首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
ABSTRACT

Glacier-melt-induced changes in runoff are of concern in northwestern China where glacier runoff is a major source for irrigation, industries and ecosystems. Samples were collected in different water mediums such as precipitation, glacial ice/snowcover, meltwater, groundwater and streamwater for the analysis of stable isotopes and solute contents during the 2009 runoff season in the Laohugou Glacial Catchment. The multi-compare results of δ18O values showed that significant difference existed in different water mediums. Source waters of streamflow were determined using data of isotopic and geochemical tracers and a three-component hydrograph separation model. The results indicated that meltwater dominated (69.9 ± 2.7%) streamflow at the catchment. Precipitation and groundwater contributed 17.3 ± 2.3% and 12.8 ± 2.4% of the total discharge, respectively. According to the monthly hydrograph, the contribution of snow and glacier meltwater varied from 57.4% (September) to 79.1% (May), and that of precipitation varied from 0% (May) to 34.6% (September). At the same time, the monthly contribution of groundwater kept relatively steady, varying from 9.7% (June) to 20.9% (May) in the runoff season. Uncertainties for this separation were mainly caused by the variation of tracer concentrations. It is suggested that the end-member mixing analysis (EMMA) method can be used in the runoff separation in an alpine glacial catchment.
Editor Z.W. Kundzewicz; Associate editor Not assigned  相似文献   

