首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Sutong Bridge in China opened to traffic in 2008, and is an arterial connection between the cities of Nantong and Suzhou. It is a cable-stayed bridge with a main span of 1,088 m. Due to a tight construction schedule and lack of suitable seismic devices at the time, fixed supports were installed between the piers and the girder in the transverse direction. As a result, significant transverse seismic forces could occur in the piers and foundations, especially during a return period of a 2500-year earthquake. Therefore, the piers, foundations and fixed bearings had to be designed extraordinarily strong. However, when larger earthquakes occur, the bearings, piers and foundations are still vulnerable. The recent rapid developments in seismic technology and the performance-based design approach offer a better opportunity to optimize the transverse seismic design for the Sutong Bridge piers. The optimized design can be applied to the Sutong Bridge(as a retrofit), as well as other bridges. Seismic design alternatives utilizing viscous fluid dampers(VFD), or friction pendulum sliding bearings(FPSB), or transverse yielding metallic dampers(TYMD) are thoroughly studied in this work, and the results are compared with those from the current condition with fixed transverse supports and a hypothetical condition in which only sliding bearings are provided on top of the piers(the girder can move "freely" in the transverse direction during the earthquake, except for frictional forces of the sliding bearings). Parametric analyses were performed to optimize the design of these proposed seismic devices. From the comparison of the peak bridge responses in these configurations, it was found that both VFD and TYMD are very effective in the reduction of transverse seismic forces in piers, while at the same time keeping the relative transverse displacements between piers and the box girder within acceptable limits. However, compared to VFD, TYMD do not interact with the longitudinal displacements of the girder, and have simpler details and lower initial and maintenance costs. Although the use of FPSB can also reduce seismic forces, it generally causes the transverse relative displacements to be higher than acceptable limits.  相似文献   

2.
高烈度地震对铁路桥梁安全造成巨大隐患,且次生灾害将引起较大经济损失。该大跨连续梁桥所处地震带正进入活跃期,未来有发生较大规模强烈地震的可能,但桥梁自身不具备高烈度抗震能力,需利用粘滞阻尼器对其进行减震处理。采用斜向设置阻尼器并配合双曲面球型支座,来控制可能发生的纵向和横向地震。通过数值模拟进行阻尼器参数敏感性分析以及减震效果讨论,进而确定其最优设置方案。选取相关参数作为评价指标,对比加设阻尼器前后易损部位的地震响应,确定其在高烈度地震荷载激励下的减震效果。研究结果表明:在液体粘滞阻尼器的作用下,使得各墩协同受力,大大增加了结构的整体性,同时能很好弥补减隔震支座不能很好的控制上部结构位移的缺点,同时能降低罕遇地震力对桥墩的冲击损伤。因此,在高烈度区大跨度桥梁中更有必要设置阻尼器来抗震。  相似文献   

3.
为评估隔震和非隔震支座对桥梁地震易损性的影响,以一座3跨连续混凝土箱梁桥为分析对象,首先建立采用铅芯橡胶隔震支座与非隔震型盆式橡胶支座下桥梁的数值模型,求得不同程度地震作用下墩顶与支座的最大位移响应;再定义转角延性比损伤指标,结合支座剪应变,分析桥墩和支座的地震易损性情况;最后通过宽界限法建立全桥地震易损性曲线。研究结果表明,支座是较容易发生损坏的构件,而桥梁系统比桥墩或支座更易发生破坏,同时铅芯橡胶支座的破坏概率明显低于非隔震型盆式支座,可见采用隔震支座能有效减小桥墩墩顶在地震作用下的最大位移,此时桥墩地震易损性优于采用非隔震支座的情况。  相似文献   

