首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
地球物理   4篇
地质学   5篇
  2021年   1篇
  2020年   1篇
  2016年   1篇
  2014年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有9条查询结果,搜索用时 210 毫秒
1
1.
Recent reassessment of abyssal peridotites obtained during the dredging of the oblique supersegment and the easternmost subsection of the Southwest Indian Ridge by the R/V Knorr Cruise 162 and the R/V Yokosuka YK98-07 revealed the occurrence of dunites containing podiform chromitites and dunites with variable chromite concentration closely associated with lherzolite and harzburgite. The size of the chromitite pods varies from a few mm to 2 cm in width. Chromites in the podifom chromitites have very low Cr# (=0.22–0.23) and low TiO2 (<0.17 wt%). They are almost free of silicate inclusions except for a few euhedral sulfide grains which occur far from cracks and lamellae and are considered primary in origin. The lherzolite which possibly represents the wallrock hosting the dunites with podiform chromitites also show low spinel Cr#(=0.16) and low Cr# in the clinopyroxenes (=0.09–0.10) and orthopyroxenes (=0.07–0.09). The small size of the SWIR podiform chromitites is strongly controlled by the low Cr/Al available in the wallrock and the invading melt. The presence of sulfide inclusions and the absence of PGEs further attest to the low Cr/Al (i.e. low refractoriness) in the system involved in the genesis of the SWIR podiform chromitites. Lastly, the discovery of podiform chromitites in the SWIR implies that the formation of podiform chromitite at mid-oceanic ridges, regardless of its spreading rate, is highly possible.  相似文献   
2.
The present study examines the petrology and geochemistry of the Early Paleozoic Motai serpentinites, the South Kitakami Belt, northeast Japan, to reveal the subduction processes and tectonics in the convergent margin of the Early Paleozoic proto-East Asian continent. Protoliths of the serpentinites are estimated to be harzburgite to dunite based on the observed amounts of bastite (orthopyroxene pseudomorph). Relic chromian spinel Cr# [=Cr/(Cr + Al)] increases with decreasing amount of bastite. The compositional range of chromian spinel is similar to that found in the Mariana forearc serpentinites. This fact suggests that the protoliths of the serpentinites are depleted mantle peridotites developed beneath the forearc regions of a subduction zone. The Motai serpentinites are divided into two types, namely, Types 1 and 2 serpentinites; the former are characterized by fine-grained antigorite and lack of olivine, and the latter have coarse-grained antigorite and inclusion-rich olivine. Ca-amphibole occurs as isolated crystals or vein-like aggregates in the Type 1 serpentinites and as needle-shaped minerals in the Type 2 serpentinites. Ca-amphibole of the Type 1 serpentinites is more enriched in LILEs and LREEs, suggesting the influence of hydrous fluids derived from slabs. By contrast, the mineral assemblage, mineral chemistry, and field distribution of the Type 2 serpentinites reflect the thermal effect of contact metamorphism by Cretaceous granite. The Ca-amphibole of the Type 1 serpentinites is different from that of the Hayachine–Miyamori Ophiolite in terms of origin; the latter was formed by the infiltration of melts produced in an Early Paleozoic arc–backarc system. Chemical characteristics of the Ca-amphibole in the ultramafic rocks in the South Kitakami Belt reflect the tectonics of an Early Paleozoic mantle wedge, and the formation of the Motai metamorphic rocks in the forearc region of the Hayachine–Miyamori subduction zone system, which occurred at the Early Paleozoic proto-East Asian continental margin.  相似文献   
3.
