首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
康勇  杨春和  何正  姜永东 《岩土力学》2010,31(Z1):266-270
针对目前大跨穿煤隧道的研究热点,以重庆市绕城高速公路环山坪隧道为研究对象,在界定大跨度隧道及分析其围岩稳定性关键影响因素的基础上,结合现场监测和数值模拟对大跨度穿煤隧道围岩结构稳定性进行了分析。结果表明,大跨度隧道各处等效应力集中对扁平率变化敏感程度不同,拱脚最为敏感,拱顶基本不随扁平率的改变而变化。隧道穿越软弱煤层段时,围岩应力重分布受影响明显,拱顶位移随开挖面不断推进急剧增加,且隧道围岩塑形圈不断向拱顶围岩内部发展。尤其当煤层软弱带与隧道顺层相交时,隧道荷载结构偏压效应凸显,偏压荷载随煤层倾角变陡而增大,易造成支护结构失稳破坏,在设计及施工中应特别加以重视。  相似文献   

2.
通过对某软弱围岩区浅埋偏压条件下的公路隧道拱顶下沉与周边收敛监控量测数据的分析,总结了长施工期内浅埋偏压隧道开挖后围岩的变形规律,介绍了现场处理偏压的工程措施,分析了内外因素对偏压隧道施工的影响,可为相近工程地质条件下的隧道进洞施工提供借鉴。  相似文献   

3.
针对偏压软弱围岩隧道预留核心土法不同开挖顺序造成围岩不同变形量的问题,结合洞头山工程实例,运用现场监控量测结合MIDAS数值模拟的方法,分析比较偏压软弱围岩隧道在不同开挖顺序下各阶段围岩位移变形量。研究表明:开挖顺序的改变能够有效减小隧道各部围岩变形量,且减小程度从大到小的岩体位置依次为浅埋拱腰处、浅埋拱脚处、深埋拱腰处、深埋拱脚与拱顶;拱浅埋侧最大主应力明显减小。因此对于偏压软弱围岩隧道先开挖深埋侧比先开挖浅埋侧更为安全合理。研究成果为隧道信息化施工提供依据,也为洞头山及具有类似地质地形情况的隧道施工提供借鉴与指导。  相似文献   

4.
隧道浅埋段施工过程中围岩变形复杂,选取隧道拱顶竖向位移为研究对象,分析隧道浅埋段围岩竖向位移的监测方法,在阿拉坦隧道进行了实地监测,并建立有限元数值计算模型,分析隧道浅埋段围岩变形规律。结果表明:在0.6倍洞径范围内开挖对拱顶围岩竖向位移影响较大,达到总位移的61%~67%;与75 m范围内竖向位移比较,距离隧道中心1.2倍洞径处竖向位移几乎为零,围岩松动圈已延伸至地表,离隧道中心线越远扰动强度越弱。数值计算得出岩层及地表变化规律与现场实测基本一致。  相似文献   

5.
浅埋偏压连拱隧道施工的力学响应分析   总被引:1,自引:0,他引:1  
以江西某高速公路一浅埋偏压连拱隧道为背景,用MARC有限元程序对其出口段进行了动态施工的三维数值模拟。系统研究了塑性区分布和发展、拱顶下沉、正应力与剪应力的集中和转移、中隔墙竖向应力随施工过程的变化规律。研究表明:1.非对称开挖是引起中墙偏压的最关键因素,初衬和二衬的施作对改善中墙偏压作用不大,对称开挖才是最有效途径;2.在浅埋条件下,拱顶下沉有随埋深增大而增大的趋势,位移释放在开挖完成、支护之前就已经大部分完成。3.左右洞上台阶开挖后拱顶出现拉应力区,是易坍方部位,应超前或及时支护;4.由于偏压作用,山脊一侧边墙和中墙墙踵处塑性区更发育,该侧更易失稳;5.施工完毕,隧道两侧边墙附近集中的压应力转移到二衬和仰拱上,使二者成为应力集中部位,从而改善了隧道围岩的受力状况。  相似文献   

