首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Lateral migration of linear dunes in the Strzelecki desert,Australia   总被引:1,自引:0,他引:1  
Linear dunes in the Strzelecki Desert trend roughly south-north. Sand transport, which is toward the NNE, has caused the dunes to migrate eastward while they extend or migrate northward. Eastward lateral migration is evidenced by: (1) asymmetrical shape of the dunes; east-facing slopes are several times as steep as west-facing slopes; (2) asymmetrical accumulation of loose recently transported sand (relatively abundant on east-facing slopes); (3) asymmetrical outcropping of older semiconsolidated aeolian sand on the dune surface (more abundant on west-facing slopes); and (4) east-dipping foreset beds that underly the west-facing flanks of some dunes. Dunes in the Strzelecki Desert are still active in the sense that sand is transported along and across many dune crests. However, the dunes are composed primarily of Pleistocene strata, indicating that the trend of the dunes was established before the Holocene. The obliquity of the dunes to the transport direction is not merely an aberration of the wind regime of the last few decades. Preferential accumulation of sand on east-facing flanks indicates that the dunes migrated eastward several metres during the Holocene. Moreover, the west-facing flanks of some dunes have experienced a minimum of tens of metres of erosion. This asymmetric erosion and deposition were caused by dune obliquity and lateral migration that may have begun as early as the Pleistocene. Dunes in the Strzelecki Desert and in the adjacent Simpson Desert display a variety of grossly different internal structures. Computer graphics experiments demonstrate that many of these differences in structure can be explained by different angles of climb of the dunes.  相似文献   

2.
As with most dune fields, the White Sands Dune Field in New Mexico forms in a wind regime that is not unimodal. In this study, crescentic dune shape change (deformation) with migration at White Sands was explored in a time series of five LiDAR‐derived digital elevation models (DEMs) and compared to a record of wind direction and speed during the same period. For the study period of June 2007 to June 2010, 244 sand‐transporting wind events occurred and define a dominant wind mode from the SW and lesser modes from the NNW and SSE. Based upon difference maps and tracing of dune brinklines, overall dune behavior consists of crest‐normal migration to the NE, but also along‐crest migration of dune sinuosity and stoss superimposed dunes to the SE. The SW winds are transverse to dune orientations and cause most forward migration. The NNW winds cause along‐crest migration of dune sinuosity and stoss bedforms, as well as SE migration of NE‐trending dune terminations. The SSE winds cause ephemeral dune deformation, especially crestal slipface reversals. The dunes deform with migration because of differences in dune‐segment size, and differences in the lee‐face deposition rate as a function of the incidence angle between the wind direction and the local brinkline orientation. Each wind event deforms dune shape, this new shape then serves as the boundary condition for the next wind event. Shared incidence‐angle control on dune deformation and lee‐face stratification types allows for an idealized model for White Sands dunes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Near‐surface airflow over a morphologically simple, vegetated, 8 m high foredune with a small wave‐cut scarp was measured for onshore to oblique‐onshore conditions during a low‐moderate (5–6 m s‐1 ) wind event and a high velocity (11–18 m s‐1) sand‐transporting gale event. Flow across the foredune was characterized by significant flow compression and acceleration up and across the foredune during both events. During the gale, a pronounced jet (speed bulge) developed at the foredune crest, which increased in magnitude with increasing wind speed. The vertical (W) velocity component of the 3D flow field was positive (upwards) across the stoss slope under low wind conditions but negative (downwards) during gale wind conditions, with upslope acceleration. During the low velocity event, there was speed‐down within the vegetation canopy, as would be expected for a porous roughness cover. During the strong wind event there was speed‐up in the lower portion of the vegetation canopy, and this was found up the entire stoss slope. Sediment transport during the gale force event was substantial across the beach and foredune despite the moderate vegetation cover and minimum fetch. Aeolian suspension was evident in the lee of the dune crest. The observations presented herein show that strong storm winds are an effective mechanism for translating sediment landwards across a high vegetated foredune, contributing sediment to the stoss slope, crest and leeward slopes of the foredune and backing dunes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
The turbulence field of airflow in the lee of a dune has significant impacts on dune dynamics and related processes. We used particle image velocimetry in a wind tunnel simulation to obtain detailed velocity measurements in the lee of two‐dimensional transverse dune models, then used the results to analyse their turbulence fields. The dune models used in this study had a single lee angle of 30°, and a total of six stoss angles: 3°, 5°, 10°, 15°, 20° and 25°. We used vorticity, turbulence intensity, Reynolds stress and turbulent kinetic energy to characterize the turbulence fields. These parameters were functions of stoss angle, wind velocity, distance from the dune crest and height above the ground surface. The stoss angles could generally be divided into two groups based on the profiles of mean velocity, turbulence and Reynolds stress. Stoss angles of 3° and 5° usually had similar profiles, and angles of 15°, 20° and 25° formed a second group with similar profiles. The profiles for the stoss angle of 10° were usually transitional and were intermediate between the two groups. Vorticity, Reynolds stress and turbulent kinetic energy increased monotonically with increasing free‐stream wind velocity, but their variations with respect to the stoss angle were complex. The stoss angles of 15° and 20° had the maximum values of these three parameters, thus these angles may have special significance in dune development given the characteristics of the mean velocity fields and turbulence fields they produce within the lee airflow. It is the streamwise velocity component and its turbulence that determine the surface shear stress. Copyright © 2008 John Wiley and Sons, Ltd.  相似文献   

5.
