首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 984 毫秒
1.
56m深TRD工法搅拌墙在深厚承压含水层中的成墙试验研究   总被引:1,自引:0,他引:1  
王卫东  翁其平  陈永才 《岩土力学》2014,35(11):3247-3252
上海国际金融中心项目基坑面积约为48 860m2,开挖深度为26.527.9m,周边环境复杂。为控制抽降承压水对周边环境的影响,经方案比选,基坑周边设置厚700mm、深56m等厚度水泥土搅拌墙(TRD)作为承压水悬挂隔水帷幕。在上海地区施工如此深TRD墙体尚属首例,为此现场开展了试成墙试验,试成墙监测表明,墙身在深厚承压含水层中水泥土强度达到0.8427.9m,周边环境复杂。为控制抽降承压水对周边环境的影响,经方案比选,基坑周边设置厚700mm、深56m等厚度水泥土搅拌墙(TRD)作为承压水悬挂隔水帷幕。在上海地区施工如此深TRD墙体尚属首例,为此现场开展了试成墙试验,试成墙监测表明,墙身在深厚承压含水层中水泥土强度达到0.841.38 MPa。室内渗透性试验表明,渗透系数由10-3cm/s提高到10-7cm/s,满足隔水帷幕设计要求;墙体施工期间,地表最大沉降约8mm,主要影响范围约5m;土体侧向位移主要产生在距离墙体5m的范围内,TRD墙体施工对周边环境影响很小。试验墙体的顺利实施为后续正式墙体的施工提供了依据,也为类似工程提供了重要参考。  相似文献   

2.
为了更深入地了解软土深开挖引起地铁车站深基坑工程围护结构及邻近建筑的变形特性,结合深厚软黏土地区某个地铁车站深基坑工程进行了系统性监测及结果分析。结果分析表明:地连墙成槽会引起邻近土体侧向位移,最大土体侧向位移值占基坑开挖期间土体侧向位移值20%左右;土体开挖期间南侧(桩基础建筑一侧)、北侧(浅基础建筑一侧)围护结构邻近土体最大侧向位移平均值分别为0.091%H_e和0.120%H_e;y/H_e值(y为垂直连续墙方向上与连续墙的距离,H_e为开挖深度)小于0.92时,基坑开挖引起土体沉降值及沉降差较大;地表变形与浅基础变形较为接近,桩基础建筑变形值明显小于浅基础建筑变形值且嵌岩桩基础建筑变形值最小;邻近浅基础建筑及桩基础建筑均受到空间效应影响,在x/H_e值(x为平行连续墙方向上与端部的距离)小于1.5时,空间效应较为明显,x/H_e值大于2.0时,邻近建筑及围护结构邻近土体变形接近平面应变状态。  相似文献   

3.
为了更深入的了解软土深开挖引起地铁车站深基坑工程围护结构及邻近建筑的变形特性,结合深厚软黏土地区某个地铁车站深基坑工程进行了系统性监测及结果分析。结果分析表明:地连墙成槽会引起邻近土体侧向位移,最大土体侧向位移值占基坑开挖期间土体侧向位移值20%左右;土体开挖期间南侧(桩基础建筑一侧)、北侧(浅基础建筑一侧)围护结构邻近土体最大侧向位移平均值分别为0.091%H_e和0.120%H_e;y/H_e值(y,垂直连续墙方向上与连续墙的距离,H_e,开挖深度)小于0.92时,基坑开挖引起土体沉降值及沉降差较大;地表变形与浅基础变形较为接近,桩基础建筑变形值明显小于浅基础建筑变形值且嵌岩桩基础建筑变形值最小;邻近浅基础建筑及桩基础建筑均受到“空间效应”影响,在x/H_e值(x,平行连续墙方向上与端部的距离)小于1.5时“空间效应”较为明显,x/H_e值大于2.0时邻近建筑及围护结构邻近土体变形接近平面应变状态。  相似文献   

4.
为了更深入的了解软土深开挖引起地铁车站深基坑工程围护结构及邻近建筑的变形特性,结合深厚软黏土地区某个地铁车站深基坑工程进行了系统性监测及结果分析。结果分析表明:地连墙成槽会引起邻近土体侧向位移,最大土体侧向位移值占基坑开挖期间土体侧向位移值20%左右;土体开挖期间南侧(桩基础建筑一侧)、北侧(浅基础建筑一侧)围护结构邻近土体最大侧向位移平均值分别为0.091%H_e和0.120%H_e;y/H_e值(y,垂直连续墙方向上与连续墙的距离,H_e,开挖深度)小于0.92时,基坑开挖引起土体沉降值及沉降差较大;地表变形与浅基础变形较为接近,桩基础建筑变形值明显小于浅基础建筑变形值且嵌岩桩基础建筑变形值最小;邻近浅基础建筑及桩基础建筑均受到“空间效应”影响,在x/H_e值(x,平行连续墙方向上与端部的距离)小于1.5时“空间效应”较为明显,x/H_e值大于2.0时邻近建筑及围护结构邻近土体变形接近平面应变状态。  相似文献   