6.
为分析软弱黄土隧道的变形规律,以西宁过境高速大有山黄土隧道为依托,采用精密水准仪和收敛计对隧道地表下沉、拱顶下沉和水平收敛进行了系统现场测试。结果表明:软弱黄土隧道拱顶下沉远大于水平收敛,变形时间长,变形量大,累计拱顶下沉值最大为950.6 mm。在临界埋深范围,围岩变形比深埋、浅埋时都大,且变形量离散性高;围岩变形速率在二衬施作时较大,软弱黄土隧道中作为围岩-支护系统稳定性判据的变形速率宜适当提高;围岩变形随时间变化符合指数函数规律,可利用指数函数预测围岩的最终变形;软弱黄土隧道变形分为急剧变形、持续增长和缓慢增长3个阶段,最终趋于稳定。隧道断面的初次开挖对地表变形影响显著,隧道轴线沉降最大,并沿横向逐渐减小。软弱黄土隧道预留变形量在不同位置处不宜统一设置,西宁地区软弱黄土Ⅴ级围岩建议拱顶预留700~800 mm,边墙预留300~350 mm,拱顶与边墙之间以曲线过渡。  相似文献   

7.
针对地表下隧道周围土体变形的观测困难,用熔融石英和溴化钙溶液配置透明土,提出基于透明土的盾构开挖面失稳试验研究方案,获得隧道前方纵断面土体位移矢量、沉降槽曲线和破坏模式等。试验结果表明,隧道开挖面失稳后土体变形以垂直位移为主,浅埋时土体破坏呈现“楔”形,破坏面延伸至地表,埋深增加时扰动范围向开挖面变窄,深埋时出现压力拱,扰动体呈现为筒仓形;隧道纵断面内沉降槽呈现为Weibull分布,最大沉降发生在隧道开挖面前方约(0.3~0.5)D(D为隧道半径)的拱顶处,变形主要发生在隧道开挖面前方的拱顶以上,浅埋时沉降槽从地表往下向深而窄变化,深埋时沉降槽宽度接近相同,从地表往下逐渐变深。  相似文献   

8.
刘成禹  何满潮 《岩土力学》2014,35(4):1101-1109
以龙厦铁路象山特长隧道地质构造发育、埋深大于500 m段围岩压力及围岩变形的现场测试资料为依据,对大埋深隧道地质构造发育段围岩压力的特点、变形压力的形成机制等进行了研究。研究表明:大埋深隧道,结构面或褶曲、逆断层发育,但地下水不发育的地段,即使围岩强度较高,隧道开挖后仍可能出现较大的变形;围岩较大变形主要是由于在自重应力和残余构造应力作用下被挤密的结构面在隧道开挖后因侧向限制消除而张开、扩容引起的,受其影响,初期支护将受到较大的围岩变形压力。上述地段围岩压力具有下列特点:(1)地下水不发育区段的围岩压力比地下水发育区段的大;(2)隧道纵向发育向斜的区段,拱顶至拱腰段围岩压力最大,越趋向于向斜核部,拱顶围岩压力越大;(3)发育褶曲的断面,与褶曲轴线垂直方向的围岩压力较大;(4)发育逆断层的断面,与断层倾向相反侧的围岩压力较大,该侧断层面附近的围岩压力最大,对侧断层面附近的围岩压力最小;(5)下台阶的围岩压力比上台阶的小,两者的相对差随上、下台阶施工间隔时间的延长而增大。  相似文献   

9.
连拱隧道围岩一般为由节理结构面相互切割的非连续岩体,利用非连续性分析方法研究这类围岩的变形和破坏形态可以更好地反映工程实际情况。采用非连续变形分析方法 DDA,对金鸡山连拱隧道围岩的变形和破坏过程进行了模拟,将整个变形破坏过程划分为了3个阶段:中墙上方岩体变形、地表下沉、滑移面产生阶段、隧道左右洞两侧滑移带(或滑移面)的形成阶段以及中墙顶部块体失稳、隧道上方岩体快速塌落阶段。研究了金鸡山隧道浅埋围岩和深埋围岩的变形破坏特征,其中边墙部位、靠近中墙的内侧拱顶或拱肩部位、外侧拱肩部位会首先受到变形破坏。  相似文献   

10.
针对一座浅埋偏压隧道,采用FLAC3D对该隧道进口段进洞开挖进行动态施工三维数值模拟。基于围岩应力分布特征,仰坡坡面轴向和横向位移的变化特征,分析了偏压浅埋隧道洞口段开挖引起的仰坡变形规律。计算结果揭示:仰坡后缘下沉,前缘向洞心外有移动趋势;隧道开挖引起隧洞洞身附近岩体出现较大应力集中和变形现象,洞口段洞身以上仰坡坡面主要以竖向沉降为主,洞身两侧向洞内挤压。在此基础上提出了保证仰坡稳定和安全进洞的一些建议。  相似文献   

