首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Damage investigation of small to medium-span highway bridges in Wenchuan earthquake revealed that typical damage of these bridges included: sliding between laminated-rubber bearings and bridge girders, concrete shear keys failure, excessive girder displacements and even span collapse. However, the bearing sliding could actually act as a seismic isolation for piers, and hence, damage to piers for these bridges was minor during the earthquake. Based on this concept, an innovative solation system for highway bridges with laminated-rubber bearings is developed. The system is comprised of typical laminated-rubber bearings and steel dampers. Bearing sliding is allowed during an earthquake to limit the seismic forces transmitting to piers, and steel dampers are applied to restrict the bearing displacements through hysteretic energy dissipation. As a major part of this research, a quarter-scale, two-span bridge model was constructed and tested on the shake tables to evaluate the performance of this isolation system. The bridge model was subjected to a Northridge and an artificial ground motion in transverse direction. Moreover, numerical analyses were conducted to investigate the seismic performance of the bridge model. Besides the test bridge model, a benchmark model with the superstructure fixed to the substructure in transverse direction was also included in the numerical analyses. Both the experimental and the numerical results showed high effectiveness of this proposed isolation system in the bridge model. The system was found to effectively control the pier-girder relative displacements, and simultaneously, protect the piers from severe damage. Numerical analyses also validated that the existing finite element methods are adequate to estimate the seismic response of bridges with this isolation system.  相似文献   

2.
针对强地震作用下隔震结构隔震层变形过大的现象提出了曲面隔震结构体系,该结构隔震层为曲面布置,在地震和结构重力作用下,上部结构可绕曲率中心进行曲面运动。建立了非平整曲面隔震结构多质点计算分析模型,通过数值分析进一步研究非平整曲面隔震层的曲率半径对结构地震响应的影响规律。分析结果表明:在罕遇地震作用下,曲面隔震结构对隔震层及上部结构的位移控制效果显著,同时当曲率半径为10~15倍重心高度时具有良好的隔震效果。  相似文献   

3.
Guo  Wei  Wu  Jun  Hu  Yao  Li  Yunsong  Yang  T. Y. 《地震工程与工程振动(英文版)》2019,18(2):433-446
Adding dampers is a commonly adopted seismic risk mitigation strategy for modern buildings, and the corresponding design procedure of dampers has been well established by the Chinese Building Code. Even though all types of dampers are designed by the same procedure, actual seismic performance of the building may differ from one to the others. In this study, a nine-story benchmark steel building is established, and three different and typical types of dampers are designed according to the Chinese Building Code to realize structural vibration control under strong earthquake excitation. The seismic response of the prototype building equipped with a viscoelastic damper, viscous damper and buckling-restrained brace(BRB) subjected to 10 earthquake records are calculated, and Incremental Dynamic Analysis(IDA) is performed to describe progressive damage of the structure under increasing earthquake intensity. In the perspective of fragility, it shows that the viscoelastic damper has the highest collapse margin ratio(CMR), and the viscous damper provides the best drift control. Both the BRB and viscoelastic dampers can effectively reduce the floor acceleration responses in the mid-rise building.  相似文献   

4.
Long-period pulses in near-field earthquakes lead to large displacements in the base of isolated structures.To dissipate energy in isolated structures using semi-active control,piezoelectric friction dampers(PFD) can be employed.The performance of a PFD is highly dependent on the strategy applied to adjust its contact force.In this paper,the seismic control of a benchmark isolated building equipped with PFD using PD/PID controllers is developed.Using genetic algorithms,these controllers are optimized to create a balance between the performance and robustness of the closed-loop structural system.One advantage of this technique is that the controller forces can easily be estimated.In addition,the structure is equipped with only a single sensor at the base floor to measure the base displacement.Considering seven pairs of earthquakes and nine performance indices,the performance of the closed-loop system is evaluated.Then,the results are compared with those given by two well-known methods:the maximum possive operation of piezoelectric friction dampers and LQG controllers.The simulation results show that the proposed controllers perform better than the others in terms of simultaneous reduction of floor acceleration and maximum displacement of the isolator.Moreover,they are able to reduce the displacement of the isolator systems for different earthquakes without losing the advantages of isolation.  相似文献   

