to the scattering extinction length. TheRg results indicate thatQ increases with depth in the upper kilometer or two of the crust, at least in New England. CodaQ appears to be equivalent to intrinsic (anelastic)Q and indicates that thisQ increases with frequency asQ=Q o f n , wheren is in the range of 0.2–0.9. The intrinsic attenuation in the crust can be explained by a high constantQ (500Q o2000) and a frequency dependent mechanism most likely due to fluid effects in rocks and cracks. A fluid-flow attenuation model gives a frequency dependence (QQ o f 0.5) similar to those determined from the analysis of coda waves of regional seismograms.Q is low near the surface and high in the body of the crust.  相似文献   

9.
A worldwide study of short-period teleseismic body wave spectra shows that the high frequency falloff rates of spectra are correlated with the tectonic type of the source and receiver regions and with source depth. The data indicate, in a consistent manner, that the main cause for such variations is the lateral variation of Q in the upper mantle as well as change of Q with depth. Using the internal consistency checks provided by redundancies in the data set other effects such as crustal, site dependent distortion of the spectra, source effects and instrument non-linearity can be ruled out as significant factors influencing the t1 estimates obtained. The results indicate high attenuation in the upper mantle under tectonic regions and new oceans. Long-period regional attenuation studies indicate similar variations in mantle Q among the types of regions mentioned but yield significantly lower Q estimates in all areas. The short- and long-period attenuation results can be reconciled only by assuming a frequency dependent Q that increases with frequency along all types of paths, such that the relative differences in Q along various types of paths retain the same sign over the short- and long-period bands.  相似文献   

10.
碳酸盐化橄榄岩的电性研究   总被引:3,自引:1,他引:2       下载免费PDF全文
为进一步探讨上地幔的高导层成因,了解碳酸盐在上地幔电性方面的作用并估算上地幔高导层的碳酸盐含量,本文对不同碳酸盐含量的橄榄岩及玄武岩样品在2~3 GPa、300~1300℃的条件下进行了电性实验研究.研究初步发现:碳酸盐熔体显著增强橄榄岩、玄武岩样品的导电能力;单纯用含硅酸盐熔体的橄榄岩或单纯用含水橄榄岩可能难以解释上地幔某些区域的异常高导现象;同样,单纯用碳酸盐化的橄榄岩可能也难以解释上地幔某些区域的高导现象;上地幔的高导区很可能是碳酸盐熔体、硅酸盐熔体及水的共存区域.  相似文献   

11.
A nonstationary model of spreading with periodic intrusions of a molten material into an axial zone of a mid-ocean ridge (MOR) is applied to numerical analysis of the thermal state in MOR axial zones and the formation of crustal and mantle magma chambers in them. The model satisfactorily explains the positions, dimensions, and shapes of magma chambers, as well as variations in these parameters depending on the spreading rate, temperature, and composition of crustal and mantle rocks. The release and absorption of the latent heat of rock melting, hydrothermal heating of the crust, and variations in the solidus and liquidus temperatures of crustal and mantle rocks as a function of their composition are factors controlling the shape and position of crustal magma chambers.  相似文献   

12.
Coda wave data from California microearthquakes were studied in order to delineate regional fluctuations of apparent crustal attenuation in the band 1.5 to 24 Hz. Apparent attenuation was estimated using a single back scattering model of coda waves. The coda wave data were restricted to 30 s following the origin time; this insures that crustal effects dominate the results as the backscattered shear waves thought to form the coda would not have had time to penetrate much deeper. Results indicate a strong variation in apparent crustal attenuation at high frequencies between the Franciscan and Salinian regions of central California and the Long Valley area of the Sierra Nevada. Although the codaQ measurements coincide at 1.5 Hz (Q c =100), at 24 Hz there is a factor of four difference between the measurements made in Franciscan (Q c =525) and Long Valley (Q c =2100) with the Salinian midway between (Q c =900). These are extremely large variations compared to measures of seismic velocities of comparable resolution, demonstrating the exceptional sensitivity of the high frequency codaQ measurement to regional geology. In addition, the frequency trend of the results is opposite to that seen in a compilation of codaQ measurements made worldwide by other authors which tend to converge at high and diverge at low frequencies, however, the worldwide results generally were obtained without limiting the coda lengths and probably reflect upper mantle rather than crustal properties. Our results match those expected due to scattering in random media represented by Von Karman autocorrelation functions of orders 1/2 to 1/3. The Von Karman medium of order 1/3 corresponding to the Franciscan codaQ measurement contains greater amounts of high wavenumber fluctuations. This indicates relatively large medium fluctuations with wavelengths on the order of 100 m in the highly deformed crust associated with the Franciscan, however, the influence of scattering on the codaQ measurement is currently a matter of controversy.  相似文献   

