首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
SAR遥感图像在汶川地震灾害识别中的应用   总被引:4,自引:0,他引:4       下载免费PDF全文
汶川地震发生后,受阴雨天气的影响,光学遥感影像在救灾决策中的作用受到了很大的限制,而SAR图像由于其全天候的特点成为这次抗震救灾前期遥感信息保障十分重要的数据源.采用ENVISAT的ASAR作为数据源,利用多时相的雷达数据的幅度及相位信息对映秀及周边地区做了地震灾害识别,其中利用震前震后的幅度图像做比值变化检测,在映秀镇及紫坪铺水库等山区取得了较好的效果;利用相位信息做干涉处理得到的相干图像,经过失相干分析,发现建筑物的破坏等级与相干系数变化指数的大小高度相关.比较这两种方法,在都江堰等平原地区由于失相干现象不像山区那么严重,并且利用比值处理可以去除部分空间失相干及系统热噪声等带来的干扰因素,可以成为幅度图像的有益补充.结果表明,结合SAR幅度影像和干涉相干影像,可以在地震灾害评估中取得更好效果.随着极化干涉雷达技术的日益成熟,多时相幅度信息、相位信息等多特征SAR影像信息的融合会在救灾决策中发挥更大的作用.  相似文献   

2.
Stormwater runoff plumes, municipal wastewater plumes, and natural hydrocarbon seeps are important pollution hazards for the heavily populated Southern California Bight (SCB). Due to their small size, dynamic and episodic nature, these hazards are difficult to sample adequately using traditional in situ oceanographic methods. Complex coastal circulation and persistent cloud cover can further complicate detection and monitoring of these hazards. We use imagery from space-borne synthetic aperture radar (SAR), complemented by field measurements, to examine these hazards in the SCB. The hazards are detectable in SAR imagery because they deposit surfactants on the sea surface, smoothing capillary and small gravity waves to produce areas of reduced backscatter compared with the surrounding ocean. We suggest that high-resolution SAR, which obtains useful data regardless of darkness or cloud cover, could be an important observational tool for assessment and monitoring of coastal marine pollution hazards in the SCB and other urbanized coastal regions.  相似文献   

3.
A new method for the retrieval of ocean wave parameters from SAR imagery is developed,based on the shape-from-shading(SFS)technique.Previously,the SFS technique has been used in the reconstruction of 3D landform information from SAR images,in order to generate elevation maps of topography for land surfaces.Here,in order to retrieve ocean wave characteristics,we apply the SFS methodology,together with a method to orient the angular measurements of the azimuth slope and range slope,in the measurement of ocean surface waves.This method is applied to high resolution fine-quad polarization mode(HH,VV,VH and HV)C-band RADARSAT-2 SAR imagery,in order to retrieve ocean wave spectra and extract wave parameters.Collocated in situ buoy measurements are used to validate the reliability of this method.Results show that the method can reliably estimate wave height,dominant wave period,dominant wave length and dominant wave direction from C-band SAR images.The advantage of this method is that it does not depend on modulation transfer functions(MTFs),in order to measure ocean surface waves.This method can be used in monitoring ocean surface wave propagation through open water areas into ice-covered areas,especially the marginal ice zone(MIZ)in polar oceans.  相似文献   

4.
本研究将边界层相似理论与对流理论应用到具有海洋大气边界层(Marine Atmospheric Boundary Layer, MABL)对流特征的星载合成孔径雷达(Synthetic Aperture Radar, SAR)遥感图像,探讨了星载SAR遥感图像描述海气应力作用下水平扰动尺度变化的潜在可能性.针对具有三维对流涡旋Cell和二维水平滚轴涡旋Roll特征的星载SAR遥感图像,反演了中国海海域MABL高度,并与同步实验获取的MABL高度结果进行对比.结果表明,利用具有对流特征的星载SAR遥感图像反演MABL高度是可行的,展示了以高分辨率、大面积观测为特点的星载SAR遥感图像探测MABL的广阔前景.  相似文献   

