首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 333 毫秒
1.
高层建筑被动混合控制的波动分析   总被引:4,自引:0,他引:4  
本文提出了一种将基础隔震系统与调频质量阻尼器(TMD)相结合的被动混合控制系统,计算了带有基础隔震系统,调频质量阻尼器(TMD)及其混合控制系统的高层建筑在地面水平运动作用下的振动波及其功率大小,文中比较了不同控制结构在1940ElCentro地震动作用下的加速度峰值,层间位移峰值和最大层间剪力值。理论及数值结果表明:这种被动混合控制系统能够非常有效地抑制地面运动作用下高层建筑的振动,它不仅大大地  相似文献   

2.
Passive supplemental damping in a seismically isolated structure provides the necessary energy dissipation to limit the isolation system displacement. However, damper forces can become quite large as the passive damping level is increased, resulting in the requirement to transfer large forces at the damper connections to the structure which may be particularly difficult to accommodate in retrofit applications. One method to limit the level of damping force while simultaneously controlling the isolation system displacement is to utilize an intelligent hybrid isolation system containing semi-active dampers in which the damping coeffic ient can be modulated. The effectiveness of such a hybrid seismic isolation system for earthquake hazard mitigation is investigated in this paper. The system is examined through an analytical and computational study of the seismic response of a bridge structure containing a hybrid isolation system consisting of elastomeric bearings and semi-active dampers. Control algorithms for operation of the semi-active dampers are developed based on fuzzy logic control theory. Practical limits on the response of the isolation system are considered and utilized in the evaluation of the control algorithms. The results of the study show that both passive and semi-active hybrid seismic isolation systems consisting of combined base isolation bearings and supplemental energy dissipation devices can be beneficial in reducing the seismic response of structures. These hybrid systems may prevent or significantly reduce structural damage during a seismic event. Furthermore, it is shown that intelligent semi-active seismic isolation systems are capable of controlling the peak deck displacement of bridges, and thus reducing the required length of expansion joints, while simultaneously limiting peak damper forces. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
基于抑制升船结构顶部厂房地震鞭梢效应的目的,本文提出了升船结构顶部厂房屋盖MR智能隔震模糊控制的思想。文中,在建立屋盖智能隔震升船结构计算力学模型的基础上,建立了屋盖MR智能隔震系统对升船结构顶部厂房地震反应模糊控制的设计计算方法。文中并以中国某大坝巨型升船结构为背景,设计了屋盖MR智能隔震系统对升船结构顶部厂房地震反应模糊控制的控制系统。仿真分析和对MR阻尼器的参数研究表明,安装合适的屋盖MR智能隔震系统并采用模糊控制策略能有效地抑制具有不确定参数升船结构顶部厂房地震反应的鞭梢效应,且模糊控制器能保持较好的稳定性能。  相似文献   

4.
Sliding base‐isolation systems used in bridges reduce pier drifts, but at the expense of increased bearing displacements under near‐source pulse‐type earthquakes. It is common practice to incorporate supplemental passive non‐linear dampers into the isolation system to counter increased bearing displacements. Non‐linear passive dampers can certainly reduce bearing displacements, but only with increased isolation level forces and pier drifts. The semi‐active controllable non‐linear dampers, which can vary damping in real time, can reduce bearing displacements without further increase in forces and pier drifts; and hence deserve investigation. In this study performance of such a ‘smart’ sliding isolation system, used in a 1:20 scaled bridge model, employing semi‐active controllable magneto‐rheological (MR) dampers is investigated, analytically and experimentally, under several near‐fault earthquakes. A non‐linear analytical model, which incorporates the non‐linearities of sliding bearings and the MR damper, is developed. A Lyapunov control algorithm for control of the MR damper is developed and implemented in shake table tests. Analytical and shake table test results are compared. It is shown that the smart MR damper reduces bearing displacements further than the passive low‐ and high‐damping cases, while maintaining isolation level forces less than the passive high‐damping case. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
The safety of structures built in seismic regions can be improved by energy absorbing devices. Passive isolation systems such as base isolators are suitable for low-rise structures, but they provide only a partial solution to the problem. Three active control techniques for reducing the dynamic response of machine supporting foundations using various control strategies are presented. The active tendon, active mass damper and active base control systems are studied for active control of machine foundations in seismic regions. Numerical simulations show that active control can reduce the dynamic response of turbomachine foundations under seismic loads. This reduction in dynamic response can limit damage to power plants during earthquakes and restore their operation in a short time.  相似文献   

