首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
A series of water-deficient partial melting experiments on a low-K tholeiite were carried out under lower crustal P–T–H2O conditions (900–1200 °C, 0.7–1.5 GPa, 2 and 5 wt% H2O added) using a piston-cylinder apparatus. With increasing temperature at 1.0 GPa, supersolidus mineral assemblages vary from amphibolitic to pyroxenitic. Garnet crystallizes in the higher pressure runs (> 1.2 GPa). Melt compositions show low-K calc-alkalic trends, and are classified as metaluminous or peraluminous tonalite. These features are similar to the felsic rocks in the Izu–Bonin – Mariana (IBM) arc, for example Tanzawa plutonic rocks. The anatectic origin of Tanzawa tonalites is consistent with geochemical modeling, which demonstrates that the rare earth element (REE) characteristics of Tanzawa plutonic rocks (which represent the middle crust of the IBM arc) can be generated by partial melting of amphibolite in the lower crust (∼ 50% melting at 1050 °C and below 1.2 GPa). Estimated densities of pyroxenitic restites (∼ 3.9 g/cm3) after extraction of andesitic melts are higher than that of mantle peridotite beneath the island arc (3.3 g/cm3). The high density of the restite could cause delamination of the IBM arc lower crust. Rhyolitic magmas in the IBM arc (e.g. Niijima) could be formed by low degrees of partial melting of the amphibolitic crust at a temperature just above the solidus (10% melting at or below 900 °C).  相似文献   

2.
WONN  SOH  KAZUO  NAKAYAMA & TAKU  KIMURA 《Island Arc》1998,7(3):330-341
The Pleistocene Ashigara Basin and adjacent Tanzawa Mountains, Izu collision zone, central Japan, are examined to better understand the development of an arc–arc orogeny, where the Izu–Bonin – Mariana (IBM) arc collides with the Honshu Arc. Three tectonic phases were identified based on the geohistory of the Ashigara Basin and the denudation history of the Tanzawa Mountains. In phase I, the IBM arc collided with the Honshu Arc along the Kannawa Fault. The Ashigara Basin formed as a trench basin, filled mainly by thin-bedded turbidites derived from the Tanzawa Mountains together with pyroclastics. The Ashigara Basin subsided at a rate of 1.7 mm/year, and the denudation rate of the Tanzawa Mountains was 1.1 mm/year. The onset of Ashigara Basin Formation is likely to be older than 2.2 Ma, interpreted as the onset of collision along the Kannawa Fault. Significant tectonic disruption due to the arc–arc collision took place in phase II, ranging from 1.1 to 0.7 Ma in age. The Ashigara Basin subsided abruptly (4.6 mm/year) and the accumulation rate increased to approximately 10 times that of phase I. Simultaneously, the Tanzawa Mountains were abruptly uplifted. A tremendous volume of coarse-grained detritus was provided from the Tanzawa Mountains and deposited in the Ashigara Basin as a slope-type fan delta. In phase III, 0.7–0.5 Ma, the entire Ashigara Basin was uplifted at a rate of 3.6 mm/year. This uplift was most likely caused by isostatic rebound resulting from stacking of IBM arc crust along the Kannawa Fault which is not active as the decollement fault by this time. The evolution of the Ashigara Basin and adjacent Tanzawa Mountains shows a series of the development of the arc–arc collision; from the subduction of the IBM arc beneath the Honshu Arc to the accretion of IBM arc crust onto Honshu. Arc–arc collision is not the collision between the hard crusts (massif) like a continent–continent collision, but crustal stacking of the subducting IBM arc beneath the Honshu Arc intercalated with very thick trench fill deposits.  相似文献   