5.
The Katla central volcano, covered by the fourth largest Icelandic glacier Mýrdalsjökull, is among the most dangerous and active volcanoes in Iceland. Due to the ice cover, several indicators of its volcanic activity can only be identified indirectly. We analysed a total of 30 synthetic aperture radar (SAR) images with special focus on identifying circular and linear depressions in the glacier surface. Such features are indicative of sub-glacial geothermal heat sources and the adjacent sub-glacial tunnel (melt water drainage) system. The time series comprises images from five different SAR sensors (ERS-1, ERS-2, JERS-1/SAR, RADARSAT and ENVISAT-ASAR) covering a time period of 12 years, starting in 1994. Individual SAR scenes only partly map the glacier surface morphology due to the environmental influences on the SAR backscatter intensity. Thus, only surface features detectable in several SAR scenes at the same location were considered and merged to form an overall picture of the surface morphology of Mýrdalsjökull and its modification by sub-glacial volcanic activity between 1994 and 2006. Twenty permanent and 4 semi-permanent ice cauldrons could be identified on the surface of Mýrdalsjökull indicating geothermally active areas in the underlying caldera. An analysis of their size was not possible due to the indistinct outline in the SAR images. The spatial distribution of the geothermally active areas led to a new, piecemeal caldera model of Katla volcano. All cauldrons are connected to tunnel systems for melt water drainage. More than 100 km of the sub-glacial drainage system could be identified under the Mýrdalsjökull in the SAR time series. It has been found that the tunnel systems are not in agreement with estimated water divides. Our results allow improved assessment of areas of potential Jökulhlaup hazard accompanying a sub-glacial eruption.  相似文献   

6.
SAR浅海水下地形遥感探测技术综述   总被引:2,自引:0,他引:2       下载免费PDF全文
SAR已成为浅海水下地形探测的重要技术手段之一.与传统浅海水下地形探测技术相比,SAR浅海水下地形遥感探测技术具有明显的经济效益.该水深探测技术通过对浅海水下地形SAR图像仿真模型的反演求解,从SAR图像中提取水下地形信息.本文回顾了SAR浅海水下地形遥感探测技术的不同数值模型和应用实例,并针对目前SAR浅海水下地形遥感探测技术存在的问题和今后研究方向进行了探讨和总结.  相似文献   

7.
Recent years have been marked by a continuous availability of spatial SAR data since the launch of the European remote sensing satellite (ERS-1) in 1991. Consequently, remote sensing techniques now offer an opportunity to map flood inundation fields caused by river overflow or waterlogging in environments characterized by frequent cloud cover. Indeed, inundation fields can clearly be seen on ERS-1 SAR images taken during flooding periods. However, such an identification can be constrained by the similarity in behaviour between water surfaces and other features of the landscape such as extended asphalt areas, permanent water bodies and less illuminated slopes. For consistent flood inundation extent mapping a more robust approach is required. This is provided by a conceptual flood inundation index that is physically sound in relation to radar imaging. Moreover, this index has proved to be useful for highlighting soils located within inundation fields and having significantly different internal drainage. The results achieved in the framework of the research must be seen in the context of intensive use of remote sensing data to support decision methods for sustainable management of land and water resources. Such decision support methods could be provided by river hydraulic models aimed at assessing environmental effects of inundation floods and at early flood warning systems. © 1997 John Wiley & Sons, Ltd.  相似文献   

8.
The synthetic aperture radar (SAR) plays an important role in earthquake emergency response because of its all-time and all-weather imaging capabilities. On April 14, 2010, an MS7.1 earthquake occurred in Yushu county, Qinghai province of China, causing a lot of buildings collapsed. In this paper, the building damage in Yushu city due to the earthquake was assessed quantitatively using high-resolution X-band airborne SAR image. The features of the buildings with different damage levels (collapsed, partial collapsed, non-collapsed) in the SAR image were analyzed first. Based on these building features, we interpreted the individual building damage in Yushu city block by block and got the numbers of the collapsed, partial collapsed and non-collapsed buildings separately for each block, referring to pre-earthquake QuickBird image when necessary. Let the damage index of individual collapsed, partial collapsed, non-collapsed building be 1, 0.5, 0 respectively, the remote sensing damage index of each block was then calculated through remote sensing damage index equation. Finally, the preliminary quantitative relationship between the remote sensing damage index interpreted from the SAR image and that interpreted from the optical image was built up. It can be concluded that a desirable damage assessment result can be derived from high-resolution airborne SAR imagery.  相似文献   