2.
The observed retreat of several Himalayan glaciers and snow packs is a cause of concern for the huge population in southern Asia that is dependent on the glacial‐fed rivers emanating from Himalayas. There is considerable uncertainty about how cryospheric recession in the Himalayan region will respond to climate change, and how the water resource availability will be affected. As a first step towards quantifying the contribution of glacier‐melt water, hydrograph separation of River Ganga at Rishikesh into its constituent components, namely (i) surface runoff, (ii) glacial ice‐melt and (iii) groundwater discharge has been done in this paper. A three‐component mixing model has been employed using the values of δ18O and electrical conductivity (EC) of the river water, and its constituents, to estimate the time‐varying relative fraction of each component. The relative fraction of the surface runoff peaks (70–90%) during winter, due to the near‐zero contribution of glacial ice‐melt, essentially represents the melting of surface snow from the catchment. The contribution of glacial ice‐melt to the stream discharge peaks during summer and monsoon reaches a maximum value of ~40% with an average of 32%. The fraction of groundwater discharge varies within a narrow range (15 ± 5%) throughout the year. On the basis of the variation in the d‐excess values of river water, it is also suggested that the snow‐melt and ice‐melt component has a significant fraction derived from winter precipitation with moisture source from mid‐latitude westerlies (also known as western disturbances). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Studies on hydrological processes are often emphasized in resource and environmental studies. This paper identifies the hydrological processes in different landscape zones during the wet season based on the isotopic and hydrochemical analysis of glacier, snow, frozen soil, groundwater and other water sources in the headwater catchment of alpine cold regions. Hydrochemical tracers indicated that the chemical compositions of the water are typically characterized by: (1) Ca? HCO3 type in glacier snow zone, (2) Mg? Ca? SO4 type for surface runoff and Ca? Mg? HCO3 type for groundwater in alpine desert zone, (3) Ca? Mg? SO4 type for surface water and Ca? Mg? HCO3 type for groundwater in alpine shrub zone, and (4) Ca? Na? SO4 type in surface runoff in the alpine grassland zone. The End‐Members Mixing Analysis (EMMA) was employed for hydrograph separation. The results showed that the Mafengou River in the wet season was mainly recharged by groundwater in alpine cold desert zones and shrub zones (52%), which came from the infiltration and transformation of precipitation, thawed frozen soil water and glacier‐snow meltwater. Surface runoff in the glacier‐snow zone accounted for 11%, surface runoff in alpine cold desert zones and alpine shrub meadow zones accounted for 20%, thawed frozen soil water in alpine grassland zones accounted for 9% of recharge and precipitation directly into the river channel (8%). This study suggested that the whole catchment precipitation did not produce significant surface runoff directly, but mostly transformed into groundwater or interflow, and finally arrived in the river channel. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Glaciers are of crucial importance for the livelihood of the local populations, which depend on their meltwater for water and energy supplies. For this reason, seasonal variations of oxygen‐18 of glacial stream water and their sources within a small glacial catchment in south western China were investigated during the wet season. The results showed significant difference of oxygen‐18 existed among meltwater, rainwater, ground water and stream water, and significantly seasonal variation of precipitation occurred during the observed period. The streamflow of Baishui catchment was separated into components of ice‐snowmelt and precipitation using oxygen‐18. As shown by the result of the two‐component mixing model, on average, 53.4% of the runoff came from ice‐snowmelt during the wet season, whereas the remaining 46.6% were contributed by precipitation in the catchment. According to monthly hydrograph, the contribution of snow and glacier meltwater varied from 40.7% to 62.2%, and that of precipitation varied from 37.8% to 59.3% in wet season. Uncertainties for this separation were mainly caused by the variation of tracer concentrations. The roles of glacier and snow meltwater should be noticed in water resource management in those glacial regions in south western China. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Monitoring of stable water isotopes (δ18O and δ2H) at the watershed scales can improve our understanding of complex hydrology and hydroclimatology of the watershed, especially in remote regions. Previous studies that used tracers for hydrograph separation are largely based on end‐member mixing approach (EMMA), but one drawback of this approach is that at least two independent tracers are required for multi‐component separation. Here we introduce a new approach—path analysis, in combination with isotopic measurements to investigate the runoff generation in a glacier‐covered alpine catchment (upper Hailuogou Valley) in southwest China. This newly developed method can not only provide a multi‐component hydrograph separation with the aid of only one tracer but also determine the direct and indirect influence of sources on streamflow. Path analysis show that the majority of streamflow is dominated by ice/snow meltwater that represents about 63–78% of the total discharge, whereas precipitation and groundwater contribute approximately 19–39% and 2–4% of the streamflow discharge, respectively. These results are in good agreement with those derived from EMMA (using 18O and Cl? as tracers), corroborating that our proposed approach is successful in hydrograph separation of the catchment. This approach may provide new opportunities for the hydrograph separation of catchment with sparse data and be of interest to catchment hydrologists who seek to understand the behaviour of hydrologic systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Snowmelt drives a large portion of streamflow in many mountain areas of the world. However, the water paths from snowmelt to the arrival of the water in the streams are still largely unknown. This work analyzes for first time the influence of snowmelt on spring streamflow with different snow accumulation and duration, in an alpine catchment of the central Spanish Pyrenees. This study presents the water balance of the main melting months (May and June). Piezometric values, water temperature, electrical conductivity and isotope data (δ18O) allow a better understanding of the hydrological functioning of the basin during these months. Results of the water balance calculations showed that snow represented on average 73% of the water available for streamflow in May and June while precipitation during these months accounted for only 27%. However, rainfall during the melting period was important to determine the shape of the spring hydrographs. On average, 78% of the sum of both the snow water equivalent (SWE) accumulated at the beginning of May and the precipitation in May and June converted into runoff during the May–June melting period. The average evaporation-sublimation during the 2 months corresponded to 8.4% of the accumulated SWE and rainfall, so that only a small part of the water input was ultimately available for soil and groundwater storage. When snow cover disappeared from the catchment, soil water storage and streamflow showed a sharp decline. Consequently, streamflow electrical conductivity, temperature and δ18O showed a marked tipping point towards higher values. The fast hydrological response of the catchment to snow and meteorological fluctuations, as well as the marked diel fluctuations of streamflow δ18O during the melting period, strongly suggests short meltwater transit times. As a consequence of this hydrological behaviour, independently of the amount of snow accumulated and of melting date, summer streamflow remained always low, with only small runoff peaks driven by rainfall events.  相似文献   