3.
Pumice samples from Fukutoku-oka-no-ba in the Izu–Bonin – Mariana (IBM) arc were analysed for 40 trace elements and Sr, Nd, and Pb isotopic compositions. These samples are shoshonites (59.4–61.8 wt% SiO2), characterized by high contents of K2O (3.74–4.64 wt%), Ba (1274–1540 p.p.m.), Rb (91–105 p.p.m.), and light rare earth elements. The characteristics of alkali-element enrichment are similar to those of other parts of the Alkalic Volcano Province (AVP) in the northern Mariana and southernmost Volcano arcs. Sr (87Sr/86Sr = 0.7036–0.7038) and Pb isotopic compositions (206Pb/204Pb = 19.08–19.11, 207Pb/204Pb = 15.62–15.63, 208Pb/204Pb = 38.85–38.91) of Fukutoku-oka-no-ba pumice are relatively radiogenic, whereas Nd is unradiogenic (143Nd/144Nd = 0.51283–0.51286). Fukutoku-oka-no-ba is isotopically distinct from Iwo Jima and is similar to the Hiyoshi Volcanic Complex, suggesting that Fukutoku-oka-no-ba might have a magma source similar to that of the Hiyoshi volcanic complex. Plots of Pb and Nd isotopes for AVP lavas trend toward the fields of ocean island basalt (OIB) source and pelagic sediments, which are possible sources of AVP enrichments.  相似文献   

4.
Arc volcanoes occur at convergent margins with a wide range in subduction parameters, and variations in these parameters might be expected to lead to variations in the chemistry of magmas parental to arcs. Major element analyses from approximately 100 volcanic centers within 30 arcs, normalized to 6% MgO to minimize the effects of crystal fractionation, display wide variations. Na2O and CaO at 6% MgO (Na6.0 and Ca6.0) correlate remarkably well with the thickness of the overlying crust. These systematics are consistent with two possible models. In the first model, the crust behaves as a chemical filter; where the crust is thick, magmas crystallize at higher pressure and interact more extensively with the arc crust. Modeling of high-pressure crystallization and assimilation, however, does not reproduce the associated variations in Na6.0 and Ca6.0 without calling upon complicated combinations of fractionating phases and assimilants. In the second model, crustal thickness determines the height of the mantle column available for melting beneath arc volcanoes. If melting begins beneath arcs at similar depths, then the column of mantle that undergoes decompression melting is much shorter beneath the thickest arc crust. The shorter mantle column for arcs built on thick crust will lead to smaller extents of melting in the mantle, and hence higher Na6.0 and lower Ca6.0 in the parental magmas. Modeling shows that variations in the extent of melting in the mantle can easily account for the associated variations in Ca6.0 and Na6.0. The abundances of the other major elements at 6% MgO do not correlate well with crustal thickness, or any other subduction parameter. Co-variation of some of these other major elements (e.g., Si6.0 and Fe6.0) within individual arcs suggests that they are strongly influenced by local crustal level processes that obscure partial melting systematics. Correction for the crustal processes improves the relationship between Na6.0 and Ca6.0 that is so readily explained by partial melting. The extents of melting in the mantle beneath arc volcanoes estimated from the ranges in Na6.0 and Ca6.0 are remarkably similar to those estimated beneath mid-ocean ridges. This observation provides further evidence that the mantle wedge, and not the slab, melts beneath arc volcanic fronts.  相似文献   

5.
The Chilas Complex is a major lower crustal component of the Cretaceous Kohistan island arc and one of the largest exposed slices of arc magma chamber in the world. Covering more than 8000 km2, it reaches a current tectonic width of around 40 km. It was emplaced at 85 Ma during rifting of the arc soon after the collision of the arc with the Karakoram plate. Over 85% of the Complex comprises homogeneous, olivine‐free gabbronorite and subordinate orthopyroxene–quartz diorite association (MGNA), which contains bodies of up to 30 km2 of ultramafic–mafic–anorthositic association (UMAA) rocks. Primary cumulate textures, igneous layering, and sedimentary structures are well preserved in layered parts of the UMAA in spite of pervasive granulite facies metamorphism. Mineral analyses show that the UMAA is characterized by more magnesian and more aluminous pyroxene and more calcic plagioclase than those in the MGNA. High modal abundances of orthopyroxene, magnetite and ilmenite (in MGNA), general Mg–Fe–Al spatial variations, and an MFA plot of whole‐rock analyses suggest a calc‐alkaline origin for the Complex. Projection of the pyroxene compositions on the Wo–En–Fs face is akin to those of pyroxenes from island arcs gabbros. The presence of highly calcic plagioclase and hornblende in UMAA is indicative of hydrous parental arc magma. The complex may be a product of two‐stage partial melting of a rising mantle diaper. The MGNA rocks represent the earlier phase melting, whereas the UMAA magma resulted from the melting of the same source depleted by the extraction of the earlier melt phase. Some of the massive peridotites in the UMAA may either be cumulates or represent metasomatized and remobilized upper mantle. The Chilas Complex shows similarities with many other (supra)subduction‐related mafic–ultramafic complexes worldwide.  相似文献   