5.
Seismic Response of Adjacent Buildings Connected with Friction Dampers   总被引:1,自引:0,他引:1  
The effectiveness of passive energy dissipation systems to improve seismic performance of connected buildings is now well established through extensive analytical and experimental investigations. However, the performance of buildings connected with friction dampers has not been looked into. In this paper, the investigation is carried out to study the structural responses of two adjacent buildings connected with friction dampers under various earthquake excitations. A formulation of the equations of motion for the two adjacent multi degree of freedom (MDOF) buildings connected with friction dampers is presented. The numerical study is carried out in two parts, namely (i) two adjacent MDOF buildings connected with friction dampers having same slip force in all the dampers and (ii) two adjacent MDOF buildings connected with friction dampers having different slip forces in the dampers. The effectiveness of the dampers in terms of the reduction of structural responses, namely, displacement, acceleration and shear forces of connected adjacent buildings is investigated. A parametric study is also conducted to investigate the optimum slip force of the dampers. In addition, the optimal placement of the dampers, rather than providing the dampers at all the floor levels is also studied to minimize the cost of the dampers. Results show that using friction dampers to connect the adjacent buildings of different fundamental frequencies can effectively reduce earthquake-induced responses of either building if slip force of the dampers is appropriately selected. Also, it is not necessary to connect the two adjacent buildings at all floors but lesser dampers at appropriate locations can significantly reduce the earthquake response of the combined system. Further, it is also observed that the reduction in the responses when the two MDOF buildings connected with 50% of the total dampers is almost as much as when they are connected at all the floors, thereby reducing the cost of the dampers significantly.  相似文献   

6.
A new base‐isolation mechanism corresponding to a variance of the stepping A‐shaped frame is proposed and its seismic performance is investigated numerically for strong ground accelerations with peak values in the range from 0.5 to 1g. In its simplest two‐dimensional form, the system consists of a frame with two telescoping legs pinned at the apex at a sharp angle. The legs are attached to the foundation through a spring and a damper acting in parallel. Both the springs and viscous dampers have bilinear characteristics that make them very stiff in compression but very soft in tension. As the structure rocks sideways, the length of the loaded leg remains essentially constant while the length of the unloaded leg increases. When the ground acceleration changes direction, the process is reversed. The resulting system has three main characteristics: (i) as the structure steps on a rigid leg, the maximum acceleration that can be transmitted to the superstructure is limited to a value which is approximately independent of the amplitude of the ground motion; (ii) there is a systematic lifting of the superstructure with kinetic energy being systematically transformed into potential energy during the strong phase of the ground motion; and (iii) the system is slowly self‐centering at the end of the earthquake. The seismic performance of the system is evaluated for a tall bridge pier and for a smaller frame that could be used in a multi‐story building. The results obtained for the 1940 El Centro ground motion scaled to 1g and for the near‐field Rinaldi ground motion recorded during the Northridge earthquake show that substantial reductions of the absolute acceleration can be obtained with reasonable relative displacements of the superstructure and small strokes in the isolation devices. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
A new concept for the earthquake resistant design of timber shear wall structures is proposed. By providing friction devices in the corners of the framing system of the shear wall, its earthquake resistance and damage control potential can be enhanced considerably. During severe earthquake excitations, the friction devices slip and a large portion of the seismic energy input is dissipated by friction rather than by inelastic deformation of the sheathing-to-framing connectors. A simple numerical model is developed and results of inelastic time-history dynamic analyses show the superior performance of the friction damped timber shear walls compared to conventional shear wall systems. The proposed friction devices act both as safety valves by limiting the inertia forces transmitted to the structure, and as structural dampers by dissipating a significant portion of the seismic energy input. The devices can be used in any configuration of the framing system to accommodate architectural or construction requirements. The damping system may also be conveniently incorporated in existing timber shear wall buildings to upgrade significantly their earthquake resistance.  相似文献   