11.
浅埋双连拱隧道围岩边坡体系变形机理及稳定性分析   总被引:2,自引:0,他引:2  
双连拱隧道是一种新的隧道形式, 由于其整体跨度大、结构复杂、施工工序繁琐, 在地形偏压、地质条件复杂的情况下修建双连拱隧道难度较高, 尤其在洞口段容易出现衬砌开裂、边坡变形等一系列工程问题。结合安徽铜黄高速公路汤屯段富溪隧道进口段工程, 采用地质条件研究与数值模拟分析相结合的研究手段, 对复杂地质条件下偏压双连拱隧道围岩① 边坡体系在施工过程中应力应变发展过程进行了研究。综合分析表明, 富溪隧道进口段处于F5断层影响带内, 岩体呈碎裂结构,同时, 受到地形偏压影响, 隧道开挖后衬砌和围岩表现为沉降变形和侧向变形, 进口边坡在隧道围岩变形的诱导下, 表现为蠕滑- 拉裂变形破裂。根据以上研究成果, 提出了富溪隧道变形治理应以控制进口段隧道拱顶的变形为主。  相似文献   

12.
浅表古老花岗中浅埋隧道常处于拉张应力状态而拱顶下沉,波及地表产生地面塌陷,影响工程稳定及人员安全。以集宁隧道为例,采用工程地质调查、室内力学试验、围岩稳定计算相结合的方法,从太古代集宁片麻状花岗岩风化壳分带、岩体结构控制和岩体质量分级方面研究围岩变形破坏特征。花岗岩中-微风化特性、大部分隧道位于地下水位以下,节理裂隙夹泥,变形破坏以多组节理切割下块体掉落和塌方为主要形式。在花岗岩古风化壳与上第三系泥岩交界处出现差异变形和不均匀沉降。浅埋隧道段塌方发展到地表形成4个长轴与隧道轴线一致的椭圆形塌陷坑。现场应力监测结果显示顶拱接触压力小于自重应力,侧压力更小,对顶拱稳定不利。为保证施工人员和机械设备安全,在此区段采取针对块体稳定和塌方的加强支护措施,取得较好效果。  相似文献   

13.
王德明  张庆松  张霄  王凯  谭英华 《岩土力学》2016,37(10):2851-2860
为研究断层破碎带隧道开挖扰动作用下突水、突泥灾变演化过程,建立了三维地质模型试验系统,以江西永莲隧道F2断层突水、突泥灾害为例,通过大量的材料配比及物理力学性能参数测试,研制出适用于流-固耦合模型试验的新型断层及正常围岩相似材料,对隧道突水、突泥灾害进行研究。试验结果有效地揭示了无支护条件下断层破碎带隧道的洞周位移、渗流压力、应力-应变以及突出物质量等特征参数对时效性的响应规律。随着时间的增长,渗流压力整体呈上升趋势,越靠近开挖面其波动范围及幅度越大;突出物质量在发生突水、突泥灾害前出现短时减小后迅速增加;洞周围岩拱顶以竖向位移为主,而拱腰以水平位移为主;在相同相应力状态下,拱腰位置应变比拱顶位置大。将试验灾变特征与现场实际演化过程进行对比分析,两者结果较为吻合。该系统可广泛应用于其他地下工程的模型试验研究,其研究方法及结果对类似工程研究具有一定的指导和借鉴意义。  相似文献   

14.
在隧道施工前,应用数值模拟分析的方法,分析浅埋砂质黄土隧道施工力学效应和变形特征。根据浅埋砂质风积黄土隧道在施工过程中地表沉降量大和洞内施工安全风险大等特点,结合隧道实际监测数据,反演计算得到侵限段地质力学参数,为迈式管棚超前支护及径向迈式锚杆的全施工过程数值模拟提供计算依据,为控制隧道围岩变形提供数据支撑。计算结果显示,隧道侵限段地表最大沉降11.4 mm、最大拱顶下沉30.4 mm、最大水平收敛48.5 mm,隧道整体变形量减小,迈式管棚超前支护可以有效地提供纵向支撑,承受侵限土体压力、约束围岩变形和控制地表沉降,同时为支护侵限段钢拱架的安全拆换提供保障。研究结果表明:径向迈式锚杆、迈式管棚超前支护、环形支撑钢拱架和锁脚锚杆一起,构成了浅埋风积砂质黄土隧道主被动变形综合控制体系,有效地解决了浅埋风积砂质黄土隧道软弱围岩超前支护的难题。  相似文献   