6.
The 1875-1840-Ma Great Bear magmatic zone is a 100-km wide by at least 900-km-long belt of predominantly subgreenschist facies volcanic and plutonic rocks that unconformably overlie and intrude an older sialic basement complex. The basement complex comprises older arc and back-arc rocks metamorphosed and deformed during the Calderian orogeny, 5–15 Ma before the onset of Great Bear magmatism. The Great Bear magmatic zone contains the products of two magmatic episodes, separated temporally by an oblique folding event caused by dextral transpression of the zone: (1) a 1875-1860-Ma pre-folding suite of mainly calc-alkaline rocks ranging continuously in composition from basalt to rhyolite, cut by allied biotite-hornblende-bearing epizonal plutons; and (2) a 1.85-1.84-Ga post-folding suite of discordant, epizonal, biotite syenogranitic plutons, associated dikes, and hornblende-diorites, quartz diorites, and monzodiorites. The pre-folding suite of volcanic and plutonic rocks is interpreted as a continental magmatic arc generated by eastward subduction of oceanic lithosphere. Cessation of arc magmatism and subsequent dextral transpression may have resulted from ridge subduction and resultant change in relative plate motion. Increased heat flux due to ridge subduction coupled with crustal thickening during transpression may have caused crustal melting as evidenced by the late syenogranite suite. Final closure of the western ocean by collision with a substantial continental fragment, now forming the neoautochthonous basement of the northern Canadian Cordillera, is manifested by a major swarm of transcurrent faults found throughout the Great Bear zone and the Wopmay orogen.Although there is probably no single evolutionary template for magmatism at convergent plate margins, the main Andean phase of magmatism, exemplified by the pre-folding Great Bear magmatic suite, evolves as larger quantities of subduction-related mafic magma rise into and heat the crust. This results in magmas that are more homogeneous, siliceous, and explosive with time, ultimately leading to overturn and fractionation of the continental crust.  相似文献   

7.
Understanding the petrologic and geochemical evolution of island arcs is important for interpreting the timing and impacts of subduction and processes leading to the formation of a continental crust. The Izu–Bonin–Mariana (IBM) Arc, western Pacific, is an outstanding location to study arc evolution. The IBM first arc (45–25 Ma) followed a period of forearc basalt and boninite formation associated with subduction initiation (52–45 Ma). In this study, we present new major and trace element data for the IBM first arc from detrital glass shards and clasts from DSDP Site 296, located on the northernmost Kyushu Palau Ridge (KPR). We synthesize these data with published literature for contemporaneous airfall ash and tephra from the Izu–Bonin forearc, dredge and piston core samples from the KPR, and plutonic rocks from the rifted eastern KPR escarpment, locations which lie within or correlate with KPR Segment 1 of Ishizuka, Taylor, Yuasa, and Ohara (2011). Our objective is to test ways in which petrologic and chemical data for diverse igneous materials can be used to construct a complete picture of this section of the Oligocene first arc and to draw conclusions about its evolution. Important findings reveal that widely varying primary magmas formed and differentiated at various depths at this location during this period. Changes in key trace element ratios such as La/Sm, Nb/Yb, and Ba/Th show that mantle sources varied in fertility and in the inputs of subducted sediment and fluids over time and space. Plutonic rocks appear to be related to early K‐poor dacitic liquids represented by glasses sampled both in the forearc and volcanic fronts. An interesting observation is that the variation in magma compositions in this relatively small segment encompasses that inferred for the IBM Arc as a whole, suggesting that sampling is a key factor in inferring temporal, across‐arc, and along‐strike geochemical trends.  相似文献   