13.
Velocity as well as attenuation factorQ –1 ofP-wave in a dry granitic rock sample under uniaxial compressions were measured in the range of frequency between 100 kHz and 710 kHz by using the pulse transmission technique. Above the stress of 0.5 f , where f is the fracture stress, theP-wave velocity decreases with increasing axial stress, whereasQ –1 increases. Particularly, the change ofQ –1 is greater for high frequency than for low frequency. At a given stress level, the higher the frequency, the higher theP-wave velocity and the largerQ –1. This result means that the velocity decrease with increasing stress is smaller for higher frequency. Because of this frequency-dependence of velocity decrease, theP-wave in the rock under dilatant state shows dispersion. The body wave dispersion is more remarkable at higher stress, and is not found in a homogeneous material with no cracks. Thus the disperison is attributed to the generation of cracks. When the frequency-dependence ofQ –1 is approximated asf n in the present frequency range, the exponentn takes a value from 0.63 to 0.77.  相似文献   

14.
Yong-Feng  Zhu  Hans-Joachim  Massonne  Thomas  Theye 《Island Arc》2007,16(4):508-535
Abstract Four phengite‐bearing eclogites, taken from different depths of the Chinese continental scientific drilling (CCSD) borehole in the Sulu ultrahigh pressure terrane, eastern China, were studied with the electron microprobe. The compositional zonations of garnet and omphacite are moderate, whereas phengite compositions generally vary significantly in a single sample from core to rim by decrease of the Si content. Various geothermobarometric methods were applied to constrain the P‐T conditions of these eclogites on the basis of the compositional variability of the above minerals. The constrained P‐T path for sample B218 is characterized by pressure decrease from ca 3.0 GPa (ca 600°C) to 1.3 GPa (ca 550°C). Eclogite B310 yielded P‐T conditions of 3.0 GPa and 750°C. The path for eclogite B1008 starts at about 650°C and 3.6–3.9 GPa (stage I) followed by a pressure decrease to 2.8–3.0 GPa and a significant temperature rise (stages II and IIIa, 750–810°C). Afterwards, this rock cooled down to 620–660°C at still high pressures (2.5–2.7 GPa, stage IIIb). Retrograde conditions were about 670°C and 1.3 GPa (stage IV). Eclogite B1039 yielded a P‐T path starting at ca 600°C and 3.3–3.9 GPa (stage I). A pressure decrease to about 3.0 GPa (stage II, 590–610°C) and then a moderate isobaric temperature increase to ca 630°C (stage III) followed. Stage IV is characterized by temperatures of 650°C at pressures close to 1.3 GPa. During and after this stage (hydrous) fluids partially rich in potassium penetrated the rocks causing minor changes. Relatively high oxygen fugacities led to andradite and magnetite among the newly formed minerals. We think that the above findings can be best explained by mass flow in a subduction channel. Thus, we conclude that the assembly of UHP rocks of the CCSD site, eclogites, quartzofeldspathic rocks, and peridotites, cannot represent a crustal section that was already coherent at UHP conditions as it is the common belief currently. The coherency was attained after significant exhumation of these UHP rocks.  相似文献   