8.
以汶川地震为研究背景,针对震后典型钢筋混凝土框架结构进行地震易损性研究。基于Cornell理论框架结合汶川地质资料,拟合出考虑场地特点的地震危险性模型,同时定义损伤水平状态及限值指标,以概率解析易损性研究方法为基础,运用考虑地震动参数的解析易损性评估方法绘制汶川地区钢筋混凝土框架建筑的地震易损性曲线。研究结果表明:考虑地震动参数的概率解析易损性研究方法是一种有效的地震易损性评估方法;以PGA作为地震强度输入指标的结构反应,随自振周期的增大体系最大响应的相关性降低,结构各个损伤状态的失效概率均随之增大。  相似文献   

9.
A new floor connecting system developed for low‐damage seismic‐resistant building structures is described herein. The system, termed Inertial Force‐Limiting Floor Anchorage System (IFAS), is intended to limit the lateral forces in buildings during an earthquake. This objective is accomplished by providing limited‐strength deformable connections between the floor system and the primary elements of the lateral force‐resisting system. The connections transform the seismic demands from inertial forces into relative displacements between the floors and lateral force‐resisting system. This paper presents the IFAS performance in a shake‐table testing program that provides a direct comparison with an equivalent conventional rigidly anchored‐floor structure. The test structure is a half‐scale, 4‐story reinforced concrete flat‐plate shear wall structure. Precast hybrid rocking walls and special precast columns were used for test repeatability in a 22‐input strong ground‐motion sequence. The structure was purposely designed with an eccentric wall layout to examine the performance of the system in coupled translational‐torsional response. The test results indicated a seismic demand reduction in the lateral force‐resisting system of the IFAS structure relative to the conventional structure, including reduced shear wall base rotation, shear wall and column inter‐story drift, and, in some cases, floor accelerations. These results indicate the potential for the IFAS to minimize damage to the primary structural and non‐structural components during earthquakes.  相似文献   

10.
The 2012 Emilia earthquake (in Northern Italy) caused extensive damage to existing prefabricated reinforced concrete structures. These buildings were found being extremely vulnerable because, being designed for vertical loads only, they featured friction‐based connections between structural elements, most commonly between beams and columns. Given the large diffusion of these structures, their seismic retrofit is critical. Various techniques have been proposed in the literature, in most of which friction‐based connections are removed by inserting mechanical connectors that will make beam‐column connections hinged. These approaches lead to a significant increase of the base shear and therefore require strengthening of columns. The paper presents dissipative devices based on carbon‐wrapped steel tubes to be used as an alternative low‐damage solution for the retrofit of beam‐column connections. The first part of the paper presents results of experimental tests on the devices and discusses their dissipative behaviour. The succeeding parts of the paper present numerical analyses on simple structures reinforced with the proposed device. The results of the numerical study show how the introduction of the dissipative devices produces a significant reduction of forces transmitted to the structure, by comparing the seismic response of simple frame structures equipped with dissipative devices with the response of equivalent elastic systems.  相似文献   