7.
Snow and glaciers are known to be important sources for freshwater; nevertheless, our understanding of the hydrological functioning of glacial catchments remains limited when compared with lower altitude catchments. In this study, a temperate glacial region located in the southeast margin of the Tibetan Plateau is selected to analyse the characteristics of δ18O and δD in different water sources and the contribution of glacier–snow meltwater to streamflow. The results indicate that the δ18O of river water ranges from ?16.2‰ to ?10.2‰ with a mean of ?14.1‰ and that the δD values range from ?117.0‰ to ?68.0‰ with a mean of ?103.1‰. These values are more negative than those of glacier–snow meltwater but less negative than those of precipitation. The d ‐excess values are found to decrease from meltwater to river to lake/reservoir water as a result of evaporation. On the basis of hydrograph separation, glacier–snow meltwater accounts for 51.5% of river water in the Baishui catchment in the melting season. In the Yanggong catchment, snow meltwater contributes 47.9% to river water in the premonsoon period, and glacier meltwater contributes only 6.8% in the monsoon period. The uncertainty in hydrograph separation is sensitive to the variation of tracer concentrations of streamflow components. The input of meltwater to a water system varies with local climate and glacier changes. The results confirm that hydrograph separation using water isotopes is valuable for evaluating the recharge sources of rivers, especially in ungauged glacial regions. This study provides insights into the hydrological processes of glacial catchments on the Tibetan Plateau, which is important for water resource management.  相似文献   

8.
The two-component hydrograph separation method has been used to investigate the sources of storm runoff at Allt a Mharcaidh during storms in October 1987, September 1988, and June 1989. Results show that for the September and October storms, more than 88 per cent of storm runoff was contributed by pre-event water and 54 per cent of the June storm runoff. Instantaneous contributions of pre-event water at the hydrograph peak vary from 91 per cent in September 1988 to 41 per cent in June 1989. Detailed examination of soil and borehole water, however, shows that these subcomponents of pre-event water do not always have similar chemistry and isotope concentrations. Therefore, information from the two-component separation method alone should not be used to infer processes or pathways, although some broad indications can be obtained through the additional use of soil water and groundwater chemistry.  相似文献   

9.
The active rock glacier “Innere Ölgrube” and its catchment area (Ötztal Alps, Austria) are assessed using various hydro(geo)logical tools to provide a thorough catchment characterization and to quantify temporal variations in recharge and discharge components. During the period from June 2014 to July 2018, an average contribution derived from snowmelt, ice melt and rainfall of 35.8%, 27.6% and 36.6%, respectively, is modelled for the catchment using a rainfall-runoff model. Discharge components of the rock glacier springs are distinguished using isotopic data as well as other natural and artificial tracer data, when considering the potential sources rainfall, snowmelt, ice melt and longer stored groundwater. Seasonal as well as diurnal variations in runoff are quantified and the importance of shallow groundwater within this rock glacier-influenced catchment is emphasized. Water derived from ice melt is suggested to be provided mainly by melting of two small cirque glaciers within the catchment and subordinately by melting of permafrost ice of the rock glacier. The active rock glacier is characterized by a layered internal structure with an unfrozen base layer responsible for groundwater storage and retarded runoff, a main permafrost body contributing little to the discharge (at the moment) by permafrost thaw and an active layer responsible for fast lateral flow on top of the permafrost body. Snowmelt contributes at least 1/3rd of the annual recharge. During droughts, meltwater derived from two cirque glaciers provides runoff with diurnal runoff variations; however, this discharge pattern will change as these cirque glaciers will ultimately disappear in the future. The storage-discharge characteristics of the investigated active rock glacier catchment are an example of a shallow groundwater aquifer in alpine catchments that ought to be considered when analysing (future) river runoff characteristics in alpine catchments as these provide retarded runoff during periods with little or no recharge.  相似文献   

10.
Near-surface processes on glaciers, including water flow over bare ice and through seasonal snow and firn, have a significant effect on the speed, volume and chemistry of water flow through the glacier. The transient nature of the seasonal snow profoundly affects the water discharge and chemistry. Water flow through snow is fairly slow compared with flow over bare ice and a thinning snowpack on a glacier decreases the delay between peak meltwater input and peak stream discharge. Furthermore, early spring melt flushes the snowpack of solutes and by mid-summer the melt water flowing into the glacier is fairly clean by comparison. The firn, a relatively constant feature of glaciers, attenuates variations in water drainage into the glacier by temporarily storing water in saturated layer. Bare ice exerts opposite influences by accentuating variations in runoff by water flowing over the ice surface. The melt of firn and ice contributes relatively clean (solute-free) water to the glacier water system.  相似文献   