4.
Modern highway bridges in Illinois are often installed with economical elastomeric bearings that allow for thermal movement of the superstructure, and steel fixed bearings and transverse retainers that prevent excessive movement from service‐level loadings. In the event of an earthquake, the bearing system has the potential to provide a quasi‐isolated response where failure of sacrificial elements and sliding of the bearings can cause a period elongation and reduce or cap the force demands on the substructure. A computational model that has been calibrated for the expected nonlinear behaviors is used to carry out a parametric study to evaluate quasi‐isolated bridge behavior. The study investigates different superstructure types, substructure types, substructure heights, foundation types, and elastomeric bearing types. Overall, only a few bridge variants were noted to unseat for design‐level seismic input in the New Madrid Seismic Zone, indicating that most structures in Illinois would not experience severe damage during their typical design life. However, Type II bearing systems, which consist of an elastomeric bearing and a flat PTFE slider, would in some cases result in critical damage from unseating at moderate and high seismic input. The sequence of damage for many bridge cases indicates yielding of piers at low‐level seismic input. This is caused by the high strength of the fixed bearing element, which justifies further calibration of the quasi‐isolation design approach. Finally, the type of ground motion, pier height, and bearing type were noted to have significant influence on the global bridge response. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
During past strong earthquakes, highway bridges have sustained severe damage or even collapse due to excessive displacements and/or very large lateral forces. For commonly used isolation bearings with a pure friction sliding surface, seismic forces may be reduced but displacements are often unconstrained. In this paper, an alternative seismic bearing system, called the cable-sliding friction bearing system, is developed by integrating seismic isolation devices with displacement restrainers consisting of cables attached to the upper and lower plates of the bearing. Restoring forces are provided to limit the displacements of the sliding component. Design parameters including the length and stiffness of the cables, friction coefficient, strength of the shear bolt in a fixed-type bearing, and movements under earthquake excitations are discussed. Laboratory testing of a prototype bearing subjected to vertical loads and quasi-static cyclic lateral loads, and corresponding numerical finite element simulation analysis, were carried out. It is shown that the numerical simulation shows good agreement with the experimental force-displacement hysteretic response, indicating the viability of the new bearing system. In addition, practical application of this bearing system to a multi-span bridge in China and its design advantages are discussed.  相似文献   

6.
Seismic damage of highway bridges during the 2008 Wenchuan earthquake   总被引:3,自引:2,他引:1  
Many highway bridges were severely damaged or completely collapsed during the 2008 Wenchuan earthquake.A field investigation was carried out in the strongly affected areas and over 320 bridges were examined. Damage to some representative highway bridges is briefly described and a preliminary analysis of the probable causes of the damage is presented in this paper. The most common damage included shear-flexural failure of the pier columns, expansion joint failure, shear key failure, and girder sliding in the transversal or longitudinal directions due to weak connections between girder and bearings. Lessons learned from this earthquake are described and recommendations related to the design of curved and skewed bridges, design of bearings and devices to prevent girder collapse, and ductility of bridge piers are presented.Suggestions for future seismic design and retrofitting techniques for bridges in moderate to severe earthquake areas are also proposed.  相似文献   

7.
不同约束方式对匝道桥动力特性的影响研究   总被引:1,自引:0,他引:1  
近年来,地震作用下的匝道桥表现出较高的地震易损性。为建立匝道桥的有效约束方式,以减小其地震损伤,本文基于汶川地震中连续梁桥约束方式的调研结果,建立了4种不同匝道桥支座约束方式,并以石家庄石环线某匝道桥为例,对比分析了不同约束方式下匝道桥的自振特性及地震响应。结果表明:板式橡胶支座具有一定的剪切变形能力,可降低桥墩与支座组成的体系刚度,有效分散了上部结构的地震惯性力,保护了下部结构,但应注意其引起的较大主梁位移;固定支座或墩梁固结形式会放大桥墩受力,增加下部结构的损坏,不宜设置在高度较矮、刚度较大的桥墩上;双层挡块和垫石凹槽分级限位支座具有较好的限位能力,并可耗散部分地震能量。  相似文献   

