首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
在形状记忆合金(简称SMA)Brinson本构模型基础上推导并给出了伪弹性分段线性化本构模型,该模型参数多,计算不发散,节省计算资源。文中给出了该模型用于结构抗震的计算实例,计算结果显示了该SMA伪弹性分段线性化本构模型在结构被动控制中具有优良的性能。  相似文献   

2.
Performance of a base isolator with shape memory alloy bars   总被引:2,自引:1,他引:1  
A new and innovative base isolation device is introduced in this paper based on extensive research carried out by the authors and their co-workers. A prototype of the device was built and experimentally tested on the shaking table. The new base isolation device consists of two disks, one vertical cylinder with an upper enlargement sustained by three horizontal cantilevers, and at least three inclined shape memory alloy (SMA) bars. The role of the SMA bars is to limit the relative motion between the base and the superstructure, to dissipate energy by their super-elastic constitutive law and to guarantee the re-centring of the device. To verify the expected performance, a prototype was built and tested under sinusoidal waves of displacement of increasing frequency with different amplitudes. It is shown that the main feature of the proposed base isolation device is that for cyclic loading, the super-elastic behavior of the alloy results in wide load-displacement loops, where a large amount of energy is dissipated.  相似文献   

3.
展猛    王社良  赵云 《世界地震工程》2018,34(4):024-30
将形状记忆合金(Shape memory alloy,简称"SMA")与压电摩擦阻尼器复合设计了一种半主动混合阻尼器,对SMA丝进行了材性试验,分析了循环圈数、加载速率和应变幅值对SMA丝力学性能的影响。基于试验数据,以速度方向和应变值作为神经元输入,建立了SMA的BP神经网络本构模型,并利用T-S模糊逻辑求解压电陶瓷驱动器输出电压,对1个2层的钢框架结构进行了无控、SMA被动控制和混合控制MATLAB仿真分析。结果表明:SMA的BP网络模型预测的应力误差大多集中在20 MPa以内,且误差较大点主要集中在加载的初始段和卸载的结束段等数值较小的点,BP神经网络能够较好地预测SMA丝的本构曲线。相比SMA被动控制,混合阻尼器可以更加有效地降低结构的动力反应。  相似文献   

4.
锥形形状记忆合金阻尼器性能分析与试验研究   总被引:1,自引:1,他引:0  
本文对一种新型形状记忆合金阻尼器——锥形形状记忆合金阻尼器的性能进行了数值分析和试验研究。基于形状记忆合金的超弹性双线型本构模型,利用非线性有限元方法分析了锥形形状记忆合金阻尼器的滞回性能,并且用大型能用程序ANSYS进行了验证,得出锥形形状记忆合金阻尼器的滞回模型可简化为分段线性滞回模型,试验包括形状记忆合金丝的本构试验、疲劳试验阳阻尼器的性能试验.试验结果与数值分析结果基本吻合,形状记忆合金表现出良好的超弹性。  相似文献   

5.
研究了SMA(shape memory alloy)绞线-叠层橡胶复合支座的工作原理,将结构控制理论中的结构状态空间法应用到该复合支座隔震结构的数值模拟分析中。建立了普通框架、安装叠层橡胶支座和安装SMA复合支座框架的结构状态方程,应用SIMULINK工具箱建立结构仿真模型,得出不同条件下框架结构的时程反应曲线。通过对比分析可以看出SMA-复合支座能很好地改变结构的隔震效果,应用状态空间法进行SMA-复合支座隔震结构的数值模拟分析简单准确。  相似文献   

6.
This paper presents an experimental and numerical study to investigate the hysteretic performance of a new type of isolator consisting of shape memory alloy springs and friction bearing called an SMA spring-friction bearing (SFB). The SFB is a sliding-type isolator with SMA devices used for the seismic protection of engineering structures. The principle of operation of the isolation bearing is introduced. In order to explore the possibility of applying SMA elements in passive seismic control devices, large diameter superelastic tension/compression NiTi SMA helical springs used in the SFB isolator were developed. Mechanical experiments of the SMA helical spring were carried out to understand its superelastic characteristics. After that, a series of quasi-static tests on a single SFB isolator prototype were conducted to measure its force-displacement relationships for different loading conditions and study the corresponding variation law of its mechanical performance. The experimental results demonstrate that the SFB exhibits full hysteretic curves, excellent energy dissipation capacity, and moderate recentering ability. Finally, a theoretical model capable of emulating the hysteretic behavior of the SMA-based isolator was then established and implemented in MATLAB software. The comparison of the numerical results with the experimental results shows the efficacy of the proposed model for simulating the response of the SFB.  相似文献   