8.
The Iliniza Volcanic Complex (IVC) is a poorly known volcanic complex located 60 km SSW of Quito in the Western Cordillera of Ecuador. It comprises twin peaks, North Iliniza and South Iliniza, and two satellite domes, Pilongo and Tishigcuchi. The study of the IVC was undertaken in order to better constrain the role of adakitic magmas in the Ecuadorian arc evolution. The presence of volcanic rocks with an adakitic imprint or even pristine adakites in the Ecuadorian volcanic arc is known since the late 1990s. Adakitic magmas are produced by the partial melting of a basaltic source leaving a garnet rich residue. This process can be related to the melting of an overthickened crust or a subducting oceanic crust. For the last case a special geodynamic context is required, like the subduction of a young lithosphere or when the subduction angle is not very steep; both cases are possible in Ecuador. The products of the IVC, made up of medium-K basaltic andesites, andesites and dacites, have been divided in different geochemical series whose origin requires various interactions between the different magma sources involved in this subduction zone. North Iliniza is a classic calc-alkaline series that we interpret as resulting from the partial melting of the mantle wedge. For South Iliniza, a simple evolution with fractional crystallization of amphibole, plagioclase, clinopyroxene, magnetite, apatite and zircon from a parental magma, being itself the product of the mixing of 36% adakitic and 64% calc-alkaline magma, has been quantified. For the Santa Rosa rhyolites, a slab melting origin with little mantle interactions during the ascent of magmas has been established. The Pilongo series magma is the product of a moderate to high degree (26%) of partial melting of the subducting oceanic crust, which reached the surface without interaction with the mantle wedge. The Tishigcuchi series shows two stages of evolution: (1) metasomatism of the mantle wedge peridotite by slab melts, and (2) partial melting (10%) of this metasomatized source. Therefore, the relative ages of the edifices show a geochemical evolution from calc-alkaline to adakitic magmas, as is observed for several volcanoes of the Ecuadorian arc.  相似文献   

9.
Rosemary  Hickey-Vargas 《Island Arc》2005,14(4):653-665
Abstract Basalts and tonalites dredged from the Amami Plateau in the northern West Philippine Basin have the geochemical characteristics of intraoceanic island arc rocks: low 87Sr/86Sr (0.70297–0.70310), intermediate 143Nd/144Nd (0.51288–0.51292), moderate light rare earth element (LREE) enrichment (La/Yb = 4.1–6.6) and high La/Nb (1.4–4.3). The incremental heating of hornblende from tonalites yielded well‐defined plateaus and 40Ar/39Ar isochron ages of 115.8 ± 0.5 Ma and 117.0 ± 1.1 Ma, while plagioclase yielded disturbed Ar release patterns, with ages ranging from 70 to 112 Ma. Taken together, these results show that the Amami Plateau was formed by subduction‐related magmatism in the Early Cretaceous period, earlier than indicated by prior K/Ar results. The results support tectonic models in which the West Philippine Basin was opened within a complex of Jurassic–Paleocene island arc terranes, which are now scattered in the northern West Philippine Basin, the Philippine Islands and Halmahera. The Amami Plateau tonalites and basalts have higher Sr/Y and lower Y and 87Sr/86Sr compared with younger tonalitic rocks from the northern Kyushu–Palau Ridge and the Tanzawa complex, which were formed by the subduction of the Pacific Plate beneath the Philippine Sea Plate. Based on the geochemical characteristics of the basalts, the Early Cretaceous subduction zone that formed the Amami Plateau may have been the site of slab melting, which suggests that a younger and hotter plate was being subducted at that time. However, the Amami tonalites were probably formed from basaltic magma by fractional crystallization or by partial melting of basaltic arc crust, rather than by melting of the subducted slab.  相似文献   