15.
On the basis of data of long period Rayleigh surface wave, we select 43 two-station paths which cover the eastern China thoroughly. By using the improved method of multi-filtration, we obtain the group velocity and amplitude spectrum, and then get attenuation factor for each paths. We employ Talentola inversion method to get local attenuation factor, and further invert the three-dimension Q β image under the crust and upper mantle in the eastern Chinese continent. The Q β image shows the following basic characters. There is correlation between the seismic activity and Q β structure under the crust and upper mantle in North China region. The Yangtze block begins to collide with and subduct to the North China block from the southern border of the Qinling in the southern Shaanxi. In the large part of Yangtze quasi-platform appear an obvious high Q β area at 88 km deep. In the east of Sichuan depression platform, the juncture of Sichun and Guizhou, and the Jiangnan block near the juncture of Guizhou and Hunan, the lateral variation of Q β in the crust is little, and there is a high-Q β layer no thinner than 40 km in the top mantle. In the Dian-Qian fold and fracture region between Yunnan and Guizhou, the vertical variation of Q β at the region of the crust and upper mantle is little, there is a low-Q β layer in the top mantle, about 40 km thick, low-Q β layer of the upper mantle begins to appear at about 95 km deep. In the east of Yangtze quasi-platform and the central and eastern part of the South China fold system, the Moho is smooth, the lateral variation of Q β in the crust is also little, low-Q β layer of the upper mantle begins to appear at about 85 km deep.  相似文献   

16.
The laboratory ultrasonic pulse‐echo method was used to collect accurate P‐ and S‐wave velocity (±0.3%) and attenuation (±10%) data at differential pressures of 5–50 MPa on water‐saturated core samples of sandstone, limestone and siltstone that were cut parallel and perpendicular to the vertical borehole axis. The results, when expressed in terms of the P‐ and S‐wave velocity and attenuation anisotropy parameters for weakly transversely isotropic media (ɛ, γ, ɛQ, γQ) show complex variations with pressure and lithology. In general, attenuation anisotropy is stronger and more sensitive to pressure changes than velocity anisotropy, regardless of lithology. Anisotropy is greatest (over 20% for velocity, over 70% for attenuation) in rocks with visible clay/organic matter laminations in hand specimens. Pressure sensitivities are attributed to the opening of microcracks with decreasing pressure. Changes in magnitude of velocity and attenuation anisotropy with effective pressure show similar trends, although they can show different signs (positive or negative values of ɛ, ɛQ, γ, γQ). We conclude that attenuation anisotropy in particular could prove useful to seismic monitoring of reservoir pressure changes if frequency‐dependent effects can be quantified and modelled.  相似文献   

17.
Keiko  Hattori  Simon  Wallis  Masaki  Enami  Tomoyuki  Mizukami 《Island Arc》2010,19(1):192-207
The Higashi-akaishi garnet-bearing ultramafic body in the Sanbagawa metamorphic belt, Southwest Japan, represents a rare example of oceanic-type ultrahigh-pressure metamorphism. The body of 2 km × 5 km is composed mostly of anhydrous dunite with volumetrically minor lenses of clinopyroxene-rich rocks. Dunite samples contain high Ir-type platinum group elements (PGE) and Cr in bulk rocks, high Mg and Ni in olivine, and high Cr in spinel. On the other hand, clinopyroxene-rich rocks contain low concentrations of Ir-type PGE and Cr, high concentrations of fluid-mobile elements in bulk rocks, and low Ni and Mg in olivine. Clinopyroxene is diopsidic with low Al2O3. The compositions of bulk rocks and mineral chemistry of spinel, olivine, and clinopyroxene suggest that the olivine-dominated rocks are residual mantle peridotites after high degrees of influx partial melting, and that the clinopyroxene-rich rocks are cumulates of subduction-related melts. Thus, the Higashi-akaishi ultramafic body originated from the interior of the mantle wedge, most likely the forearc upper mantle. It was then incorporated into the Sanbagawa subduction channel by a mantle flow, and underwent high pressure metamorphism to a depth greater than 100 km. Such a strong active flow in the mantle wedge is likely facilitated by the lack of serpentinites along the interface between the slab and the overlying mantle, as it was too hot for serpentine. These unusually hot conditions and strong active mantle flow may reflect conditions in the earliest stage of development of subduction, and may have been maintained by massive upwelling and subsequent eastward flow of asthenospheric mantle in the northeastern Asian continent in Cretaceous time when the Sanbagawa belt began to form.  相似文献   