7.
This paper examines the quasi-static cyclic behavior,lateral strength and equivalent damping capacities of a system of post-tensioned segmental bridge columns tied with large diameter martensitic Shape Memory Alloy(SMA) link-bars.Moment-curvature constitutive relationships are formulated and analysis tools are developed for the PT column,including a modified four-spring model prepared for the SMA bars.The suggested system is exemplified using a column with an aspect ratio of 7.5 and twelve 36.5 mm diameter NiTi martensitic SMA bars.A post-tensioning force of 40% to 60% of the tendon yield strength is applied in order to obtain a self re-centering system,considering the residual stress of the martensitic SMA bars.The cyclic response results show that the lateral strength remains consistently around 10% of the total vertical load and the equivalent viscous damping ratios reach 10%-12% of critical.When large diameter NiTi superelastic SMA bars are incorporated into the column system,the cyclic response varies substantially.The creep behavior of the superelastic SMA bar is accounted for since it affects the re-centering capability of the column.Two examples are presented to emphasize the modeling sensitivities for these special bars and quantify their cyclic behavior effects within the column assembly.  相似文献   

8.
庄鹏  王尉  韩淼 《世界地震工程》2022,38(1):099-109
利用复摩擦支座(Double friction pendulum bearing,DFPB)和形状记忆合金(Shape Memory alloy,SMA)拉索,提出了一种超弹性-复摩擦支座(Superelastic-double friction pendulum bearing,SDFPB)。该新型滑动隔震支座在水平方向可适应多水准地震激励,且在竖向拥有抵抗拉拔的功能。阐述了SDFPB的构造特点和工作原理。通过性能试验考察了这一隔震装置的力学特性。建立了SDFPB的恢复力模型,利用其模拟了试验条件下的滞回响应。研究结果表明:SDFPB的耗能能力优良,且具有较好的多级抗震自适应能力;模拟值与试验值吻合较好,验证了上述力学模型的正确性。  相似文献   

9.
考虑到多维地震输入对网架结构的不利影响,基于形状记忆合金超弹性,研制出一种兼具自复位、高耗能及放大功能于一体的形状记忆合金复合黏滞阻尼器(Hybrid Shape Memory Alloy Viscous Dampers,简称HSMAVD),并通过试验研究该阻尼器在循环荷载作用下的力学性能;然后以平面四角锥网架模型为基础,将该阻尼器替换部分网架结构杆件,并分析该阻尼器减震控制效果。结果表明形状记忆合金与黏滞阻尼器复合后具有良好的协同工作能力,可有效发挥形状记忆合金的超弹性和黏滞阻尼器的速度相关特性,使其具有稳定的滞回性能和良好的耗能能力;采用阻尼杆件替换原杆件的方法既能对结构进行有效的减震控制,又不改变原有的结构形式,是一种优越的减震控制方法,并为HSMAVD被动控制系统在结构抗震中的实际应用提供新思路。  相似文献   

10.
框架结构SMA阻尼器被动控制模拟分析   总被引:1,自引:0,他引:1  
介绍了形状记忆合金(SMA)阻尼器的性能,引入其本构关系,建立其热力学方程。针对所提出的阻尼器及相关参数选择,利用ANSYS进行框架结构中的被动控制模拟。将所得的未加与加入SMA阻尼器下顶层位移进行比较,发现SMA阻尼器可以很好地提高框架结构的抗震性能,并提出进一步研究的方法。  相似文献   

11.
Shaking table tests are performed on a one‐bay one‐story steel frame with superelastic Cu–Al–Mn shape memory alloy (SMA) tension braces. The frame is subjected to a series of scaled ground motions recorded during the 1995 Kobe earthquake, Japan. The test results demonstrate that the SMA braces are effective to prevent residual deformations and pinching. It is also shown that the time history responses observed from the shaking table tests agree well with the numerical predictions using a rate‐independent piecewise‐linear constitutive model calibrated to the quasi‐static component tests of the SMA braces. This suggests that the loading rate dependence of Cu–Al–Mn SMAs as well as the modeling error due to the piecewise linear approximation can be neglected in capturing the global response of the steel frame. Numerical simulations under a suite of near‐fault ground motion records are further performed using the calibrated analytical models to demonstrate the effectiveness of the SMA braces when the variability of near‐fault ground motions is taken into account. A stopper, or a deformation restraining device, is also proposed to prevent premature fracture of SMA bars in unexpectedly large ground motions while keeping the self‐centering capability in moderate to large ground motions. The effectiveness of the stopper is also demonstrated in the quasi‐static component and shaking table tests. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Control devices incorporated with shape memory alloy   总被引:2,自引:1,他引:1  
Shape Memory Alloy (SMA) is a type of material that offers some unique characteristics for use in devices for vibration control applications. Based on SMA's material properties, four types of control devices that incorporate NiTi SMA wires are introduced in this paper, which include three types of dampers (SMA damper, SMA-MR damper and SMA-friction damper) and one kind of isolation bearing (SMA-rubber bearing). Mechanical models of these devices and their experimental verifications are presented. To investigate the control performance of these devices, the SMA-MR damper and SMA-rubber bearing are applied to structures. The results show that the control devices could be effective in reducing the seismic response of structures.  相似文献   