Concepts derived from previous studies of offshore winds on natural dunes are evaluated on a dune maintained for shore protection during three offshore wind events. The potential for offshore winds to form a lee‐side eddy on the backshore or transfer sediment from the dune and berm crest to the water are evaluated, as are differences in wind speed and sediment transport on the dune crest, berm crest and a pedestrian access gap. The dune is 18–20 m wide near the base and has a crest 4.5 m above backshore elevation. Two sand‐trapping fences facilitate accretion. Data were obtained from wind vanes on the crest and lee of the dune and anemometers and sand traps placed across the dune, on the beach berm crest and in the access gap. Mean wind direction above the dune crest varied from 11 to 3 deg from shore normal. No persistent recirculation eddy occurred on the 12 deg seaward slope. Wind speed on the berm crest was 85–89% of speed at the dune crest, but rates of sediment transport were 2.27 times greater during the strongest winds, indicating that a wide beach overcomes the transport limitation of a dune barrier. Limited transport on the seaward dune ramp indicates that losses to the water are mostly from the backshore, not the dune. The seaward slope gains sand from the landward slope and dune crest. Sand fences causing accretion on the dune ramp during onshore winds lower the seaward slope and reduce the likelihood of detached flows during offshore winds. Transport rates are higher in access gaps than on the dune crest despite lower wind speeds because of flatter slopes and absence of vegetation. Transport rates across dunes and through gaps can be reduced using vegetation and raised walkover structures. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
Large asymmetric bedforms known as dunes commonly dominate the bed of sand rivers. Due to the turbulence generation over their stoss and lee sides, dunes are of central importance in predicting hydraulic roughness and water levels. During floods in steep alluvial rivers, dunes are observed to grow rapidly as flow strength increases, undergoing an unstable transition regime, after which they are washed out in what is called upper stage plane bed. This transition of dunes to upper stage plane bed is associated with high transport of bed sediment in suspension and large decrease in bedform roughness. In the present study, we aim to improve the prediction of dune development and dune transition to upper stage plane bed by introducing the transport of suspended sediment in an existing dune evolution model. In addition, flume experiments are carried out to investigate dune development under bed load and suspended load dominated transport regimes, and to get insight in the time scales related to the transition of dunes to upper stage plane bed. Simulations with the extended model including the transport of suspended sediment show significant improvement in the prediction of equilibrium dune parameters (e.g. dune height, dune length, dune steepness, dune migration rate, dune lee side slope) both under bed load dominant and suspended load dominant transport regimes. The chosen modeling approach also allows us to model the transition of dunes to upper stage plane bed which was not possible with the original dune evolution model. The extended model predicts change in the dune shapes as was observed in the flume experiments with decreasing dune heights and dune lee slopes. Furthermore, the time scale of dune transition to upper stage plane bed was quite well predicted by the extended model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