11.
Model calculations are made in order to understand the characteristics and response to climate change of runoff from a cold glacier on the Tibetan Plateau. Some 20% of meltwater is preserved at the snow–ice boundary due to refreezing, since the glaciers in mid to northern Tibet are sufficiently cooled during the previous winter. Sensitivity to alterations in meteorological parameters has revealed that a change in air temperature would cause not only an increase in melting by sensible heat, but also a drastic increase in melting due to lowering of the albedo, since some of the snowfall changes to rainfall. In addition, it was suggested that a decrease in precipitation would cause a lowering of the surface albedo, with a resulting increase in the contribution of glacier runoff to the total runoff of river water. This study shows the first quantitative evaluation of the above effects, though they have been suggested qualitatively. The seasonal sensitivity of glacier runoff was examined by changing the dates given for a meteorological perturbation for a period of only 5 days. It was revealed that changes in both air temperature and precipitation during the melting season strongly affected glacier runoff by changing the surface albedo, though these perturbations only slightly altered the annual averages. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Large floods are often attributed to the melting of snow during a rain event. This study tested how climate variability, snowpack presence, and basin physiography were related to storm hydrograph shape in three small (<1 km2) basins with old‐growth forest in western Oregon. Relationships between hydrograph characteristics and precipitation were tested for approximately 800 storms over a nearly 30‐year period. Analyses controlled for (1) snowpack presence/absence, (2) antecedent soil moisture, and (3) hillslope length and gradient. For small storms (<150 mm precipitation), controlling for precipitation, the presence of a snowpack on near‐saturated soil increased the threshold of precipitation before hydrograph rise, extended the start lag, centroid lag, and duration of storm hydrographs, and increased the peak discharge. The presence of a snowpack on near‐saturated soil sped up and steepened storm hydrographs in a basin with short steep slopes, but delayed storm hydrographs in basins with longer or more gentle slopes. Hydrographs of the largest events, which were extreme regional rain and rain‐on‐snow floods, were not sensitive to landform characteristics or snowpack presence/absence. Although the presence of a snowpack did not increase peak discharge in small, forested basins during large storms, it had contrasting effects on storm timing in small basins, potentially synchronizing small basin contributions to the larger basin hydrograph during large rain‐on‐snow events. By altering the relative timing of hydrographs, snowpack melting could produce extreme floods from precipitation events whose size is not extreme. Further work is needed to examine effects of canopy openings, snowpack, and climate warming on extreme rain‐on‐snow floods at the large basin scale. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.

Some analytical results of the measured runoff during 1950s to 1980s at outlet hydrological stations of 33 main rivers and climatic data collected from 84 meteorological stations in Xinjiang Autonomous Region are presented. Comparison of hydrological and climatic parameters before and after 1980 shows that the spring runoff for most rivers after 1980s increased obviously at a rate of about 10%, though the spring air temperature did not rise very much. Especially. an increment by 20% for alpine runoff is observed during May when intensive snow melting occurred in the alpine region. To the contmy, the runoff in June decreased about 5%. When the summer or annual runoff is taken into account. direct relationship can be found between the change in runoff and the ratio of glacier-coverage, except the runoff in August when the glacier melting is strong, indicating that climatic warming has an obvious effect on the contribution of glacier melting to the runoff increase