10.
Abstract The Mariana Trough is an active back-arc basin, with the rift propagating northward ahead of spreading. The northern part of the Trough is now rifting, with extension accommodated by combined stretching and igneous intrusion. Deep structural graben are found in a region of low heat flow, and we interpret these to manifest a low-angle normal fault system that defines the extension axis between 19°45' and 21°10'N. A single dredge haul from the deepest (∼5.5 km deep) of these graben recovered a heterogeneous suite of volcanic and plutonic crustal rocks and upper mantle peridotites, providing the first report of the deeper levels of back-arc basin lithosphere. Several lines of evidence indicate that these rocks are similar to typical back-arc basin lithosphere and are not fragments of rifted older arc lithosphere. Hornblende yielded an 40Ar/39Ar age of 1.8 ± 0.6 Ma, which is interpreted to approximate the time of crust formation. Harzburgite spinels have moderate Cr# (<40) and coexisting compositions of clinopyroxene (CPX) and plagioclase (PLAB) fall in the field of mid-ocean ridge basalt (MORB) gabbros. Crustal rocks include felsic rocks (70-80% SiO2) and plutonic rocks that are rich in amphibole. Chemical compositions of crustal rocks show little evidence for a 'subduction component', and radiogenic isotopic compositions correspond to that expected for back-arc basin crust of the Mariana Trough. These data indicate that mechanical extension in this part of the Mariana Trough involves lithosphere that originally formed magmatically. These unique exposures of back-arc basin lithosphere call for careful study using ROVs and manned submersibles, and consideration as an ocean drilling program (ODP) drilling site.  相似文献   

11.
Serge E.  Lallemand 《Island Arc》1996,5(1):16-24
Abstract According to new estimates, more than 2 km3 of terrestrial material is transported every year with the subducting lithospheric plates to depths greater than 20-30 km. A comparable amount of subducted material is partly restored to the nearby margins through underplating, diapirism or forearc volcanism; partly rejuvenated through arc and back-arc magmatism; and the rest is recycled into the deep mantle. This study emphasizes the connection between the consumption of some arcs and the intensity of arc volcanism. In many cases (Japan, Peru, Izu-Bonin, Guatemala), interruption in tectonic erosion of the margin is followed by a hiatus of arc volcanism. The delay between the presumed cause (i.e. absence of subducted arc-type crust) and the response (i.e. lack of explosive volcanism) corresponds to the time required for the subducting slab to reach the melting depth (i.e. 2-4 million years). Alternately, intense tectonic erosion of the margin is followed by paroxysms of arc volcanism. Crustal contamination of volcanic rocks may be caused directly by magma sources which may contain arc material derived from the subcrustal erosion of the margin.  相似文献   

12.
Haixiang  Zhang  Hecai  Niu  Hiroaki  Sato  Xueyuan  Yu  Qiang  Shan  Boyou  Zhang  Jun'ichi  Ito  Takashi  Nagao 《Island Arc》2005,14(1):55-68
Abstract   Volcanic rocks consisting of adakite and Nb-enriched basalt are found in the early Devonian Tuoranggekuduke Group in the northern margin of the Kazakhstan-Junggar Plate, northern Xinjiang, northwest China. The geochemical characteristics of the andesitic and dacitic rocks in this area resemble that of adakites. The relatively high Al2O3, Na2O and MgO content and Mg values indicate that the adakites were generated in relation to oceanic slab subduction rather than the partial melting of basaltic crust. A slightly higher SrI and a lower ɛ Nd( t  = 375 Ma) compared to adakites of mid-oceanic ridge basalt (MORB) imply that slab sediments were incorporated into these adakites during slab melting. The Nb-enriched basalt lavas, which are intercalated in adakite lava suite, are silica saturated and are distinguished from the typical arc basalts by their higher Nb and Ti content (high field strength element enrichment). They are derived from the partial melting of the slab melt-metasomatized mantle wedge peridotite. Apparently, positive Sr anomalies and a slightly higher heavy rare earth element content in these adakites compared to their Cenozoic counterparts indicate that the geothermal gradient in the Paleo-Asian Oceanic subduction zone and the depth of the Paleo-Asian Oceanic slab melting are between those of their Archean and Cenozoic counterparts. The distribution of the adakites and Nb-enriched basalts in the northern margin of the Kazakhstan-Junggar Plate, northern Xinjiang, indicates that the Paleo-Asian Oceanic Plate subducted southward beneath the Kazakhstan-Junggar Plate in the early Devonian period.  相似文献   