A computer simulation model for transverse‐dune‐field dynamics, corresponding to a uni‐directional wind regime, is developed. In a previous formulation, two distinct problems were found regarding the cross‐sectional dune shape, namely the erosion in the lee of dunes and the steepness of the windward slopes. The first problem is solved by introducing no erosion in shadow zones. The second issue is overcome by introducing a wind speedup (shear velocity increase) factor, which can be accounted for by adding a term to the original transport length, which is proportional to the surface height. By incorporating these features we are able to model dunes whose individual shape and collective patterns are similar to those observed in nature. Moreover we show how the introduction of a non‐linear shear‐velocity‐increase term leads to the reduction of dune height, and this may result in an equilibrium dune field configuration. This is thought to be because the non‐linear increase of the transport length makes the sand trapping efficiency lower than unity, even for higher dunes, so that the incoming and the outgoing sand flux are in balance. To fully describe the inter‐dune morphology more precise dynamics in the lee of the dune must be incorporated. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
Monitoring surface change on a Namib linear dune   总被引:1,自引:0,他引:1  
In tackling the apparently intractable problem of linear dune initiation and maintenance there has been a move away from large-scale deductive models to smaller-scale field studies of individual dunes. This paper reports a study of surface change on a large, complex linear dune in the Namib Desert, southern Africa. The dune surface responds to a markedly seasonal wind regime. In summer westerly winds erode sand from the west flank of the dune and deposit it on the easterly lee side of the dune crest. In winter this pattern is reversed. Easterly winds erode sand from the east slope and deposit it on the west slope. The crest therefore moves back and forth some 15 m each year returning at the end of a year's cycle to its position at the beginning. The position of the base of the dune appears to remain fixed, even though sand is moving throughout the dune system. The dune does extend northward along some resultant of the westerly and easterly winds. Despite relatively high levels of activity, especially at the dune crest, there is no evidence of the breakdown of the linear dune form. The conclusion must therefore be that linear dunes can be maintained in bimodal wind regimes and are not necessarily related to unidirectional parallel regimes as others have suggested.  相似文献   

9.
The evolution of barchan-to-parabolic dunes can be driven by vegetation establishment, which may be linked to climate change and/or human activity. However, little is known of the impact of changes in wind strength on vegetation development and the resulting impacts on the evolution of dune morphology and sedimentological characteristics. To address this issue, we studied the morphology and grain-size characteristics of barchan, barchan-to-parabolic and parabolic dunes in the Mu Us Desert in north China, which was combined with an analysis of changes in normalized difference vegetation index (NDVI) and climatic variables during 1982–2018. The results reveal a trend of increasing growing-season NDVI which was related to a significant decrease in drift potential (DP). Therefore, we suggest that the initiation of dune transformation was caused by the reduced wind strength which favored the establishment and development of vegetation. To reveal the response of sedimentological reorganization during the processes of dune transformation, grain-size characteristics along the longitudinal profile of the three different types of dunes were examined. The decreasing wind strength led to the transport of fine sands on the upper part of the windward face of the dunes, resulting in a progressive coarsening of the grain-size distribution (GSD) and a reduction in dune height at the crest area. No distinct trend in sorting and mean grain-size was observed on the windward slope of the barchan-to-parabolic dune, indicating that the sand in transit had little influence on the GSD. Conversely, progressive sorting and coarsening of the sand occurred towards the crest of the parabolic dune. This indicates that vegetation development limited the transport of sand from upwind of the dune, and affected a shift in the dune source material to the underlying source deposits, or to reworked pre-existing aeolian deposits, and resulted in the trapping of sand in the crest area. © 2020 John Wiley & Sons, Ltd.  相似文献   

10.