18.
The seismic attenuation in the Vrancea region (Romania) is investigated from teleseismic recordings of P and pP waves during the four major, intermediate-depth Romanian events that occurred since the onset of digital instrumentation. Most stations are located in Canada and in the United States, being equipped with a variety of sensors, especially short-period ones. The amplitude spectral ratio method is used, assuming no frequency dependence of the Q P factor in the range 0.2–2 Hz. No apparent correlation between the derived attenuation value and the type of recording sensor is observed. Lateral variations of the attenuation are obtained, with a very low Q P area (values down to 33) located in the northwestern part of the Vrancea seismogenic volume. For the stations with different azimuth angles in relation to the epicentral area, Q P values routinely exceed 200. Most likely, the low attenuation values are related to an upwelling mantle material located immediately beneath the crust, but limited in depth to at least 100 km.  相似文献   

19.
The fundamental mode Love and Rayleigh waves generated by earthquakes occurring in Kashmir, Nepal Himalaya, northeast India and Burma and recorded at Hyderabad, New Delhi and Kodaikanal seismic stations are analysed. Love and Rayleigh wave attenuation coefficients are obtained at time periods of 15–100 seconds, using the spectral amplitude of these waves for 23 different paths along northern (across Burma to New Delhi) and central (across Kashmir, Nepal Himalaya and northeast India to Hyderabad and Kodaikanal) India. Love wave attenuation coefficients are found to vary from 0.0003 to 0.0022 km–1 for northern India and 0.00003 km–1 to 0.00016 km–1 for central India. Similarly, Rayleigh wave attenuation coefficients vary from 0.0002 km–1 to 0.0016 km–1 for northern India and 0.00001 km–1 to 0.0009 km–1 for central India. Backus and Gilbert inversion theory is applied to these surface wave attenuation data to obtainQ –1 models for the crust and uppermost mantle beneath northern and central India. Inversion of Love and Rayleigh wave attenuation data shows a highly attenuating zone centred at a depth of 20–80 km with lowQ for northern India. Similarly, inversion of Love and Rayleigh wave attenuation data shows a high attenuation zone below a depth of 100 km. The inferred lowQ value at mid-crustal depth (high attenuating zone) in the model for northern India can be by underthrusting of the Indian plate beneath the Eurasian plate which has caused a low velocity zone at this shallow depth. The gradual increase ofQ –1 from shallow to deeper depth shows that the lithosphere-asthenosphere boundary is not sharply defined beneath central India, but rather it represents a gradual transformation, which starts beneath the uppermost mantle. The lithospheric thickness is 100 km beneath central India and below that the asthenosphere shows higher attenuation, a factor of about two greater than that in the lithosphere. The very lowQ can be explained by changes in the chemical constitution taking place in the uppermost mantle.  相似文献   

20.
材桦 《地球物理学报》1990,33(3):349-355
本文旨在研究多孔岩石声衰减机制及衰减和频率的关系,用共振法测量了人工多孔材料10~5Hz以下的弯曲振动能量损耗,发展了前人测量弹性模量的方法.实验结果表明:干燥试样的内耗基本上与频率无关:水饱和试样的内耗比干燥试样的大得多,并在24.0kHz有显著的弛豫峰;饱和试样的内耗主要产生于固体骨架与孔隙流体之间的相对运动.实验结果与Riot理论和局部流体流动机制一致,但未看到Dunn预言的“边界效应”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号