13.
A series of tests on three full-scale substandard exterior beam-column joints were performed to investigate the efficiency of the proposed retrofit configuration, which is the use of externally applied post-tensioned shape memory alloy (SMA) bars. A major group of structural deficiencies resulting from lack of shear reinforcement in the joint, use of low strength concrete and plain round bars were taken into account in the construction of test specimens. While the reference specimen represents the as-built subassembly, the other two were retrofitted by the post-tensioned SMA and steel bars to compare the contribution of superelastic and conventional material on the response. The specimens were exposed to quasi-static cyclic loading up to 8% drift ratio to simulate an intensive level of seismic hazard. The reference specimen underwent a brittle shear failure as excessive cracks mostly concentrated in the joint panel while there was almost no damage in the rest of the RC components. A joint failure with enhanced response quantities was observed in the specimen retrofitted by post-tensioned steel bars. The specimen incorporating the retrofit solution via post-tensioned SMA bars was capable of performing an adequate performance and promoting minimization of the damage in the joint panel, which results in more ductile behavior. The hysteretic response of the SMA retrofitted specimen was validated with a refined numerical model in ATENA Science software. Experimentally observed response was also verified by an analytical model based on fracture mechanics considering the nonlinear behavior of plain concrete under tension. Due to inherent uncertainties in material constitutive laws, the analytical model was evolved to a stochastic level to propose a more advanced model for estimating the capacity of the reference and retrofitted joint. It is found that the experimental results were within the prominent range of Probability Density Functions (i.e. mean ± 1 SD) of the estimated joint tensile stress especially for the shear damaged specimens.  相似文献   

14.
SMA绞线-叠层橡胶复合支座振动台试验研究   总被引:2,自引:1,他引:1  
对一组SMA绞线-叠层橡胶复合支座进行了振动台试验。根据试验结果比较分析了SMA绞线-叠层橡胶复合支座与普通叠层橡胶支座的隔震性能,着重分析了位移幅值对支座工作性能基本参数如等效水平刚度、最大恢复力、单位循环耗能和等效阻尼比的影响以及这些参数的变化规律。从而证明了在罕遇地震作用下发生较大水平位移幅值时,SMA绞线-叠层橡胶复合支座比普通叠层橡胶支座可提供更大的恢复力和阻尼,更有利于阻隔地震对上部结构的作用和强震作用后上部结构的自动复位。  相似文献   

15.
为改善高层建筑联肢剪力墙抗震性能,消除传统连梁阻尼器残余位移较大或等效阻尼比较小等问题,设计了一种兼具耗能和自复位功能的形状记忆合金粘弹性连梁阻尼器(Shape Memory Alloy Viscoelastic Coupling Beam Damper,SVCBD),给出了新型连梁阻尼器的构造形式和工作原理。利用拉普拉斯变换得到的粘弹性材料粘性系数以及超弹性形状记忆合金(Shape Memory Alloy,SMA)本构模型,基于ABAQUS仿真平台建立了SVCBD精细有限元模型;对SVCBD滞回特性进行了模拟分析,并与普通粘弹性阻尼器进行了对比。考虑了SMA丝束初始预应力度、横截面总面积和粘弹性材料层剪切面积等参数对SVCBD滞回特性的影响。分析结果表明:与普通粘弹性连梁阻尼器(Viscoelastic Coupling Beam Damper,VCBD)相比,SVCBD滞回曲线更加饱满,耗能能力更强,残余位移减小,初始刚度也大大提高,具有很好的耗能和复位效果;SMA丝束初始预应力大小、横截面面积(即配置数量)和粘弹性材料层剪切面积均对SVCBD的耗能和复位能力具有明显的影响。  相似文献   