Topographic interactions generate multidirectional and unsteady air?ow that limits the application of velocity pro?le approaches for estimating sediment transport over dunes. Results are presented from a series of wind tunnel simulations using Irwin‐type surface‐mounted pressure sensors to measure shear stress variability directly at the surface over both isolated and closely spaced sharp‐crested model dunes. Findings complement existing theories on secondary air?ow effects on stoss transport dynamics and provide new information on the in?uence of lee‐side air?ow patterns on dune morphodynamics. For all speeds investigated, turbulent unsteadiness at the dune toe indicates a greater, more variable surface shear, despite a signi?cant drop in time‐averaged measurements of streamwise shear stress at this location. This effect is believed suf?cient to inhibit sediment deposition at the toe and may be responsible for documented intermittency in sand transport in the toe region. On the stoss slope, streamline compression and ?ow acceleration cause an increase in ?ow steadiness and shear stress to a maximum at the crest that is double that at the toe of the isolated dune and 60–70 per cent greater than at ?ow reattachment on the lower stoss of closely spaced dunes. Streamwise ?ow accelerations, rather than turbulence, have greater in?uence on stress generation on the stoss and this effect increases with stoss slope distance and with incident wind speed. Reversed ?ow within the separation cell generates signi?cant surface shear (30–40 per cent of maximum values) for both spacings. This supports ?eld studies that suggest reversed ?ow is competent enough to return sediment to the dune directly or in a de?ected direction. High variability in shear at reattachment indicates impact of a turbulent shear layer that, despite low values of time‐averaged streamwise stress in this region, would inhibit sediment accumulation. Downwind of reattachment, shear stress and ?ow steadiness increase within 6 h (h = dune height) of reattachment and approach upwind values by 25 h. A distance of at least 30 h is suggested for full boundary layer recovery, which is comparable to ?uvial estimates. The Irwin sensor used in this study provides a reliable means to measure skin friction force responsible for sand transport and its robust, simple, and cost‐effective design shows promise for validating these ?ndings in natural dune settings. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
Sunset Crater in north‐central Arizona (USA) is a 900‐year‐old scoria‐cone volcano. Wind action has redistributed its widespread tephra deposit into a variety of aeolian dune forms that serve as a terrestrial analog for similar landforms and aeolian processes on Mars. Fieldwork was conducted to collect essential geomorphological and sedimentological data, and to establish a baseline for the type and morphometry of dunes, physical properties, interactions with topography, and saltation pathways. Our analyses focused primarily on coppice dunes, falling dunes, wind ripples, and sand streaks. For all collected volcaniclastic aeolian sediment samples, the sand‐size fraction dominated, ranging from almost 100% sand to 74.6% sand. No sample contained more than 1.6% silt. The composition is overwhelmingly basaltic with non‐basaltic particles composing 2 to 6% of the total. Coppice (nebkha) dunes form where clumps of vegetation trap saltating particles and create small mounds or hummocks. Mean grain size for coppice dune samples is coarse sand. Measured dune height for 15 coppice dunes ranged from 0.3 to 3.3 m with a mean of 1 m. Mean length was 6.7 m and mean width was 4.8 m. Falling dunes identified in this study are poorly developed and thin, lacking a prominent ramp‐like structure. Mean wavelength for three sets of measured ripples ranged from 22 to 36 cm. Sand streaks extend downwind for more than a kilometer and are up to 200 m in width. They commonly occur on the lee side of mesas and similar landforms and are typically the downwind continuation of falling dunes. Falling dunes, wind ripples, and sand streaks have been identified on Mars, while coppice dunes are similar to Martian shadow or lee dunes in which sand accumulates in the lee of obstacles. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
A test of granulometric control of desert dune geometry   总被引:1,自引:0,他引:1  
I. G. Wilson's hypothesis of coarse-tail grain-size control of dune spacing was derived from three dunefields in the Sahara and, although it was supplemented by measurements of spacing from other parts of the world, the grain-size data come only from North Africa. In this paper the hypothesis is tested in the Australian dunefields. Australian dunes do not form separate categories on a P20/s (twentieth percentile/spacing) plot and, when placed on Wilson's diagram, the Australian data form a continuum between dunes and draas. Ripples maintain their identity, suggesting that the average saltation length of sand controls ripple wavelength while dunes and Wilson's draas are formed by secondary flow of some kind. In Australia the spread of data on the P20/s diagram indicates that grain-size is not the prime control on s. Data from Australia and the Sahara indicate that direct linear relationships between s and h (dune spacing and height means respectively for blocks of dunes) occur but they have different slopes in different areas. These differences possibly reflect variations in vegetation and substrate as well as differences in wind regime. The separation of dunes from draas in the Sahara reflects the greater role of grain-size in an area where coarse grains frequently occur in dune crests. The relative paucity of coarse grains in Australian dune crests may reflect the fine-grained alluvium from which the dunes are derived. These differences may be ascribed to differing topography in Australia and the Sahara.  相似文献   

13.