11.
A reliable performance of anti‐seismic devices when the upper‐structure is subjected to strong biaxial seismic excitation is of vital importance to ensure the latter doesn't reach critical behavior. U‐shaped steel dampers are hysteretic devices used to dissipate the earthquake‐induced energy of base‐isolated structures. In the framework of performance‐based design, which is gaining more and more recognition, it is of particular importance to assess the performance of base‐isolated structures with such dampers under different intensity levels of bidirectional ground motion. To achieve this goal, an analytical model able to simulate the bidirectional displacement response of an isolation system is adopted. Incremental dynamic analysis (IDA) is used to obtain the relation between the earthquake‐induced bidirectional damage of U‐shaped steel dampers and different intensity levels of the considered records. The performance of the dampers is categorized into 5 levels delimited by 4 limit states for which fragility curves are derived. The results obtained using the bidirectional approach are quantitatively compared to those given by employing an in‐plane model (widely used in current design practices in Japan) with the purpose of assessing whether the latter provides unconservative estimates of the performance of the dampers. The main conclusion is that, for large seismic intensities, the safety margin against fracture of the dampers is significantly overestimated when an in‐plane model is adopted. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
This study examines the efficacy of using seismic isolation to favorably influence the seismic response of cable‐stayed bridges subjected to near‐field earthquake ground motions. In near‐field earthquake ground motions, large amplitude spectral accelerations can occur at long periods where many cable‐stayed bridges have significant structural response modes. This combination of factors can result in large tower accelerations and base shears. In this study, lead–rubber bearing seismic isolators were modeled for three cable‐stayed bridges, and three cases of isolation were examined for each bridge. The nine isolated bridge configurations, plus three non‐isolated configurations as references, were subjected to near‐field earthquake ground motions using three‐dimensional time‐history analyses. Introduction of a small amount of isolation is shown to be very beneficial in reducing seismic accelerations and forces while at the same time producing only a modest increase in the structural displacements. There is a low marginal benefit to continue to increase the amount of isolation by further lengthening the period of the structure because structural forces and accelerations reduce at a diminishing rate whereas structural displacements increase substantially. In virtually all cases the base shears in the isolated bridges were reduced by at least 50several instances by up to 80individual near‐field records showed large variability from one record to the next, with coefficients of variation about the mean as large as 50assessing the characteristics of near‐field ground motion for use in isolation design of cable‐stayed bridges. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
After an earthquake, non‐negligible residual displacements may affect the serviceability of a base isolated structure, if the isolation system does not possess a good restoring capability. The permanent offset does not affect the performance unless the design is problematic for utilities, also considering possible concerns related to the maintenance of the devices. Starting from experimental and analytical results of previous studies, the restoring capability of Double Concave Friction Pendulum bearings is investigated in this paper. A simplified design suggestion for the estimation of maximum expected residual displacements for currently used friction pendulum systems is then validated. The study is based on controlled‐displacement and seismic input experiments, both performed under unidirectional motion. Several shaking table tests have been carried out on a three‐dimensional isolated specimen structure. The same sequence of seismic inputs was applied considering three different conditions of sliding surfaces corresponding to low, medium and high friction. The accumulation of residual displacements is also investigated by means of nonlinear dynamic analysis. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
A damage index computed for a set of ground motions recorded in 11 earthquakes, including the 1985 Mexico City earthquake, the 2010 Chile earthquake, the 2011 Christchurch earthquake, and the 2011 Great East Japan earthquake, is proposed in this paper. The proposed damage index uses some basic parameters of the response of an SDOF system including the maximum hysteretic energy per unit mass that a structure can dissipate under strong ground motions. Control of lateral displacements, especially roof drift ratio of buildings, was found to be important in minimizing seismic damage. The values and distribution of the computed damage index are consistent with global building damage observations for the selected earthquakes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
为研究不规则框架隔震结构的地震反应,分别对一个传统抗震结构、一个铅芯叠层橡胶支座隔震结构和四个组合隔震结构(隔震层由铅芯支座和滑板支座组成)进行了弹塑性地震反应时程分析,研究隔震支座参数对隔震效果的影响。结果表明:采用组合隔震技术时,合理选择隔震层的铅芯支座布置位置、滑板支座的摩擦系数和铅芯叠层橡胶支座的型号,可以有效地降低上部结构的扭转效应;对于不规则的建筑隔震结构,为减小地面运动带来的扭转效应,建议采用由铅芯支座和滑板支座组合而成的隔震层,可对上部结构的扭转起到很好的抑制作用。  相似文献   