  相似文献   

14.
We apply the process‐based, distributed TOPKAPI‐ETH glacio‐hydrological model to a glacierized catchment (19% glacierized) in the semiarid Andes of central Chile. The semiarid Andes provides vital freshwater resources to valleys in Chile and Argentina, but only few glacio‐hydrological modelling studies have been conducted, and its dominant hydrological processes remain poorly understood. The catchment contains two debris‐free glaciers reaching down to 3900 m asl (Bello and Yeso glaciers) and one debris‐covered avalanche‐fed glacier reaching to 3200 m asl (Piramide Glacier). Our main objective is to compare the mass balance and runoff contributions of both glacier types under current climatic conditions. We use a unique dataset of field measurements collected over two ablation seasons combined with the distributed TOPKAPI‐ETH model that includes physically oriented parameterizations of snow and ice ablation, gravitational distribution of snow, snow albedo evolution and the ablation of debris‐covered ice. Model outputs indicate that while the mass balance of Bello and Yeso glaciers is mostly explained by temperature gradients, the Piramide Glacier mass balance is governed by debris thickness and avalanches and has a clear non‐linear profile with elevation as a result. Despite the thermal insulation effect of the debris cover, the mass balance and contribution to runoff from debris‐free and debris‐covered glaciers are similar in magnitude, mainly because of elevation differences. However, runoff contributions are distinct in time and seasonality with ice melt starting approximately four weeks earlier from the debris‐covered glacier, what is of relevance for water resources management. At the catchment scale, snowmelt is the dominant contributor to runoff during both years. However, during the driest year of our simulations, ice melt contributes 42 ± 8% and 67 ± 6% of the annual and summer runoff, respectively. Sensitivity analyses show that runoff is most sensitive to temperature and precipitation gradients, melt factors and debris cover thickness. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
The Mendoza River is mainly dependent on the melting of snow and ice in the Upper Andes. Since predicted changes in climate would modify snow accumulation and glacial melting, it is important to understand the relative contributions of various water sources to river discharge. The two main mountain ranges in the basin, Cordillera Principal and Cordillera Frontal, present differences in geology and receive differing proportions of precipitation from Atlantic and Pacific moisture sources. We propose that differences in the origin of precipitation, geology and sediment contact times across the basin generate ionic and stable isotopic signatures in the water, allowing the differentiation of water sources. Waters from the Cordillera Principal had higher salinity and were more isotopically depleted than those from the Cordillera Frontal. Stable isotope composition and salinity differed among different water sources. The chemical temporal evolution of rivers and streams indicated changes in the relative contributions of different sources, pointing to the importance of glacier melting and groundwater in the river discharge.  相似文献   

16.
Stable isotope variability and fractionation associated with transformation of precipitation/accumulation to firn to glacial river water is critical in a variety of climatic, hydrological and paleoenvironmental studies. This paper documents the modification of stable isotopes in water from precipitation to glacier runoff in an alpine catchment located in the central Tibetan Plateau. Isotopic changes are observed by sampling firnpack profiles, glacier surface snow/ice, meltwater on the glacier surface and catchment river water at different times during a melt season. Results show the isotopic fractionation effects associated with glacier melt processes. The slope of the δD‐δ18O regression line and the deuterium excess values decreased from the initial precipitation to the melt‐impacted firnpack (slope from 9.3 to 8.5 and average d‐excess from 13.4‰ to 7.4‰). The slope of the δD‐δ18O line further decreased to 7.6 for the glacier runoff water. The glacier surface snow/ice from different locations, which produces the main runoff, had the same δD‐δ18O line slope but lower deuterium excess (by 3.9‰) compared to values observed in the firnpack profile during the melt season. The δD‐δ18O regression line for the river water exhibited a lower slope compared to the surface snow/ice samples, although they were closely located on the δD‐δ18O plot. Isotope values for the river and glacier surface meltwater showed little scatter around the δD‐δ18O regression line, although the samples were from different glaciers and were collected on different days. Results indicate a high consistency of isotopic fractionation in the δD‐δ18O relationships, as well as a general consistency and temporal covariation of meltwater isotope values at the catchment scale. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Some analytical results of the measured runoff during 1950s to 1980s at outlet hydrological stations of 33 main rivers and climatic data collected from 84 meteorological stations in Xinjiang Autonomous Region are presented. Comparison of hydrological and climatic parameters before and after 1980 shows that the spring runoff for most rivers after 1980s increased obviously at a rate of about 10%, though the spring air temperature did not rise very much. Especially. an increment by 20% for alpine runoff is observed during May when intensive snow melting occurred in the alpine region. To the contmy, the runoff in June decreased about 5%. When the summer or annual runoff is taken into account. direct relationship can be found between the change in runoff and the ratio of glacier-coverage, except the runoff in August when the glacier melting is strong, indicating that climatic warming has an obvious effect on the contribution of glacier melting to the runoff increase  相似文献   