9.
Images from satellite platforms are a valid aid in order to obtain distributed information about hydrological surface states and parameters needed in calibration and validation of the water balance and flood forecasting. Remotely sensed data are easily available on large areas and with a frequency compatible with land cover changes. In this paper, remotely sensed images from different types of sensor have been utilized as a support to the calibration of the distributed hydrological model MOBIDIC, currently used in the experimental system of flood forecasting of the Arno River Basin Authority. Six radar images from ERS‐2 synthetic aperture radar (SAR) sensors (three for summer 2002 and three for spring–summer 2003) have been utilized and a relationship between soil saturation indexes and backscatter coefficient from SAR images has been investigated. Analysis has been performed only on pixels with meagre or no vegetation cover, in order to legitimize the assumption that water content of the soil is the main variable that influences the backscatter coefficient. Such pixels have been obtained by considering vegetation indexes (NDVI) and land cover maps produced by optical sensors (Landsat‐ETM). In order to calibrate the soil moisture model based on information provided by SAR images, an optimization algorithm has been utilized to minimize the regression error between saturation indexes from model and SAR data and error between measured and modelled discharge flows. Utilizing this procedure, model parameters that rule soil moisture fluxes have been calibrated, obtaining not only a good match with remotely sensed data, but also an enhancement of model performance in flow prediction with respect to a previous calibration with river discharge data only. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
机载SAR对海探测时,探测范围小和时空匹配难等局限使其无法借助风条纹和辅助资料反演海面风矢量.本文在仿真研究CMOD5.N地球物理模型参数的函数关系,实例分析机载SAR探测图像中距离向均值曲线变化规律的基础上,发现相同风向、风速条件下,CMOD5.N模型构建的标准曲线和探测图像的距离向均值曲线遵循统一的归一化雷达截面随入射角变化规律,且两者具有良好的相关性.据此,本文提出将距离向均值曲线与标准曲线逐条匹配,采用相关系数判定两者的相关程度,选择使得相关系数绝对值最大的标准曲线作为最优匹配曲线,进而直接确定风向和风速的海面风矢量反演方法.机载SAR飞行探测实验结果表明,海面风矢量反演结果与浮标观测结果的均方根误差为风向11.3°,风速0.9m·s-1,高于反演精度指标要求,原因在于该方法既避免了机载SAR探测图像中斑点噪声的影响,又不会产生局部最优解,提高了海面风矢量反演精度.  相似文献   

11.
Hybrid-polarimetric SAR (synthetic aperture radar) is a new SAR mode, with relatively simple architecture, low cost, and wide swath, which will be carried by several Earth-observing systems from now to the near future. Here, we show how the second Stokes parameter of hybrid-polarimetric SAR can be employed to detect oil on the ocean surface using the classic well-known Otsu threshold methodology, in relation to contributions from different polarizations and dampening effects on backscatter intensity, neglecting the specific scattering mechanisms and oil types for an oil-covered surface. The detection methodology is demonstrated to be reliable in three example cases: oil-on-water experiments conducted by the Norwegian Clean Seas Association, natural oil seeps from the Gulf of Mexico, and observations from the Deep Water Horizon oil spill disaster in 2010.  相似文献   

12.
巴姆地震地表形变的差分雷达干涉测量   总被引:7,自引:0,他引:7       下载免费PDF全文
夏耶 《地震学报》2005,27(4):423-430
利用星载合成孔径差分雷达干涉技术和ENVISAT卫星雷达数据, 获得了2003年12月26日伊朗巴姆的里氏6.5级地震引起的同震地表形变场,并详细地介绍了信号处理的过程. 利用地震前后的相干图的差异及形变场的突变棱线, 精确确定了地面上断层裂缝的位置、形状和长度. 这对震源理论模型的参数估计提供了依据. 由雷达干涉技术测量得到的形变场与理论模型模拟的结果一致.   相似文献   

13.
Ocean wave imaging mechanism by imaging radar   总被引:1,自引:1,他引:0  
Analytical representations of the high frequency spectra of ocean wave and its variation due to the variation of ocean surface current are derived from the wave-number spectrum balance equation. The ocean surface imaging formulation of real aperture radar (RAR) is given using electromagnetic wave backscattering theory of ocean surface and the modulations of ocean surface winds, currents and their variations to RAR are described. A general representation of the phase modulation induced by the ocean surface motion is derived according to standard synthetic aperture radar (SAR) imaging theory. The detectability of ocean current and sea bottom topography by imaging radar is discussed. The results constitute the theoretical basis for detecting ocean wave fields, ocean surface winds, ocean surface current fields, sea bottom topography, internal wave and so on.  相似文献   