6.
The paper outlines an approach for improving the effectiveness and reliability of base isolation devices in civil engineering structures that undergo exceptional dynamic conditions.The strategy consists of designing the passive device in such a way to take into account the not-negligible soil–structure interaction effects. At this stage, the isolator is, then, designed in such a way to be optimally tuned on the basis of the characteristics of the structure and of the soil at the site. Anyway limits intrinsic in the effectiveness of the passive device cannot be completely overcome even when embedding in the design the influence of the soil filtering on the structural response. Therefore, at the second stage, an active vibration device is coupled to the basic isolator, which is, in turn, optimally designed for minimizing the structural response and control costs. The overall presented approach definitively produces an effective hybrid control base isolation, already optimized for the specific structure and soil in its passive component, and able to concentrate the active control effort only on the frequency ranges where it is required.  相似文献   

7.
用主动调频质量阻尼器控制高层建筑的风致振动   总被引:5,自引:1,他引:4  
本文提出了用于高层建筑风振动控制的主动调频质量阻尼器(ATMD)设计的一种简单方法。从TMD的工作原理出发,在物理意义上显式定义主动控制力的构成,基于结构的SDOF模型和广义脉动风力的高斯白噪声假定,在频域的以最小化结构顶层位移方差为设计目标,对控制力增益进行参数优化,得出控制力增益的封闭解,文中提出了以维持TMD行程恒定为目标进行参数选择的设计方案,一超高层建筑作为算例给出,数值分析表明,所设计  相似文献   

8.
This paper investigates the application of the sliding mode control (SMC) strategies for reducing the dynamic responses of the building structures with base‐isolation hybrid protective system. It focuses on the use of reaching law method, a most attractive controller design approach of the SMC theory, for the development of control algorithms. By using the constant plus proportional rate reaching law and the power rate reaching law, two kinds of hybrid control methods are presented. The compound equation of motion of the base‐isolation hybrid building structures, which is suitable for numerical analysis, has been constructed. The simulation results are obtained for an eight‐storey shear building equipped with base‐isolation hybrid protective system under seismic excitations. It is observed that both the constant plus proportional rate reaching law and the power rate reaching law hybrid control method presented in this paper are quite effective. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
Effectiveness of a new semiactive independently variable stiffness (SAIVS) device in reducing seismic response of sliding base isolated buildings is evaluated analytically and experimentally. Through analytical and experimental study of force—displacement behaviour of the SAIVS device, it is shown that the device can vary stiffness continuously and smoothly between minimum and maximum stiffness. Passive sliding base isolation systems reduce interstorey drifts and superstructure accelerations, but with increased base displacements, which is undesirable, under large velocity near fault pulse type earthquakes. It is a common practice to incorporate non‐linear passive dampers into the isolation system to reduce bearing displacements. Incorporation of passive dampers, however, may result in increased superstructure accelerations and drifts; while, properly designed passive dampers can be beneficial. A viable alternative is to use semiactive variable stiffness systems, which can vary the period of the sliding base isolated buildings in real time, to simultaneously reduce bearing displacements and superstructure responses further than the passive systems, which deserves investigation. This study investigates the performance of a 1:5 scaled smart sliding base isolated building model equipped with the SAIVS device analytically and experimentally, under near fault earthquakes, by developing a new moving average non‐linear tangential stiffness control algorithm for control of the SAIVS device. The SAIVS device reduces bearing displacements further than the passive cases, while maintaining isolation level forces and superstructure responses at the same level as the passive minimum stiffness case, indicating the significant potential of the SAIVS system. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
The development and applications of a supplemental viscous damping device with active capacity are described. The system of the dampers defined as active viscous damping system (AVDS) is presented herein. Structural control principles defined here as active control theory (ACT) are used to obtain the control forces at each time step during an excitation. Control of the damping forces is possible due to a mechanical structure of the proposed AVDS and do not require the input of large power and energy. This system can be efficiently used to enhance the damping of a structure without adding in stiffness and strength. The added damping forces can be adjusted in a wide range. Its efficiency is demonstrated by a numerical simulation of a seven‐storey building subjected to earthquakes. The simulation shows that the behaviour of the damped structure with the AVDS is significantly improved compared to that of an uncontrolled system. Moreover, the response is better than that of adding either passive viscous dampers or electrorheological damping devices. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
为了增强巨子型有控结构建筑的动力特性,提升其稳定性,设计双向地震波作用下建筑有控结构。采用3种磁流变阻尼器(MRD)与滑移隔震混合控制结构构成单体建筑有控结构,其包括巨结构和子结构,并建立该有控结构的动力分析模型。在动力分析模型中输入水平和竖向地震,得到模型的竖向和水平滑动状态运动微分方程,依据这两个方程采用自适应模糊神经网络优化动力分析模型,构建优化模型。从优化模型出发,通过实例实验分析得出,优化设计双向地震波作用下建筑有控结构时,在其上部结构层间和隔离层各安装一个MRD,可确保优化设计后的有控结构在不同双向地震工况下的地震反应控制效果最佳,且有控结构在双向地震工况2下,结构第一层、中间三层以及顶层的加速度和位移的时程曲线走向一致,且差距微小;同时有控结构的巨结构顶层侧移响应随着子结构刚度增加而提高,动力特性没有明显的变化,子结构随着其自身刚度增加顶层侧移响应表现稳定,子结构动力特性增强。  相似文献   