8.
曲线桥梁在役期间可能面临地震灾害,导致结构损坏甚至坍塌,为了评估在役桥梁的抗震性能,提出基于损伤分析的曲线梁桥抗震性能评估方法。建立旧曲线梁桥有限元模型,基于损伤分析的原理,提出适合曲线梁桥地震响应特性的构件损伤模型,在全桥有限元模型中输入不同类型地震动,计算各构件的损伤指数,并结合旧桥检算系数,由各构件损伤指数综合得到桥梁的整体损伤指数。结果表明:不同地震动下主梁会发生碰撞破坏,桥梁两端的支座容易发生移位,桥墩沿横桥向或顺桥向均会产生位移;不同地震动对主梁、支座、桥墩等构件造成的损害程度有较大差异,各构件的地震响应会影响桥梁整体结构的抗震性能,其中桥墩对桥梁整体抗震性能的影响最大,桥墩位移超过极限值可能导致倒塌;主梁反复碰撞会加剧桥梁的破坏程度,桥梁两端支座在地震作用下更容易发生损坏。  相似文献   

9.
Design formulas for supplemental viscous dampers to building structures are readily available in FEMA provisions and MCEER research reports. However, for the design of supplemental viscous dampers corresponding to a desired system damping ratio of highway bridges, there exist, if any, few design guidelines. This is particularly true if the bridge components such as elastomeric bearings, piers and abutment possess different damping ratios, stiffnesses, and lumped masses. In this paper, the design formulas for supplemental viscous dampers to highway bridges have been derived based on the concept of ‘composite damping ratio’. The design formulas can be used to determine the damping coefficients of the dampers corresponding to a desired system damping ratio of the bridge in which different component damping ratios may be assumed for the elastomeric bearings, piers and abutments. The proposed design formulas are numerically validated by comparing the seismic responses of a three‐span bridge equipped with viscous dampers with those of the same bridge without viscous dampers but with an assigned inherent system damping ratio equal to the target system damping ratio. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Laminated elastomeric bearings have been widely used for small-to-medium-span highway bridges in China, in which concrete shear keys are set transversely to prohibit large girder displacement. To evaluate bridge seismic responses more accurately, proper analytical models of bearings and shear keys should be developed. Based on a series of cyclic loading experiments and analyses, rational analytical models of laminated elastomeric bearings and shear keys, which can consider mechanical degradation, were developed. The effect of the mechanical degradation was investigated by examining the seismic response of a small-to-medium-span bridge in the transverse direction under a wide range of peak ground accelerations (PGA). The damage mechanism for small-to-medium-span highway bridges was determined, which can explain the seismic damage investigation during earthquakes in recent years. The experimental results show that the mechanical properties of laminated elastomeric bearings will degrade due to friction sliding, but the degree of decrease is dependent upon the influencing parameters. It can be concluded that the mechanical degradation of laminated elastomeric bearings and shear keys play an important role in the seismic response of bridges. The degradation of mechanical properties of laminated elastomeric bearings and shear keys should be included to evaluate more precise bridge seismic performance.  相似文献   

11.
The convex model approach is applied to derive the robust seismic fragility curves of a five-span isolated continuous girder bridge with lead rubber bearings (LRB) in China. The uncertainty of structure parameters (the yield force and the post-yield stiffness of LRB, the yield strength of steel bars, etc.) are considered in the convex model, and the uncertainty of earthquake ground motions is also taken into account by selecting 40 earthquake excitations of peak ground acceleration magnitudes ranging from 0.125 to 1.126 g. A 3-D finite element model is employed using the software package OpenSees by considering the nonlinearity in the bridge piers and the isolation bearings. Section ductility of piers and shearing strain isolation bearings are treated as damage indices. The cloud method and convex model approach are used to construct the seismic fragility curves of the bridge components (LRB and bridge piers) and the bridge system, respectively. The numerical results indicate that seismic fragility of the bridge system and bridge components will be underestimated without considering the uncertainty of structural parameters. Therefore, the failure probability P f,max had better be served as the seismic fragility, especially, the fragility of the bridge system is largely dictated by the fragility of LRB. Finally, the probabilistic seismic performance evaluation of the bridge is carried out according to the structural seismic risk estimate method.  相似文献   