13.
PETER D.  CLIFT  ROBYN  HANNIGAN  JERZY  BLUSZTAJN  AMY E.  DRAUT 《Island Arc》2002,11(4):255-273
Abstract   The Dras 1 Volcanic Formation of the Ladakh Himalaya, India, represents the eastern, upper crustal equivalent of the lower crustal gabbros and mantle peridotites of the Kohistan Arc exposed in Pakistan. Together these form a Cretaceous intraoceanic arc now located within the Indus Suture zone between India and Eurasia. During the Late Cretaceous, the Dras–Kohistan Arc, which was located above a north-dipping subduction zone, collided with the south-facing active margin of Eurasia, resulting in a switch from oceanic to continental arc volcanism. In the present study we analyzed samples from the pre-collisional Dras 1 Volcanic Formation and the postcollisional Kardung Volcanic Formation for a suite of trace elements and Nd isotopes. The Kardung Volcanic Formation shows more pronounced light rare earth element enrichment, higher Th/La and lower ɛNd values compared with the Dras 1 Volcanic Formation. These differences are consistent with an increase in the reworking of the continental crust by sediment subduction through the arc after collision. As little as 20% of the Nd in the Dras 1 Volcanic Formation might be provided by sources such as the Karakoram, while approximately 45% of the Nd in the Kardung Volcanic Formation is from this source. However, even before collision, the Dras–Kohistan Arc shows geochemical evidence for more continental sediment contamination than is seen in modern western Pacific arcs, implying its relative proximity to the Eurasian landmass. Comparison of the lava chemistry in the Dras–Kohistan Arc with that in the forearc turbidites suggests that these sediments are partially postcollisional, Jurutze Formation and not all pre-collisional Nindam Formation. Thus, the Dras–Eurasia collision can be dated as Turonian–Santonian (83.5–93.5 Ma), older than it was previously considered to be, but consistent with radiometric ages from Kohistan.  相似文献   

14.
Heat source for Tongonan Geothermal Field   总被引:1,自引:0,他引:1  
Abstract The primary mineral and whole-rock chemistry of 46 core samples from the host rocks of the Tongonan Geothermal Field (the Philippines) have been used to infer the likely composition of the heat source for the system. The host rocks consist of andesite lavas (with intercalated fossiliferous early to mid–Miocene shales and limestone), and a plutonic rock basement ranging in composition from gabbro to granite. The whole rock TiO2, Fe2O3 (total iron), MgO, P2O5 and V data for volcanic and plutonic rocks are colinear on conventional Harker diagrams. This, along with similar hornblende chemistry, age and close spatial relationship suggests that the basement and cover rocks are cogenetic and evolved by low-pressure crystal fractionation. Crystal fractionation models indicate that separation of 60% plagioclase and 30% hornblende from original magma controlled the chemistry of the host rocks. The original Miocene magma chambers beneath the Tongonan field crystallized inwards from the walls at approximately 750°C and 1 kb pressure (3–4 km depth) thus forming a series of plutons or a batholith at drilled depths. A supercritical hydrothermal fluid trapped in the crystallizing, hornblende-granite-pegmatite core of a crystallized Miocene diorite batholith was gradually being released to shallower levels through antithetic cross fractures during creep and uplift along the main branches of the Philippine Fault from the Pliocene. This ascending fluid is now thought to be responsible for the present thermal activity of the field.  相似文献   