5.
本文以南宁市地铁1号线试验车站广西大学站基坑工程为背景,通过对基坑工程施工动态监测数据进行分析,总结了广西大学站地铁车站深基坑的连续墙变形及周围地表沉降变形特征。监测数据的分析结果表明:广西大学站基坑开挖引起的地表沉降量值比较小,影响范围主要集中于0~2H(H为基坑开挖深度),产生最大沉降值的位置约为墙后0.5~0.7H,沉降变形影响最远延伸至距基坑边缘约为4H处; 并可依此变形特征规律给出圆砾层地区基坑地表沉降预估曲线与环境保护等级的划分。  相似文献   

6.
不同方式处理后软土地基侧向变形规律   总被引:1,自引:0,他引:1  
高速公路建设期侧向位移的控制是评价路基变形的重要依据。依据四川省遂-资(遂宁至资阳)高速公路软基沉降变形观测的数据,通过对现场监测资料的分析,分别探讨西南地区软土路基经塑料排水板(PVD)、碎石桩处理后,路基侧向变形y与深度z,最大侧向变形增量△ym与地表沉降增量△SD,平均侧向变形量Sy与地表沉降量Sf的变化规律。 研究表明,(1)根据Boussinesq解答和实测数据得到路堤荷载作用面积下变形y随着深度z大致呈“S”形变化,近地表变化剧烈,随荷载增加最大侧向位移深度基本保持不变,土体最大侧向变形深度与路堤填筑高度无关,与土性有关;(2)经PVD处理后的软基在填筑期、预压期均有大量侧向位移发生,各占总位移量的50%,最大侧向位移深度在距离地表1.0~1.5 m处;(3)经碎石桩处理后软基侧向位移在填筑期已完成总位移量的75%~80%,总位移量明显小于PVD处理后软基侧向位移量,最大侧向位移深度在距离地表2.5~3.5 m处;(4)PVD处理软基在固结阶段△ym/△SD、Sy/Sf分别为0.15~0.30和0.10~0.20,大于填筑前期2~4倍,而碎石桩处理软基固结阶段△ym/△SD、Sy/Sf分别为0.10~0.15和0.03~0.05,各个阶段变化相当。  相似文献   

7.
以厦门吕厝站地铁基坑开挖工程为工程原型,采用分离相似设计方法确定了模型试验所需要关键参数的相似比,制作了异形基坑试验模型,并设计了合理的监测系统。通过模拟基坑实际的开挖过程,根据取得的监测数据,分析了地表沉降、地连墙变形和受力等变化规律。结果表明:与基坑边缘距离越大,地表沉降影响越小,且墙体边长及开挖深度越大沉降越显著;地表沉降曲线形式与沉降数值大小有关,基坑开挖表现出明显的空间效应和角隅效应,地表沉降主要发生在坑内土体开挖阶段;随开挖的进行,土层卸荷对地表沉降影响逐渐减小,地连墙弯矩大小与开挖深度呈正相关,最大弯矩值出现在基坑最深开挖面附近。  相似文献   

8.
庄海洋  张艳书  薛栩超  徐烨 《岩土力学》2016,37(Z2):561-570
以上海地区某深软场地地铁狭长深基坑为工程背景,对开挖引起的地表和周边建筑物沉降、地下连续墙侧移、墙顶和立柱竖向位移等的监测数据进行了详细地统计和分析,探讨了深软场地狭长深基坑变形的时空分布特征及其主要诱因。对比分析实测墙体最大侧移?hm和最大地表沉降?vm与已有统计结果和经验预测结果,结果表明深软场地狭长深基坑的变形时空效应非常明显。与已有上海地区深基坑工程实测统计得出的地表沉降预测结果相比,狭长基坑周围地表沉降曲线基本符合已有的经验预测结果,但与已有的实测统计结果相比,实测墙体最大侧移?hm和最大地表沉降?vm与开挖深度的比值平均线明显低于已有的统计结果,主要原因是针对地铁狭长深基坑特点采用的地连墙和多层内支撑的围护结构体系明显区别于一般深基坑的围护结构体系所造成的,表明该围护结构体系能够很好地控制狭长深基坑的变形发展。  相似文献   