12.
This paper examines the eigenvalues of multi‐span seismically isolated bridges in which the transverse displacement of the deck at the end abutments is restricted. With this constraint the deck is fully isolated along the longitudinal direction, whereas along the transverse direction the deck is a simple‐supported beam at the end abutments which enjoys concentrated restoring forces from the isolation bearings at the center piers. For moderate long bridges, the first natural period of the bridge is the first longitudinal period, while the first transverse period is the second period, given that the flexural rigidity of the deck along the transverse direction shortens the isolation period offered by the bearings in that direction. This paper shows that for isolated bridges longer than a certain critical length, the first transverse period becomes longer than the first longitudinal period despite the presence of the flexural rigidity of the deck. This critical length depends on whether the bridge is isolated on elastomeric bearings or on spherical sliding bearings. This result is also predicted with established commercially available numerical codes only when several additional nodes are added along the beam elements which are modeling the deck in‐between the bridge piers. On the other hand, this result cannot be captured with the limiting idealization of a beam on continuous distributed springs (beam on Wrinkler foundation)—a finding that has practical significance in design and system identification studies. Finally, the paper shows that the normalized transverse eigenperiods of any finite‐span deck are self‐similar solutions that can be represented by a single master curve and are independent of the longitudinal isolation period or on whether the deck is supported on elastomeric or spherical sliding bearings. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Isolation bearings and dampers are often installed between piers and superstructures to reduce the seismic responses of bridges under large earthquakes. This paper presents a novel steel damper for bridges. The damper employs steel plates as energy dissipation components, and adopts a vertical free mechanism to achieve a large deformation capacity. Quasi-static tests using displacement-controlled cyclic loading and numerical analyses using a finite element program called ABAQUS are conducted to investigate the behavior of the damper, and a design methodology is proposed based on the tests and numerical analyses. Major conclusions obtained from this study are as follows:(1) the new dampers have stable hysteresis behavior under large displacements;(2) finite element analyses are able to simulate the behavior of the damper with satisfactory accuracy; and(3) simplified design methodology of the damper is effective.  相似文献   

14.
高架桥地震反应半主动控制分析   总被引:5,自引:3,他引:5  
本文探讨了高架桥结构地震反应LQR(Linear Quadratic Regulator)半主动控制算法以及考虑刚度退化的桥墩非线性计算模型,并利用Matlab语言编制的程序对其进行了数值仿真计算。结果表明,将隔震技术与利用MR阻尼器的半主动控制技术相结合,能够有效地减小高架桥的地震反应;MR阻尼器的设置位置以及结构的参数对控制效果有较大影响。考虑桥墩非线性影响将能得到更为接近实际的计算结果。  相似文献   

15.
大跨铁路钢桁连续梁桥减隔震方案比较研究   总被引:5,自引:2,他引:3       下载免费PDF全文
为研究适用于大跨铁路钢桁连续梁桥的减隔震方案及合理优化参数,以一座全长504 m的三跨铁路钢桁连续梁特大桥为工程背景,使用非线性结构分析软件SAP2000建立有限元模型,采用快速非线性分析方法分析对比摩擦摆、阻尼器、速度锁定器等减隔震方案在各种装置参数下的减震效率。研究表明:由于大跨铁路钢桁连续梁桥墩身自振导致的地震力较大,摩擦摆方案内力减震效率一般,同时墩底内力对滑动面半径变化并不敏感,在选取滑动半径时应更多地考虑行车平顺性和梁端位移值的限制。速度锁定器会极大地增加此类桥梁地震输入能量,不适用于此类桥型。阻尼器方案对活动墩内力减震效果明显,但不能有效降低固定墩内力。摩擦摆支座附加阻尼器组合减震方案能有效控制此类桥梁的内力和位移响应。研究结论可为大跨度钢桁连续梁桥减隔震设计提供参考。  相似文献   