18.
One of the most important functions of catchments is the storage of water. Catchment storage buffers meteorological extremes and interannual streamflow variability, controls the partitioning between evaporation and runoff, and influences transit times of water. Hydrogeological data to estimate storage are usually scarce and seldom available for a larger set of catchments. This study focused on storage in prealpine and alpine catchments, using a set of 21 Swiss catchments comprising different elevation ranges. Catchment storage comparisons depend on storage definitions. This study defines different types of storage including definitions of dynamic and mobile catchment storage. We then estimated dynamic storage using four methods, water balance analysis, streamflow recession analysis, calibration of a bucket‐type hydrological model Hydrologiska Byråns Vattenbalansavdelning model (HBV), and calibration of a transfer function hydrograph separation model using stable isotope observations. The HBV model allowed quantifying the contributions of snow, soil and groundwater storages compared to the dynamic catchment storage. With the transfer function hydrograph separation model both dynamic and mobile storage was estimated. Dynamic storage of one catchment estimated by the four methods differed up to one order of magnitude. Nevertheless, the storage estimates ranked similarly among the 21 catchments. The largest dynamic and mobile storage estimates were found in high‐elevation catchments. Besides snow, groundwater contributed considerably to this larger storage. Generally, we found that with increasing elevation the relative contribution to the dynamic catchment storage increased for snow, decreased for soil, but remained similar for groundwater storage.  相似文献   

19.
Climate change and runoff response were assessed for the Tizinafu River basin in the western Kunlun Mountains, China, based on isotope analysis. We examined climate change in the past 50 years using meteorological data from 1957 to 2010. Results of the Mann-Kendall non-parametric technique test indicated that temperature in the entire basin and precipitation in the mountains exhibited significant increasing trends. Climate change also led to significant increasing trends in autumn and winter runoff but not in spring runoff. By using 122 isotope samples, we investigated the variations of isotopes in different water sources and analysed the contributions of different water sources based on isotope hydrograph separation. The results show that meltwater, groundwater and rainfall contribute 17%, 40% and 43% of the annual streamflow, respectively. Isotope analysis was also used to explain the difference in seasonal runoff responses to climate change. As the Tizinafu is a precipitation-dependent river, future climate change in precipitation is a major concern for water resource management.
EDITOR A. Castellarin; ASSOCIATE EDITOR S. Huang  相似文献   

20.
Abstract

Low-temperature scanning electron microscopy (SEM) was used to observe metamorphosed snow, glacial firn, and glacial ice obtained from South Cascade Glacier in Washington State, USA. Biotic samples consisting of algae (Chlamydomonas nivalis) and ice worms (a species of oligochaetes) were also collected and imaged. In the field, the snow and biological samples were mounted on copper plates, cooled in liquid nitrogen, and stored in dry shipping containers which maintain a temperature of-196°C. The firn and glacier ice samples were obtained by extracting horizontal ice cores, 8 mm in diameter, at different levels from larger standard glaciological (vertical) ice cores 7.5 cm in diameter. These samples were cooled in liquid nitrogen and placed in cryotubes, were stored in the same dry shipping container, and sent to the SEM facility. In the laboratory, the samples were sputter coated with platinum and imaged by a low-temperature SEM. To image the firn and glacier ice samples, the cores were fractured in liquid nitrogen, attached to a specimen holder, and then imaged. While light microscope images of snow and ice are difficult to interpret because of internal reflection and refraction, the SEM images provide a clear and unique view of the surface of the samples because they are generated from electrons emitted or reflected only from the surface of the sample. In addition, the SEM has a great depth of field with a wide range of magnifying capabilities. The resulting images clearly show the individual grains of the seasonal snowpack and the bonding between the snow grains. Images of firn show individual ice crystals, the bonding between the crystals, and connected air spaces. Images of glacier ice show a crystal structure on a scale of 1–2 mm which is considerably smaller than the expected crystal size. Microscopic air bubbles, less than 15 μm in diameter, clearly marked the boundaries between these crystal-like features. The life forms associated with the glacier were easily imaged and studied. The low-temperature SEM sample collecting and handling methods proved to be operable in the field; the SEM analysis is applicable to glaciological studies and reveals details unattainable by conventional light microscopic methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号