14.
SAR observation and model tracking of an oil spill event in coastal waters   总被引:4,自引:0,他引:4  
Oil spills are a major contributor to marine pollution. The objective of this work is to simulate the oil spill trajectory of oil released from a pipeline leaking in the Gulf of Mexico with the GNOME (General NOAA Operational Modeling Environment) model. The model was developed by NOAA (National Oceanic and Atmospheric Administration) to investigate the effects of different pollutants and environmental conditions on trajectory results. Also, a Texture-Classifying Neural Network Algorithm (TCNNA) was used to delineate ocean oil slicks from synthetic aperture radar (SAR) observations. During the simulation, ocean currents from NCOM (Navy Coastal Ocean Model) outputs and surface wind data measured by an NDBC (National Data Buoy Center) buoy are used to drive the GNOME model. The results show good agreement between the simulated trajectory of the oil spill and synchronous observations from the European ENVISAT ASAR (Advanced Synthetic Aperture Radar) and the Japanese ALOS (Advanced Land Observing Satellite) PALSAR (Phased Array L-band Synthetic Aperture Radar) images. Based on experience with past marine oil spills, about 63.0% of the oil will float and 18.5% of the oil will evaporate and disperse. In addition, the effects from uncertainty of ocean currents and the diffusion coefficient on the trajectory results are also studied.  相似文献   

15.
Bam earthquake: Surface deformation measurement using radar interferometry   总被引:2,自引:0,他引:2  
1 Basic principle of SAR and SAR-interferometry Synthetic aperture radar (SAR) is one kind of microwave side-looking imaging radar (Cur- lander and McDonough, 1991). In order to obtain an image for a large area, the carriers are many for the aerospace vehicle, like airplane, aerospace craft and satellite. As a result of its operational character, all-weather and high resolution, in the recent 20 years, SAR has obtained quicker de- velopment compared with an optical pickoff. Its applicati…  相似文献   

16.
Surface current mapping from HF/VHF coastal radars traditionally requires at least two distant sites. Vector velocities are estimated by combining the radial velocity components measured by the radars. In many circumstances (e.g., failures, interferences, logistics constraints), such a combination is not possible by lack of data from one station. Two methods are evaluated to get information on surface circulation from a single site radar: the Vectorial Reconstruction Method (VRM) for current vector mapping and the Vortex Identification Method (VIM) for detecting eddy-like structures. The VRM assumes a non-divergent horizontal surface current, and the VIM analyzes radial velocities and their radial and orthoradial gradients. These two methods are tested on modeled and measured data sets in the Northwestern Mediterranean Sea where both high-resolution ocean circulation model and radar campaigns are available. The VRM performance is strongly limited by the divergence-free hypothesis which was not satisfied in our real data. The VIM succeeded in detection of vortex in the Gulf of Lions and from an operating single site radar located on the Provence coasts in summer.  相似文献   