12.
Vibration mitigation using smart, reliable and cost‐effective mechanisms that requires small activation power is the primary objective of this paper. A semi‐active controller‐based neural network for base‐isolation structure equipped with a magnetorheological (MR) damper is presented and evaluated. An inverse neural network model (INV‐MR) is constructed to replicate the inverse dynamics of the MR damper. Next, linear quadratic Gaussian (LQG) controller is designed to produce the optimal control force. Thereafter, the LQG controller and the INV‐MR models are linked to control the structure. The coupled LQG and INV‐MR system was used to train a semi‐active neuro‐controller, designated as SA‐NC, which produces the necessary control voltage that actuates the MR damper. To evaluate the proposed method, the SA‐NC is compared to passive lead–rubber bearing isolation systems (LRBs). Results revealed that the SA‐NC was quite effective in seismic response reduction for wide range of motions from moderate to severe seismic events compared to the passive systems. In addition, the semi‐active MR damper enjoys many desirable features, such as its inherent stability, practicality and small power requirements. The effectiveness of the SA‐NC is illustrated and verified using simulated response of a six‐degree‐of‐freedom model of a base‐isolated building excited by several historical earthquake records. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents a formulation for earthquake resistant design of optimum hybrid isolation systems for sensitive equipment protection. The hybrid system under consideration consists of laminated rubber bearings, viscodampers and a set of actuators which, grounded on the main structural system, deliver forces on the basement of the isolated substructure mounted on the main structural system. An integrated design procedure for the passive and active components of the isolation system is developed aiming at acceleration reduction under random excitation. Linear models are used for the isolated structure, the main structural system and the isolation system. Fractional derivative Maxwell elements are used to model the mechanical behaviour of the viscodampers. The active component of the isolation system applies forces proportional to the absolute velocity of the isolated piece of equipment. Constraints in the deformation capacity of the isolators as well as constraints in the capacity of the actuators are considered for the design of an optimal hybrid isolation system. Simple numerical examples are developed herein to illustrate the design procedure. The superiority of hybrid systems over passive systems in reducing acceleration response is demonstrated.  相似文献   

14.
Base isolated structures have been found to be at risk in near-fault regions as a result of long period pulses that may exist in near-source ground motions.Various control strategies,including passive,active and semi-active control systems,have been investigated to overcome this problem.This study focuses on the development of a semi-active control algorithm based on several performance levels anticipated from an isolated building during different levels of ground shaking corresponding to various earthquake hazard levels.The proposed performance-based algorithm is based on a modified version of the well-known semi-active skyhook control algorithm.The proposed control algorithm changes the control gain depending on the level of shaking imposed on the structure.The proposed control system has been evaluated using a series of analyses performed on a base isolated benchmark building subjected to seven pairs of scaled ground motion records.Simulation results show that the newly proposed algorithm is effective in improving the structural and nonstructural performance of the building for selected earthquakes.  相似文献   

15.
<正>This paper focuses on the investigation of a hybrid seismic isolation system with passive variable friction dampers for protection of structures against near fault earthquakes.The seismic isolation can be implemented by replacing the conventional columns fixed to the foundations by seismic isolating ones.These columns allow horizontal displacement between the superstructure and the foundations and decouple the building from the damaging earthquake motion.As a result, the forces in the structural elements decrease and damage that may be caused to the building by the earthquake significantly decreases.However,this positive effect is achieved on account of displacements occurring in the isolating columns.These displacements become very large when the structure is subjected to a strong earthquake.In this case,impact may occur between the parts of the isolating column yielding their damage or collapse.In order to limit the displacements in the isolating columns,it is proposed to add variable friction dampers.A method for selecting the dampers' properties is proposed.It is carried out using an artificial ground motion record and optimal active control algorithm.Numerical simulation of a seven-story structure shows that the proposed method allows efficient reduction in structural response and limits the displacements at the seismic isolating columns.  相似文献   