15.
深埋隧道层状围岩变形特征分析   总被引:7,自引:0,他引:7  
李晓红  夏彬伟  李丹  韩昌瑞 《岩土力学》2010,31(4):1163-1167
层状岩体在地下工程中经常遇到的,它具有明显的各向异性力学性质。结合共和隧道现场监测和数值模拟相结合的方法对层状岩体的破坏特征进行了分析,研究结果表明:围岩的变形位移、破坏区都主要集中隧道拱顶右侧,即靠河侧大于靠山侧。隧道围岩变形破坏区不在最大主应力方向上,而是在岩体层理垂直方向。层状岩体中洞室变形破坏特征除了因地形产生的偏压影响外,更重要的是受地层结构特征的影响,即与层状岩体的力学性质极大相关,其结果可为指导隧道的施工和设计提供有效依据。  相似文献   

16.
半硬半软岩层小净距隧道洞口段监测分析   总被引:4,自引:0,他引:4  
针对雷公浦小净距隧道后行左洞洞口段具有半硬岩层半软岩层的特点,在开挖过程中,按照新奥法对隧道地表沉降、拱顶下沉、水平收敛、中间岩柱的位移、锚杆轴力、围岩压力和钢拱架应力等项目进行监测。监测结果表明,采用预留核心土法可以较好地控制围岩变形和应力;后行洞的拱顶沉降大于先行洞,且软岩一侧的下沉量更大;中间岩柱较薄弱,开挖初期往先行洞方向移动;降雨对围岩变形和压力影响较大,施工中应引起重视。研究结论可为类似条件下工程的设计、施工和监测提供借鉴。  相似文献   

17.
软弱围岩隧道洞口段失稳机制分析与处置技术   总被引:1,自引:0,他引:1  
刘小军  张永兴  高世军  黄达  杨超 《岩土力学》2012,33(7):2229-2234
隧道洞口围岩大多为软弱围岩,加之浅埋、偏压等不良地质地形因素的影响,洞口施工过程中易发生边仰坡的滑塌。厦蓉高速公路水都线的瑞坡隧道在进洞后不久就发生围岩失稳,致使仰坡开裂滑塌和洞内支护变形很大。利用FLAC3D软件模拟了隧道施工全过程,从围岩塑性区分布以及位移情况结合现场实际状况分析了隧道仰坡坍塌和支护变形发生的原因,并通过数值模拟优化了CRD法的开挖工序。最后参考数值分析结果结合工程实际提出了有效的治理措施,得到的结论可供今后类似工程参考与借鉴。  相似文献   

18.
本文以在建的莞惠城际轨道交通项目为依托,利用现场试验、数值模拟和室内模型试验等手段对穿越砂土地层的浅埋暗挖隧道预加固技术进行研究,通过控制围岩-支护体系的变形,分析适宜的预加固方法、范围和参数,结论如下:洞内帷幕注浆和地表注浆均难以形成止水帷幕,选择洞内水平旋喷桩配合掌子面注浆作为穿越砂土地层的最优预加固方案;依靠增加注浆范围控制砂土地层中的拱顶沉降和水平收敛是不利的,但可加强非砂土地层的围岩整体性,对控制地表沉降也较为有利;改变加固区参数对控制砂土地层中隧道拱顶的沉降有较大帮助,注浆效果越好,围岩的自承载能力提高越大,而其水平位移几乎没有变化。  相似文献   

19.
以某黄土公路隧道工程为依托,借助现场测试方法研究浅埋洞口段黄土公路隧道地表沉降、拱顶下沉和周边收敛时态分布规律,并结合实测数据建立隧道施工变形统计分析预测模型。研究结果表明:(1)黄土隧道施工变形呈现显著的时间和空间效应,其时态分布曲线符合指数函数型发展规律;(2)地表沉降随时间呈增长趋势,约60 d后逐渐趋于稳定,其最大值(wmax)的统计变化范围为(?30.78~?105.20)mm;(3)横向地表沉降曲线分布呈凹槽形,沉降槽宽度约(3~5)倍隧道跨度(B),且隧道开挖引起的地层损失率为0.74%~3.08%;(4)拱顶下沉与周边收敛时态曲线可分为线性增长、持续变形和平稳发展3个阶段,且线性增长阶段占总变形量的60%以上;(5)vmax的统计值变化范围为(?17.1~?201.1)mm,其95%置信区间为[?51.53,?65.11],umax的统计值变化范围为(?12.1~?122.0)mm,其95%置信区间为[?35.08,?43.39],建议V级围岩黄土隧道预留变形量取值范围为(?100~?150)mm;(6)拱顶下沉与周边收敛速率时态曲线呈先急剧增加后逐渐衰减趋势,最终稳定后的拱顶下沉速率(Δv)和周边收敛速率(Δu)依次为(?0.05~?0.80)mm/d和(?0.02~?0.60)mm/d。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号