16.
During past strong earthquakes, highway bridges have sustained severe damage or even collapse due to excessive displacements and/or very large lateral forces. For commonly used isolation bearings with a pure friction sliding surface, seismic forces may be reduced but displacements are often unconstrained. In this paper, an alternative seismic bearing system, called the cable-sliding friction bearing system, is developed by integrating seismic isolation devices with displacement restrainers consisting of cables attached to the upper and lower plates of the bearing. Restoring forces are provided to limit the displacements of the sliding component. Design parameters including the length and stiffness of the cables, friction coefficient, strength of the shear bolt in a fixed-type bearing, and movements under earthquake excitations are discussed. Laboratory testing of a prototype bearing subjected to vertical loads and quasi-static cyclic lateral loads, and corresponding numerical finite element simulation analysis, were carried out. It is shown that the numerical simulation shows good agreement with the experimental force-displacement hysteretic response, indicating the viability of the new bearing system. In addition, practical application of this bearing system to a multi-span bridge in China and its design advantages are discussed.  相似文献   

17.
The recent development of a range of hysteretic energy absorbers permits practical shock isolation systems to be incorporated in the bases of a wide range of structures. This isolation gives reduced earthquake loads which may be resisted by the normal lateral strength of the structure. Hence a plastic reserve of earthquake resistance is no longer essential. A wider choice of architectural and structural forms is available with such an isolation system. The structures may be designed to prevent structural and non-structural damage with a high degree of reliability. The special hysteretic dampers limit the lateral movement of the base of a structure to a few inches. With these small movements the lateral flexibility required for an isolating system can be conveniently provided, for many structures, by rubber bearings.  相似文献   

18.
The 1995 Hyogo-ken Nanbu (Kobe) earthquake brought about enormous damage to structures in the Hanshin and Awaji areas. In this paper the importance of investigating the relationship between ground motion and structural damage is pointed out.

Strong seismic motion was observed at the NTT (Nippon Telegraph and Telephone) Building during this earthquake. The structural damage to this building was relatively slight. In order to evaluate the relationship between ground motion and structural damage, it is necessary to assess the effects of the soil–structure interaction. In this study, the seismic response of the building and of the surface soil were evaluated by means of a nonlinear soil–structure interaction analysis using FEM.

It was found that, the nonlinearity of surface soil near the building had a great effect on the soil–structure interaction, especially the rocking of the building.  相似文献   


19.
中小学砌体结构校舍的隔震加固技术研究   总被引:1,自引:0,他引:1  
本文以抗震设防8度区的山西省某小学4层砌体结构教学楼抗震加固为背景,探讨了采用隔震技术对多层砌体房屋进行抗震加固的计算分析方法、施工工艺及相应的关键技术。结果表明,叠层橡胶垫基础隔震加固可以有效降低上部结构所受的地震作用,能够在一定程度上提高工程结构的安全性,是一种比较有效的建筑抗震加固技术。在高烈度区对砌体结构校舍进行抗震加固时,采用隔震加固技术比传统加固方法更具有优势。相关成果对于中小学砌体结构校舍抗震加固具有重要的参考价值。  相似文献   

20.
Effectiveness of a new semiactive independently variable stiffness (SAIVS) device in reducing seismic response of sliding base isolated buildings is evaluated analytically and experimentally. Through analytical and experimental study of force—displacement behaviour of the SAIVS device, it is shown that the device can vary stiffness continuously and smoothly between minimum and maximum stiffness. Passive sliding base isolation systems reduce interstorey drifts and superstructure accelerations, but with increased base displacements, which is undesirable, under large velocity near fault pulse type earthquakes. It is a common practice to incorporate non‐linear passive dampers into the isolation system to reduce bearing displacements. Incorporation of passive dampers, however, may result in increased superstructure accelerations and drifts; while, properly designed passive dampers can be beneficial. A viable alternative is to use semiactive variable stiffness systems, which can vary the period of the sliding base isolated buildings in real time, to simultaneously reduce bearing displacements and superstructure responses further than the passive systems, which deserves investigation. This study investigates the performance of a 1:5 scaled smart sliding base isolated building model equipped with the SAIVS device analytically and experimentally, under near fault earthquakes, by developing a new moving average non‐linear tangential stiffness control algorithm for control of the SAIVS device. The SAIVS device reduces bearing displacements further than the passive cases, while maintaining isolation level forces and superstructure responses at the same level as the passive minimum stiffness case, indicating the significant potential of the SAIVS system. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号