15.
Yuji  Ichiyama  Akira  Ishiwatari  Kazuto  Koizumi  Yoshito  Ishida  Sumiaki  Machi 《Island Arc》2007,16(3):493-503
Abstract   Permian basalt showing typical spinifex texture with >10 cm-long olivine pseudomorphs was discovered from the Jurassic Tamba accretionary complex in southwest Japan. The spinifex basalt occurs as a river boulder accompanied by many ferropicritic boulders in a Permian chert-greenstone unit. Groundmass of this rock is holocrystalline, suggesting a thick lava or sill for its provenance. Minor kaersutite in the groundmass indicates a hydrous magma. The spinifex basalt, in common with the associated ferropicritic rocks, is characterized by high high field strength element (HFSE) contents (e.g. Nb = 62 ppm and Zr = 254 ppm) and high-HFSE ratios (Al2O3/TiO2 = 3.9, Nb/Zr = 0.24 and Zr/Y = 6.4) unlike typical komatiites. The spinifex basalt and ferropicrite might represent the upper fractionated melt and the lower olivine-rich cumulate, respectively, of a single ultramafic sill (or lava) as reported from the early Proterozoic Pechenga Series in Kola Peninsula. Their parental magma might have been produced by hydrous melting of a mantle plume that was dosed with Fe- and HFSE-rich garnet pyroxenite. The spinifex basalt is an evidence for the Pechenga-type ferropicritic volcanism taken place in a Permian oceanic plateau, which accreted to the Asian continental margin as greenstone slices in Jurassic time.  相似文献   

16.
Magma plumbing system beneath Ontake Volcano, central Japan   总被引:2,自引:0,他引:2  
Ontake Volcano in central Japan was last active from ~ 100–35 Ka. The eruptions contained rhyodacite pumice and lavas in the first stage (stage O1, > 33 km3), followed by eruptions of andesite lavas and pyroclastics (stages O2 and O3, > 16 km3). Modeling of major and incompatible elements with Sr isotope ratios suggests that the primary magma was a high-alumina basalt. One andesite magma type appears to have evolved from the basalt in a closed system magma chamber, in part by fractional crystallization, and its generation included crustal assimilation. The other andesite magma type is considered to have evolved in an open system magma chamber in which repeated input of primary magma occurred together with wall-rock assimilation and fractional crystallization. The rhyodacite is inferred to have evolved in a closed system magma chamber by fractional crystallization of the second type of andesite. These genetic relationships require that the magma chamber functioned alternately as an open and a closed system. Geobarometry indicates that there may have been multiple magma chambers, located in the upper crust for the rhyodacite, near the upper–lower crust interface for the andesite and in the mid-lower crust for the basalt. These chambers were stacked to form the magma plumbing system of Ontake. Incompatible element compositions of the basalt are considered to have changed during the eruptions, suggesting that two different plumbing systems for stage O1 magma and for stages O2, O3 magmas existed during the 65 Ka of activity. Evolutionary history of the systems implies that the primary magma was introduced into the magma plumbing system each for ~ 17 500 years and that the life span of a magma plumbing system was shorter than 40 Ka.  相似文献   

17.
The 2.9-Ma Hotokezawa Ignimbrite, which was ejected from the Aizu caldera cluster in the northeast Japan arc, is a typical monotonous intermediate ignimbrite, with 40–50 vol% crystals and an eruptive volume of >140 km3 dense-rock equivalent. This ignimbrite filled Hiwada caldera and was deformed by post-caldera plutonic intrusions that formed a resurgent dome. The Hotokezawa Ignimbrite is a calc-alkaline, medium-K dacite to rhyolite with SiO2 contents of 67.9–71.3 wt%, and has homogeneous trace-element abundances and Sr–Nd isotopic ratios. These geochemical features suggest that the Hotokezawa magma was formed by partial melting of amphibolitic crustal rocks. This crystal-rich magma did not appear during the post-caldera stage. Therefore, it is plausible that the chamber of eruptible magma was emptied by the caldera-forming eruption. In contrast, post-caldera plutonic rocks exhibit a variety of compositions and have a clear SiO2 gap corresponding to the caldera-forming magma: the early pluton (tonalite) and later ones (quartz porphyry, granite porphyries, and granite) contain 62.0–66.6 and 71.2–76.5 wt% SiO2, respectively. The tonalite and the Hotokezawa Ignimbrite form a continuous trend in their major-element variations. The Sr–Nd isotopic ratios of the ignimbrite and tonalite overlap, but those of the porphyries and granite are more enriched. The early tonalite represents the more basic part of the Hiwada caldera system that was held in small pockets separate from the main magma chamber, because its trace-element abundances are varied and distinct from those of the Hotokezawa Ignimbrite. The distinct compositional change from the Hotokezawa Ignimbrite to the late porphyries and granite indicates that the partial melting crust generating felsic magma was renewed by the subsequent intrusion of the mantle melts. The new felsic magma ascended through subsidence-related faults into the shallow caldera system and emplaced as laccoliths forming the resurgent dome.  相似文献   