16.
This paper proposes an online test technique that employs mixed control of displacement and force. Two types of mixed control, ‘displacement–force combined control’ and ‘displacement–force switching control’ are proposed. In displacement–force combined control, one jack is operated by displacement‐control, and another is operated by force‐control. Validity of the combined control technique is demonstrated by a series of online tests applied to a base‐isolated structure subjected to horizontal and vertical ground motions simultaneously. The substructuring technique is employed in the tests, and the base‐isolation layer is tested, with the rest of the structure modeled in the computer. Displacement‐control and force‐control were adopted for simulating the horizontal and vertical response, respectively. Both displacement‐ and force‐control were implemented successfully despite interference between the two jacks. Earthquake responses of the base‐isolated structure involving the effects of varying axial forces on the horizontal hysteretic behavior of the base‐isolation layer were simulated. In the displacement–force switching control, the jack was operated by displacement‐control when the test specimen was flexible but switched to force‐control once the specimen became stiff. Validity of the switching control technique was also checked by a series of online tests applied to the base‐isolated structure subjected to vertical ground motions. Switching between displacement‐control and force‐control was achieved when the axial force applied to the base‐isolation layer changed from tension to compression or from compression to tension. Both the displacement‐ and force‐control were successful even with many rounds of switching. The test revealed that large accelerations occurred on the floor immediately above the base‐isolation layer at the instants when the axial force of the base‐isolation layer changed from tension to compression. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
磁流变智能基础隔震系统研究   总被引:5,自引:3,他引:2  
本文将磁流变(MR)阻尼器与普通橡胶隔震支座相结合,组成智能基础隔震系统应用到结构控制中。在详细介绍了系统的各部分与整体运行情况后,采用LQR经典线性最优控制算法对结构进行了振动台试验研究。试验结果表明,由MR阻尼器提供可调阻尼力的智能隔震控制系统,能有效克服被动隔震最优控制频带窄的缺点,对较宽频域范围地震激励能进行有效的振动控制。其相对一般被动隔震装置,能同时减小上部结构加速度和隔震层位移.  相似文献   

18.
高阶单步法控制MR智能隔震系统的试验研究   总被引:1,自引:0,他引:1  
高阶单步法已成功地应用于结构非线性分析及考虑时滞的主动控制等,显示了它的稳定、精度高和计算迅速等特点。磁流变阻尼器是一种性能优良的智能阻尼器,它具有阻尼力可调范围宽、响应迅速且所需能量很少的特点。本文将磁流变(MR)阻尼器与普通橡胶隔震支座相结合,采用高阶单步算法和两种控制策略对结构进行振动控制。数值模拟分析与振动台试验结果表明:由MR阻尼器提供可调阻尼力的智能隔震控制系统能有效克服被动隔震最优控制频带窄的缺点,对较宽频域范围不同大小的地震激励均能提供最优控制。同时也表明该控制算法是一种能用于结构实际控制的变阻尼有效算法。  相似文献   

19.
The aim of this paper was to propose a design guideline for using visco‐elastic dampers for the control of building structures subjected to earthquake loading as well as suspension roof structures subjected to wind loading. The active control algorithm was used to calculate the control forces. Based on the single‐mode approach the control forces were transformed to the forces which visco‐elastic dampers can provide. Application of the method to the design of the building structure with passive damping devices in the bracing system and to the suspension roof with dampers was studied. Through the application of optimal control theory a systematic design procedure to implement dampers in structures is proposed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
This study examines the roles of soil-structure interaction (SSI), higher modes, and damping in a base-isolated structure built on multiple layers of soil overlying a half space. Closed-form solutions for the entire system, including a superstructure, seismic isolator, and numerous soil layers overlying a half-space, were obtained. The formulations obtained in this study simply in terms of well-known frequencies and mechanical impedance ratios can explicitly interpret the dynamic behavior of a base-isolated structure interacting with multiple soil layers overlying a half-space. The key factors influencing the performance of the isolation system are the damping ratio of the isolator and the ratio of the natural frequency of the fixed-base structure to that of the isolated structure by assuming that the superstructure moves as a rigid body. This study reveals that higher damping in the base isolator is unfavorable to higher mode responses that usually dominate the responses of the superstructure and that the damping mechanism plays an important role in transmitting energy in addition to absorbing energy. It is also concluded that it is possible to design a soft soil layer as an isolation system for isolating vibration energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号