17.
This paper synthesizes 10‐years' worth of interannual time‐series space‐borne ERS‐1 and RADARSAT‐1 synthetic aperture radar (SAR) data collected coincident with daily measurement of snow‐covered, land‐fast first‐year sea ice (FYI) geophysical and surface radiation data collected from the Seasonal Sea Ice Monitoring and Modeling Site, Collaborative‐Interdisciplinary Cryospheric Experiment and 1998 North Water Polynya study over the period 1992 to 2002. The objectives are to investigate the seasonal co‐relationship of the SAR time‐series dataset with selected surface mass (bulk snow thickness) and climate state variables (surface temperature and albedo) measured in situ for the purpose of measuring the interannual variability of sea ice spring melt transitions and validating a time‐series SAR methodology for sea ice surface mass and climate state parameter estimation. We begin with a review of the salient processes required for our interpretation of time‐series microwave backscatter from land‐fast FYI. Our results suggest that time‐series SAR data can reliably measure the timing and duration of surface albedo transitions at daily to weekly time‐scales and at a spatial scales that are on the order of hundreds of metres. Snow thickness on FYI immediately prior to melt onset explains a statistically significant portion of the variability in timing of SAR‐detected melt onset to pond onset for SAR time‐series that are made up of more than 25 images. Our results also show that the funicular regime of snowmelt, resolved in time‐series SAR data at a temporal resolution of approximately 2·5 images per week, is not detectable for snow covers less than 25 cm in thickness. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Oil spill detection with fully polarimetric UAVSAR data   总被引:3,自引:0,他引:3  
Liu P  Li X  Qu JJ  Wang W  Zhao C  Pichel W 《Marine pollution bulletin》2011,62(12):2611-2618
In this study, two ocean oil spill detection approaches based on four scattering matrices measured by fully polarimetric synthetic aperture radar (SAR) are presented and compared. The first algorithm is based on the co-polar correlation coefficient, ρ, and the scattering matrix decomposition parameters, Cloud entropy (H), mean scattering angle (α) and anisotropy (A). While each of these parameters has oil spill signature in it, we find that combining these parameters into a new parameter, F, is a more effective way for oil slick detection. The second algorithm uses the total power of four polarimetric channels image (SPAN) to find the optimal representation of the oil spill signature. Otsu image segmentation method can then be applied to the F and SPAN images to extract the oil slick features. Using the L-band fully polarimetric Uninhabited Aerial Vehicle – synthetic aperture radar (UAVSAR) data acquired during the 2010 Deepwater Horizon oil spill disaster event in the Gulf of Mexico, we are able to successfully extract the oil slick information in the contaminated ocean area. Our result shows that both algorithms perform well in identifying oil slicks in this case.  相似文献   

19.
近年来随着人类的活动日益加剧,水体富营养化问题已经严重威胁到湖泊生态安全。为了快速并准确地获取藻华爆发的范围,本文提出浮游藻类指数线性拟合模型(FAI linear fitting model, FAI-L)。在以往的研究中,NDVI(normalized difference vegetation index)已经广泛应用于藻华的识别中,且采用坡度计算获取NDVI阈值的方法也得到验证,相对于NDVI,FAI对环境条件的改变敏感度较低,且由于FAI增加了短红外波段,能够有效地降低部分大气和薄云的影响,对藻华的识别有较高的精度,但是FAI识别藻华的阈值如何确定的问题没有有效的解决办法。本文通过建立NDVI与FAI的线性拟合方程,利用NDVI阈值确定FAI阈值,能够有效地解决FAI阈值确定问题。通过Landsat8和Sentinel-2的提取结果显示:(1)FAI-L相对于NDVI提取结果在精度上有较大提升。采用该方法对于Landsat8影像的藻华提取精度为97.16%,相对于NDVI的提取精度(91.72%)提高了5.44%。(2)以Sentinel-2数据为基础探究FAI-L的适用性情...  相似文献   

20.
In this paper an algorithm is presented which enables high-resolution ocean surface wind fields to be retrieved from the advanced synthetic aperture radar (ASAR) data acquired by the European remote sensing satellite ENVISAT. Wind directions are extracted from wind-induced streaks that are visible in ASAR images at scales above 200 m and that are approximately in line with the mean surface wind direction. Wind speeds are derived from the normalized radar cross section (NRCS) and image geometry of the calibrated ASAR images, together with the local ASAR-retrieved wind direction. Therefore the empirical C-band model CMOD4, which describes the dependency of the NRCS on wind and image geometry, is used. CMOD4 is a semi-empirical model, which was originally developed for the scatterometer of the European remote sensing satellites ERS-1 and 2 operating at C-band with vertical polarization. Consequently, CMOD4 requires modification when applied to ASAR images that were acquired with horizontal polarization in transmitting and receiving. This is performed by considering the polarization ratio of the NRCS. To demonstrate the applicability of the algorithm, wind fields were computed from several ENVISAT ASAR images of the North Sea and compared to atmospheric model results of the German weather service.Acknowledgements The authors were supported by the German Bundesministerium für Bildung und Forschung (BMBF) in the framework of the project. A new perspective of the Ocean ENVISAT Oceanography (ENVOC). The ENVISAT ASAR data were kindly made available by the European Space Agency in the framework of the ENVISAT Project AO-ID 220, Biological and geophysical parameters from synthetic aperture radar over the ocean (BIGPASO).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号