16.
SMA负刚度双曲面隔震装置的试验结果表明:绕支座布置的SMA索在支座转弯处不能自由滑动,导致SMA索的受力与设计目标严重不符。为解决上述问题,拟提出一种优化升级的SMA负刚度双曲面减震装置。基于某一连续梁桥,比较研究了正刚度、零刚度与该负刚度装置的抗震性能。结果表明:该优化装置具有良好的耗能能力、自恢复性能以及强震下的限位能力。与正刚度装置及零刚度装置相比,该装置具有更好的抗震性能。  相似文献   

17.
The effectiveness of seismic isolation in protecting structural and non‐structural elements from damage has been assessed in an extensive programme of shaking‐table tests, carried out on four identical 1/3.3‐scale, two‐dimensional, reinforced concrete (R/C) frames. Four different isolation systems were considered, namely: (i) rubber‐based, (ii) steel‐based, (iii) shape memory alloy (SMA)‐based and (iv) hybrid, i.e. based on both SMA and steel components, isolation systems. This paper presents a comprehensive overview of the main results of the experimental tests on base‐isolated models, whose structural response is described through: (i) maximum base displacements; (ii) maximum interstorey drifts; (iii) maximum storey accelerations and (iv) maximum storey shear forces. The evolution of the fundamental frequency of vibration of the R/C frame during the tests is also described. The beneficial effects of using base isolation resulted in no or slight damage, under strong earthquakes, to both structural and non‐structural members, as well as to the internal content of the building. The comparison with the experimental results obtained in shaking‐table tests on similar fixed‐base models emphasizes these positive aspects. Finally, advantages and drawbacks related to the use of each isolation system are discussed in the paper. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
利用形状记忆合金(Shape Memory Alloy,简称"SMA")丝材的超弹性与复位弹簧特性,开发出一种新型变形可恢复SMA阻尼器,以增强其变形可恢复的能力。同时,为了解决SMA丝材在实际工程中锚固难的问题,提出了一种新型可调节夹具,不仅解决了SMA丝材的不易锚固问题,而且增强了调节预应变的能力。对所提出的新型SMA阻尼器进行了循环加载试验研究和数值仿真分析,探讨不同加载频率及位移幅值对其力学性能的影响,建立了恢复力模型。结果表明:新型SMA阻尼器在循环荷载作用下滞回性能稳定,具有良好的耗能性能;内置弹簧对新型SMA阻尼器变形可恢复能力有较大帮助。基于所建立恢复力模型的数值模拟结果与试验结果符合情况很好,验证了阻尼器恢复力力模型的正确性。  相似文献   

19.
The seismic response of a multi‐span continuous bridge isolated with novel superelastic‐friction base isolator (S‐FBI) is investigated under near‐field earthquakes. The isolation system consists of a flat steel‐Teflon sliding bearing and a superelastic NiTi shape memory alloy (SMA) device. The key design parameters of an S‐FBI system are the natural period of the isolated bridge, the yielding displacement of the SMA device, and the friction coefficient of the sliding bearings. The goal of this study is to obtain optimal values for each design parameter by performing sensitivity analysis of a bridge isolated by an S‐FBI system. First, a three‐span continuous bridge is modeled as two‐degrees‐of‐freedom with the S‐FBI system. A neuro‐fuzzy model is used to capture rate‐ and temperature‐dependent nonlinear behavior of the SMA device. Then, a set of nonlinear time history analyses of the isolated bridge is performed. The variation of the peak response quantities of interest is shown as a function of design parameters of the S‐FBI system and the optimal values for each parameter are evaluated. Next, in order to assess the effectiveness of the S‐FBI system, the response of the bridge isolated by the S‐FBI system is compared with the response of the non‐isolated bridge and the same bridge isolated by pure‐friction (P‐F) sliding isolation system. Finally, the influence of temperature variations on the performance of the S‐FBI system is evaluated. The results show that the optimum design of a bridge with the S‐FBI system can be achieved by a judicious specification of design parameters. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
SMA-橡胶支座的力学性能试验研究   总被引:8,自引:2,他引:6  
SMA-橡胶支座是一种由叠层橡胶垫和形状记忆合金(SMA)复合而成的新型隔震支座。阐明了SMA-橡胶支座的设计思路和工作机理,通过SMA-橡胶支座实物模型的伪动力试验,考察了支座的水平和竖向刚度、耗能能力和等效阻尼比,研究了位移幅值、加载频率、竖向荷载等参数对支座力学性能的影响。研究结果表明,SMA-橡胶支座工作性能稳定,耗能能力较强,是一种性能优良的新型隔震装置。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号