9.
张戎泽  钱建固 《岩土力学》2015,36(10):2921-2926
针对刚性挡墙不同变位模式,对基坑开挖过程中地表沉陷规律进行模型试验研究。开展的模型试验分别模拟了挡墙在平移(T模式)、绕墙趾转动(RB模式)和绕墙顶转动(RT模式)3种基本刚性变位模式下诱发的墙后地表沉陷,得到了土体沉陷曲线的分布规律。结果表明,挡墙平移时,墙后地表沉降呈勺型分布,最大沉降紧靠墙背处;挡墙绕墙趾转动时,墙后地表沉降近似呈三角形分布,最大沉降紧靠墙背处;挡墙绕墙顶转动时,墙后地表沉降近似呈抛物线分布,最大沉降位于距墙背一定距离的位置处。挡墙变位距离相同时,对于绕墙趾和绕墙顶转动模式,墙后土体沉陷的面积基本相等,两者沉陷面积之和近似等于平移模式的土体沉陷面积,另外,挡墙变位面积与墙后土体沉陷面积也近乎一致。将试验观察的沉陷曲线与既有的解析解作了对比分析,验证了二者的一致性。  相似文献   

10.
以上海地区某深软场地地铁狭长深基坑为工程背景,对开挖引起的地表和周边建筑物沉降、地下连续墙侧移、墙顶和立柱竖向位移等的监测数据进行了详细地统计和分析,探讨了深软场地狭长深基坑变形的时空分布特征及其主要诱因。对比分析实测墙体最大侧移δ_(hm)和最大地表沉降δ_(vm)与已有统计结果和经验预测结果,结果表明深软场地狭长深基坑的变形时空效应非常明显。与已有上海地区深基坑工程实测统计得出的地表沉降预测结果相比,狭长基坑周围地表沉降曲线基本符合已有的经验预测结果,但与已有的实测统计结果相比,实测墙体最大侧移δ_(hm)和最大地表沉降δ_(vm)与开挖深度的比值平均线明显低于已有的统计结果,主要原因是针对地铁狭长深基坑特点采用的地连墙和多层内支撑的围护结构体系明显区别于一般深基坑的围护结构体系所造成的,表明该围护结构体系能够很好地控制狭长深基坑的变形发展。  相似文献   

11.
刘念武  龚晓南  俞峰  房凯 《岩土力学》2014,35(8):2293-2298
具有内支撑结构的围护系统在基坑边角处具有更大的系统刚度,使得基坑边角附近处土体的位移小于距离边角较远处土体的位移,即基坑的变形问题表现出空间特性。为了更好地研究L/He(L为沿基坑纵向方向上的距离;He为开挖深度)、开挖深度等因素对空间效应的影响,量测了两个狭长形地铁车站深基坑不同位置处土体的侧向位移、土体沉降等。通过对现场监测资料的分析发现,边角效应能够减小侧向位移的平面应变比,灌注桩围护结构、SMW工法桩围护结构和地下连续墙在边角附近处的平面应变比(PSR)分别为0.50、0.61和0.72。当平面应变比(PSR)接近于1.00时,对应的L/He值分别为2.50、6.00和4.00。随着L/He值的增大,土体的纵向最大沉降呈先增大后保持稳定的趋势。随开挖深度的增加,边角效应的影响范围呈增大的趋势。在基坑纵向沉降的空间效应中,灌注桩围护结构、SMW工法桩围护结构的土体最大沉降值达到稳定时对应的L/He值分别为2.50和5.20。土体沉降和侧向位移的空间效应有一定的相关性。  相似文献   

12.
康志军  谭勇  李想  卫彬  徐长节 《岩土力学》2016,37(10):2909-2914
围护结构最大侧移所在深度是衡量基坑变形的重要指标之一,而目前鲜有关于其对周边环境变形影响的研究。基于工程实测数据分析和有限元数值模拟,系统地研究了基坑围护结构最大侧移深度对邻近桩基础建筑物不均匀沉降和坑外深层土体位移场的影响。经研究发现:围护结构最大侧移的下移会导致坑外土体位移场扩大,进而降低相应区域的桩基础承载力,导致邻近桩基础建筑物发生显著的不均匀沉降。不同深度的土体经历复杂的竖向位移,且位移形态与围护结构最大侧移深度密切相关。随围护结构最大侧移深度的逐渐下移,坑外土体位移场向深层土体发展,且主要影响范围相应地扩大。在实际工程中,根据基坑周边环境合理地控制围护结构最大侧移所在深度,可有效降低基坑开挖对周边环境的不利影响。  相似文献   