16.
宋帅  王帅  吴刚 《震灾防御技术》2019,14(4):781-789
从板式橡胶支座及混凝土挡块抗震设计角度,以一座典型的3跨预应力混凝土连续梁桥为例,结合概率地震需求分析及桥墩、支座等抗震关键构件极限破坏状态,建立不同支座及挡块分析模型的中小跨径梁桥地震易损性曲线,研究考虑支座滑移效应及挡块破坏的中小跨径梁桥的易损性特征。研究结果表明:不考虑橡胶支座的滑移效应及混凝土挡块破坏,桥墩地震破坏概率明显增大,且会低估支座破坏概率;桥梁系统易损性受支座破坏状态的影响显著,需设置合理的限位装置;在中小跨径梁桥地震易损性分析中,考虑支座的滑移效应及混凝土挡块的破坏十分必要。  相似文献   

17.
防震减灾科普教育是提升公民防震减灾科学素质的重要途经。日本和美国是在防震减灾科普教育方面走在世界前列的国家。本文通过研究日本和美国关于公民防震减灾科学素质建设文献资料,分类归纳日本和美国公民防震减灾科学素质建设的历史背景、发展特点及主要路径,由此对我国公民防震减灾科学素质建设提出思考和建议。  相似文献   

18.
为研究不同设计参数对曲线梁桥地震响应的影响以指导结构抗震设计,对不同支承约束曲线梁桥地震响应及地震需求敏感性进行分析。采用增量动力分析(IDA)方法对比分析了不同支承约束曲线梁桥的结构地震响应变化趋势;采用Tornado图形法对不同结构参数影响程度进行了排序,找出了对结构地震需求影响显著的参数。结果表明:采用板式橡胶支座桥梁因支座易发生滑移而导致上部结构位移较大,但降低了下部结构响应,设置固定墩后,下部结构损伤显著增加;对于采用板式橡胶支座和铅芯橡胶支座的曲线梁桥,墩高及跨径对墩底曲率需求影响较大,而对于固定墩为墩梁固结形式和采用盆式橡胶支座的曲线梁桥,跨径及跨数对墩底曲率需求影响较大;对于采用不同支承约束的曲线梁桥,墩高和曲率半径对桥台位移需求影响较大,仅次于地震动参数PGA。  相似文献   

19.
Sliding base‐isolation systems used in bridges reduce pier drifts, but at the expense of increased bearing displacements under near‐source pulse‐type earthquakes. It is common practice to incorporate supplemental passive non‐linear dampers into the isolation system to counter increased bearing displacements. Non‐linear passive dampers can certainly reduce bearing displacements, but only with increased isolation level forces and pier drifts. The semi‐active controllable non‐linear dampers, which can vary damping in real time, can reduce bearing displacements without further increase in forces and pier drifts; and hence deserve investigation. In this study performance of such a ‘smart’ sliding isolation system, used in a 1:20 scaled bridge model, employing semi‐active controllable magneto‐rheological (MR) dampers is investigated, analytically and experimentally, under several near‐fault earthquakes. A non‐linear analytical model, which incorporates the non‐linearities of sliding bearings and the MR damper, is developed. A Lyapunov control algorithm for control of the MR damper is developed and implemented in shake table tests. Analytical and shake table test results are compared. It is shown that the smart MR damper reduces bearing displacements further than the passive low‐ and high‐damping cases, while maintaining isolation level forces less than the passive high‐damping case. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
为探究高承台下自由桩长对双薄壁墩连续刚构桥地震响应的影响,基于OpenSees程序建立了实桥有限元模型并进行弹塑性时程分析,通过对比不同自由桩长模型的时程曲线、峰值响应及滞回特性,分析了自由桩长对桥梁地震响应的影响。结果表明:自由桩长增加会减小桥梁刚度;地震作用下,随自由桩长增加,主梁、支座及自由桩顶的水平位移增大,且支座位移增幅大于主梁和桩顶的位移增幅,墩底内力及变形减小;地震作用下,桥梁边墩的横桥向曲率大于中墩,矮墩的纵桥向曲率大于高墩,边墩的内肢墩较外肢墩更易遭受破坏。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号