18.
Abstract   The Lower Sorachi Group of the Sorachi–Yezo Belt in central Hokkaido, Japan is a peculiar accretionary complex characterized by numerous occurrences of greenstones (metabasalts and diabases), which are mostly composed of aphyric basalts. Clinopyroxene-rich phenocryst assemblage in phyric basalts is different from olivine–plagioclase assemblage in mid-oceanic ridge basalts (MORB). The greenstones are geochemically uniform, and show a lower-Ti trend than MORB in an FeO*/MgO-TiO2 diagram, mostly plotting on the island arc tholeiite (IAT) field in a TiO2−10MnO−10P2O5 diagram. In a MORB-normalized spider diagram, the greenstones show a flat pattern from P to Y, which are lower than those of normal mid-oceanic ridge basalt (N-MORB). These indicate that the greenstones were derived by a higher degree of partial melting from a depleted mantle similar to a N-MORB source, and experienced olivine–clinopyroxene fractional crystallization. However, a positive spike of Nb in the spider diagram cannot be explained, and may be attributed to mantle heterogeneity. These characteristics are analogous to those of oceanic plateau basalts (OPB) such as in Ontong Java Plateau, Manihiki Plateau and Nauru Basin, suggesting that the greenstones in the Lower Sorachi Group are of oceanic plateau origin. The present study proposes new field divisions to distinguish OPB from MORB in the conventional FeO*/MgO–TiO2 and TiO2−10MnO−10P2O5 diagrams.  相似文献   

19.
Three collisional cycles, the Tanzawa, Izu and Shichito, are known to have occurred in the South Fossa Magna, central Japan, since the late Miocene, based on geologic evidence. The cycles consist of six stages. At present the South Fossa Magna is in the later part of stage 5 of the Izu Cycle and stage 2 of the Shichito Cycle. Because the collisional processes are ongoing we can observe, measure and correlate them with the geologic records of the former cycles. The collisional processes are progressing intermittently because of the rupture and deformation of the collided and colliding island arc crusts. Rupture in the subducting crust can be explained by the geometry of the subducting plate along a boundary that is not straight. The delamination of the upper crust is detected from the geologic and crustal structure in the collided Tanzawa Block; it is an important factor in the deformation of the crust.  相似文献   

20.
This paper is concerned with the islands of Montserrat Nevis, St. Kitts, St. Eustatius and Saba, which lie on the inner volcanic are at the northern of the Lesser Antilles. Andesites greatly predominate over basalts and dacites in this part of the arc. Generally the lavas from the northern Lesser Antilles contain low abundances of Ni, Cr and residual trace elements but lavas from Saba are enriched in these elements compared with the other islands in the group. The most important petrogenetic process in this part of the Lesser Antilles is probably partial melting of subducted oceanie tholeiite and this process accounts satisfactorily for the chemistry (especially the low Ni, Cr) and large volumes of the erupted andesites. Some andesites have, however, been produced by fractional crystallisation of basaltic magma and magma mixing probably accounts for some of the peculiar chemical and petrographic properties of the Saba andesites. The rocks from the Northern Lesser Antilles are different from those in the central part of the arc (more acid rocks, higher residual trace elements) and the southern islands have much higher proportions of basalt, some of it undersaturated and alkaline. It is thought that partial melting of mantle peridotite may be the predominant petrogenetic process at the southern end of the Lesser Antilles whereas partial melting of subducted oceanic crust is more important in the north.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号