The grain‐size distribution of aeolian dune sands in the Thar Desert, India was analyzed and compared with three model distributions – log‐normal, log‐hyberbolic and log‐skew‐Laplace – to determine the best‐fit statistical model. In total, 51 samples were collected along a single transect over a transverse dune, of which 15 were from the stoss side, 12 from the crest and 24 from the lee side. Samples were collected during a calm period in the afternoon of a winter's day. It was observed that of these 51 samples, 33 fit best to a log‐hyperbolic distribution, 14 fit best to a normal distribution and only four fit best to a Laplace distribution. However, it was further observed that of 24 samples from the lee side, 13 fit best to a normal distribution, eight fit best to a hyperbolic distribution, and three fit best to a Laplace distribution. Of 12 samples from the crest of the dune, 11 fit best to the log‐hyperbolic distribution, only one to the Laplace distribution but none to a normal distribution. Of 15 samples from the stoss side of the dune, only one sample best‐fits a normal distribution, 14 fit best to a log‐hyperbolic distribution, and none best fit to a Laplace distribution. During sample collection a calm period prevailed and there was no dusty wind. It was therefore assumed that in the initial stage a mixture of coarse, medium and fine sands was laid down on the stoss side of the dune. As wind speeds increased and saltation started, the coarser fractions were segregated and lagged behind on the stoss slope. In the final stage when the remaining intermediate and finer fractions reached the dune crest, the finer fractions were winnowed away to suspension from the crest of the dune. As a result, a narrow range of intermediate sized sediments was deposited by rolling down the lee side to explain the development of log‐normality. In such a situation, both the coarser and finer fractions, to which the skewed distributions can be attributed, are separated from the initial mixture of coarse, intermediate and fine fractions. Hence the main criteria for the development of a normal distribution is the lack of skewed fractions and the concentration of the narrow, intermediate size fractions in the final grain size distribution. This is also corroborated with the index of symmetry, which is a measure of the difference between the angle of two slopes of the hyperbolic distribution as represented by the coarser and finer fractions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
There is little understanding of the flow-field surrounding semi-vegetated linear dunes, and predictions of dune mobility are hampered by a lack of empirical data concerning windflow. In an attempt to characterize the near-surface airflow upwind of and over partially vegetated linear dunes in the southwest Kalahari Desert, this study presents measurements of vertical and horizontal wind velocity profiles across cross-sectional transects of seven partially vegetated linear dunes. Vegetation surveys combined with velocity measurements from vertical arrays of cup-anemometers, placed up to 2·3 m above the ground surface, were used to gain information concerning the modification of airflow structure caused by the intrusion of the dunes into the atmospheric boundary layer and to predict the variability of aerodynamic roughness (z0) from interdune to crest. The results suggest an acceleration of flow up the windward slopes of the dunes and, as such, the data correspond to classical theory concerning flow over low hills (essentially Jackson and Hunt (1975) principles). Where the theory is incapable of explaining the airflow structure and acceleration characteristics, this is explained, in part, by the presence of a spatially variable vegetation cover over the dunes. The vegetation is important both in terms of the varying aerodynamic roughness (z0) and problems concerning the definition of a zero-plane displacement (d). It is considered that any attempts to characterize surface shear stress over the Kalahari linear dunes, in order to predict sand transport and dune mobility, will be hampered by two problems. These are the progressively non-log-linear nature of the velocity profiles over the dunes caused by flow acceleration, and the production of thin near-surface boundary layers caused by areally variable aerodynamic roughness as a result of the partially vegetated nature of the dunes.  相似文献   

15.
Longitudinal dunes are the most widespread dune types in the world sand seas but comprehensive study on the sand surface stability is scarce. The southern part of Gürbantünggüt Desert is mainly covered by longitudinal dune in which fixed and semi-fixed dunes occupy over 80% of the total area. Systematic analysis on the climatic conditions, the soil moisture and vegetation distributions, and the sand surface activities showed that the fixed and semi-fixed dunes are in a comprehensive low-energy wind environment. Snow cover and frozen soil provide a good protection to the ground surface in winter. The temporal distribution of precipitation and corresponding variation of temperature create a favorable condition for the desert plants growth, especially for the ephemeral plants. The occurrence of effective winds for sand moving in April to June coincides with the stage of relatively wet sand surface and good vegetation cover, which effectively keep the sand surface stable at the interdune and the plinth of the dunes. Activity sand surface appears only at the crest and the upper part of the sand dunes.  相似文献   

16.
17.
The stable longitudinal dunes in the northern Simpson Desert, Australia, were observed in satellite imagery to become more active after vegetation cover was reduced by fire and drought. Subsequent rainfall events also resulted in significant vegetation regrowth and dune stabilization. These switches between more active and stable conditions have not been previously described in the largely vegetated dune fields of central Australia. The observations, made on 12 dune sites, relied on high spatial resolution satellite imagery to observe dune crest activity, and seasonal Landsat fractional cover imagery to observe vegetation cover changes. The non-photosynthetic vegetation (NPV) component of the fractional vegetation cover images revealed significant changes in hummock grass cover on the dunes between 1988 and 2018, with a positive relationship with the three-year cumulative rainfall, disrupted by two periods of patchy burning. Only those sites that had burnt became active, and only after vegetation cover had remained low (NPV < 16%) during the ‘Millennium Drought’. There is no threshold in vegetation cover, below which dune crests become active, but active dune features require four-years of low NPV cover (< 16%) to develop. The large rainfall event that ended the drought increased NPV cover, stabilizing the dunes. Similar hummock grass covered dunes are present across large areas of the arid zone, and are likely to respond in similar ways, given that fire and drought are common occurrences in Australia. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

18.