13.
A new approach for simulating the excavation and construction of subsequent panels is proposed to investigate the effects from the installation of diaphragm walls on the surrounding and adjacent buildings. The method has been combined with a 3-D nonlinear analysis and a constitutive law providing bulk and shear modulus variation, depending on the stress path (loading, unloading, reloading). From the application of the method in a normally to slightly over-consolidated clayey soil it was found that the panel length is the most affecting factor of ground movements and lateral stress reduction during panel installation. Moreover, from the evaluation of horizontal stress reduction and the variation of horizontal displacements arises that the effects from the construction of a panel are mainly limited to a zone within a distance of the order of the panel length. The effects on an adjacent building have also been investigated by applying a full soil–structure interaction including the whole building. Settlement profiles and settlements are given at specific points as increasing with subsequent installation of panels, providing the ability of specific monitoring guidelines for the upcoming construction of the diaphragm wall in front of the building. Contrary to lateral movements, which mostly take place at the panel under construction, it was found that the effect of settlements covers a larger area leading to a progressive settlement increase. The effect highly depends on the distance from the panel under construction.  相似文献   

14.
以广州地铁9号线在岩溶地区施工深基坑为例,研究岩溶地层基坑施工对周围环境的影响。该车站基坑长259.7 m,宽18.7 m,深15.8 m。基坑深度范围内包括溶洞和砂层,溶洞地层富水、稳定性差、物理力学性质差,砂层厚0~15 m,有较大的渗透性,基坑施工过程中对地下连续墙的侧向位移和地面沉降进行了监测。监测结果表明,基坑开挖结束时地下连续墙的最大侧向位移为12 mm,地面沉降的最大值为10.1 mm,基坑开挖过程中对周围环境的影响很小。研究成果可为今后类似工程施工提供经验借鉴。  相似文献   

15.
朱宁  周洋  刘维  史培新  吴奔 《岩土力学》2018,39(Z1):529-536
采用三维有限差分软件FLAC3D对地下连续墙施工进行模拟,分析苏州地区粉土地层中地连墙施工对土体扰动及周边建筑物影响。利用UBCSAND硬化规律对外部扰动作用下土体强度逐步发挥的力学特性进行表征,模拟开挖过程中浅层土体变形,并对地连墙施工中成槽开挖、钢筋混凝土施工及混凝土硬化进行全过程模拟。计算结果表明,硬化模型较好地反映地连墙施工扰动下浅层土体力学特性;地连墙成槽阶段地层变形随深度的增加而减小,地表以下20 m范围内地层变形显著,而深部土体变形较小;钢筋混凝土浇筑施工对地层变形起到抑制作用;混凝土硬化阶段地层变形趋于稳定。在该基础上采用硬化模型对苏州某基坑地连墙施工进行数值仿真,模拟结果和现场实测吻合较好。  相似文献   

16.
丁智  王达  王金艳  魏新江 《岩土力学》2015,36(Z1):506-512
由于影响深基坑变形的因素较多,根据基坑开挖深度等条件的不同,对浙江地区(杭州地区居多)37个深基坑工程实测数据进行了统一归纳研究,分析了在浙江软弱土大背景下的深基坑侧移曲线与周边沉降曲线的特点,得出了基坑最大侧移量与开挖深度等之间的关系。研究结果表明,浙江软土深基坑的最大侧移点在开挖面以上4 m与开挖面以下7 m之间;抛物线形沉降曲线的最大沉降一般发生在距坑边0.5倍开挖深度处;最大沉降量、最大侧移量与开挖深度呈线性增长;最大侧移量与最大沉降量的关系受土质影响较大。进一步根据实测统计数据,结合软弱土基坑侧移曲线特点,提出了一种预测基坑侧移曲线的方法,该法预测基坑侧移量与实测值较为吻合。  相似文献   

17.
18.
基于三维数值模拟的深基坑隔断墙优化设计   总被引:2,自引:0,他引:2  
应宏伟  李涛  王文芳 《岩土力学》2012,33(1):220-226
作为一种保护邻近建筑物的措施,隔断墙已经开始在深基坑工程中应用,但目前对其有关参数的设计还缺乏理论指导。以某软土地区深大基坑实例为背景,利用有限元分析软件ABAQUS,建立三维有限元分析模型,土体采用修正剑桥模型,模拟开挖实际工况,深入分析了隔断墙各设计参数对保护基坑邻近建筑物效果的影响,邻近建筑物沉降计算值和实测值验证了隔断墙参数优化分析结果的合理性。研究结果表明:地表位移、建筑物的横向角变量和围护墙最大位移随着隔断墙深度的增加而逐渐减小,但建筑物横向角变量的减小幅度趋缓,隔断墙存在一合理深度;随着隔断墙的位置逐渐从基坑侧壁向邻近建筑物移动,隔断墙外侧地表横向和纵向沉降以及纵向不均匀沉降均减小,建筑物的横向角变量也明显减小。理论上,隔断墙越靠近邻近建筑物,保护建筑物的效果越好;隔断墙的平面设置范围对于邻近建筑的保护效果也有着明显的影响,一般情况下可以取邻近建筑物的范围作为隔墙的合理设置范围;隔断墙刚度对地表位移和建筑物角变量影响不大,实际工程中宜取中等刚度的隔断墙。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号