Sedimentary architecture and genesis of residual dune ridges in a temperate climate are presented and implications for their use as archive of changes in long-term precipitation and wind climate are discussed. Residual dunes are common features of wet aeolian systems, where they form sets of shallow ridges, oriented perpendicular to the prevailing wind direction. Residual dune ridges of the study area are vegetated and typically elevate 0.6 to 2.5 m above the surrounding interdune flats. They develop on the lower stoss side of active transgressive dunes, triggered by periods of elevated groundwater table and hence colonization of the foot of the dune by rapid growing pioneer vegetation. Stabilized by plants, the growing ridge detaches from the active transgressive dune and gets abandoned within years in the course of the downwind-migration of the transgressive dune. Grain-size data suggest a main sediment supply from the transgressive dune and only minor input from other sources. Ground-penetrating radar reveals that the residual dune ridges are composed of windward-dipping as well as leeward-dipping sedimentary beds. Leeward-dipping strata reflect sediment supply from the parental dune, whereas windward-dipping beds are seen to result from sediment redistribution along the ridge and sediment supply from the adjacent swales during the ridge growth period. Multi-annual to multi-decadal variability in precipitation leads to the development of sequences composed of tens of ridges, spanning time periods of several centuries. Spacing of individual ridges in these sequences is controlled not by long-term variability in precipitation alone, but probably also reflects variable wind intensity which affects the migration rate of the parental dune. The important role of vegetation in ridge construction makes these landforms a demonstrative example of landscape development by geo-biosphere interacting processes.  相似文献   

19.
Barchan dunes are common on Earth, Mars and Titan. Previous studies have shown that their formation, migration and evolution are influenced by the wind regime and other factors, but details vary among regions. Understanding barchan morphology and migration will both improve our understanding of dune geomorphology and provide a basis for describing the environmental conditions that affect the formation and development of these dunes on Earth and other planets. Here, we provide detailed measurements of barchan dune migration in China's Quruq Desert, in the lower reaches of the Tarim River. We monitored their migration direction and rate, and their morphological changes during migration, by comparing Google Earth images acquired in 2003 and 2014. The dunes migrated west-southwest, close to the local resultant drift direction. The migration rate averaged 8.9 to 32.1 m year−1, with obvious spatial variation. In addition to the wind regime, the migration rate depended on dune morphology, density and vegetation cover; the rate was negatively related to dune height, density and vegetation cover, but positively linearly related to the length/width ratio (LU/W) and to the decrease in this ratio from 2003 to 2014. We found correlations among the dune morphometric parameters, but the relationships were weaker than in previous research. Due to the complexity of the factors that affect the processes that underlie sand dune development and migration, the morphological changes during dune migration were also complex. Our measurements suggest that the aeolian environment played a dominant role in dune migration and its spatial variation in the Quruq Desert. These results will support efforts to control dune migration in the western Quruq Desert and improve our understanding of dune morphodynamics. © 2019 John Wiley & Sons, Ltd.  相似文献   

20.
The study deals with local airflow patterns induced by 12–16 m high, partly vegetated dunes, under various prevailing wind conditions. Detailed empirical data were derived by means of an unconventional use of directional raingauges. The utility and accuracy of the method have been previously tested in a combined empirical and numerical study over ridges on a similar scale. Results are presented on the nature, extent and intensity of locally modified patterns of surface flow and on their dependence on wind conditions and slope inclination. Results may serve to verify or refine existing perceptions or models of the flow affecting sand movement over dunes. For example, deflected surface wind flow and even stationary vortices were found to form under winds with resultant angles of incidence of only 5–10° relative to the axes of the dunes, and on slopes inclined only 12–15°, i.e. lower angles than often assumed in previous studies of dune morphology. Various effects of the resulting surface flow on the dune ecosystem are also referred to, e.g. the distribution of settling dust and seed dispersal. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号