Permian greenstones in the Jurassic Mino–Tamba accretionary complex, southwest Japan, are divided into three distinct series on the basis of their geological occurrence, mineralogy, and geochemistry. A low-Ti series (LTS) is associated with Lower Permian chert and limestone, and is the most voluminous of the three series. The LTS shows slightly more enriched geochemical and isotopic characteristics than MORB. A transition series (TS) is mainly associated with Lower Permian chert, and has more enriched geochemical signatures than MORB. Its isotopic characteristics are divided into enriched and depleted types. A high-Ti series (HTS) occurs as sills and hyaloclastites within Middle Permian chert and as dikes intruding the TS. Some HTS rocks have high MgO contents. The HTS is characterized by enrichment in incompatible trace elements and an isotopic composition comparable to HIMU-type basalt. The geochemistry of the voluminous LTS is similar to that of the oceanic basalt series of the Kerguelen plateau, suggesting production by partial melting of a shallow mantle plume head below thick oceanic lithosphere in Early Permian time. We infer that the TS formed simultaneously at the margins of the mantle plume head. In contrast, the HTS may have resulted from partial melting of a deep mantle plume tail in Middle Permian time. Permian greenstones in the Mino–Tamba belt may have thus formed by superplume activity in an intra-oceanic setting. Given the presence of two known contemporary continental flood basalt provinces (Siberia and Emeishan) and some accreted oceanic plateau basalts, the vast magmatism of the Mino–Tamba oceanic plateau suggests a large-scale superplume pulse in Permian time. Accretion of oceanic plateaux may have played an important role in the growth of continental margins and island arcs in Japan and elsewhere in the circum-Pacific region.  相似文献   
4.
5.
ABSTRACT

A Paleogene accretionary complex, the Mineoka–Setogawa belt is distributed adjacent to the northern portion of the collision zone between Honshu and Izu–Bonin–Mariana (IBM) arcs in central Japan, comprising a mélange of ophiolitic fragments of various sizes. The Eocene-Oligocene plutonic rocks in this belt (gabbro, diorite, and tonalite) have been interpreted as fragments brought from the deep crust beneath the IBM arc through tectonic collisions. The geochemical characteristics of the gabbro and associated basaltic dike are similar to those of the Eocene IBM tholeiitic basalt; thus, the gabbro was likely formed via the crystallization of the Eocene tholeiitic basaltic magmas, which was produced by the partial meltings of a depleted mantle wedge. A comparison with experimental results and geochemical modeling indicates that the tonalite was generated by 10–30% dehydration melting of the gabbro. Actually, Eocene–Oligocene felsic veins, which are coeval with the plutonic rocks, occur in the Mineoka–Setogawa gabbro. Plagioclase crystals in the diorite comprise Ca-rich and -poor parts in a single crystal. Their compositional characteristics are consistent with those of plagioclase in the gabbro and tonalite, respectively. The textures and chemical composition of plagioclase indicate that the diorite was formed by the mixing between mafic and silicic magmas. The whole-rock composition of the diorite also indicates the evidence for the mixing between basaltic magmas which were fractionated to variable degrees and homogeneous silicic magma. The mixing model proposed from the first direct observations of the IBM middle crust exposed on the Mineoka–Setogawa belt is applied to the genesis of the Eocene to present intermediate rocks in the IBM arc. If the continental crust were created at intra-oceanic arc settings such as the IBM arc, the magma mixing model would be one of the most likely mechanisms for the genesis of the continental crust.  相似文献   
6.
Yuji  Ichiyama  Akira  Ishiwatari  Kazuto  Koizumi  Yoshito  Ishida  Sumiaki  Machi 《Island Arc》2007,16(3):493-503
Abstract   Permian basalt showing typical spinifex texture with >10 cm-long olivine pseudomorphs was discovered from the Jurassic Tamba accretionary complex in southwest Japan. The spinifex basalt occurs as a river boulder accompanied by many ferropicritic boulders in a Permian chert-greenstone unit. Groundmass of this rock is holocrystalline, suggesting a thick lava or sill for its provenance. Minor kaersutite in the groundmass indicates a hydrous magma. The spinifex basalt, in common with the associated ferropicritic rocks, is characterized by high high field strength element (HFSE) contents (e.g. Nb = 62 ppm and Zr = 254 ppm) and high-HFSE ratios (Al2O3/TiO2 = 3.9, Nb/Zr = 0.24 and Zr/Y = 6.4) unlike typical komatiites. The spinifex basalt and ferropicrite might represent the upper fractionated melt and the lower olivine-rich cumulate, respectively, of a single ultramafic sill (or lava) as reported from the early Proterozoic Pechenga Series in Kola Peninsula. Their parental magma might have been produced by hydrous melting of a mantle plume that was dosed with Fe- and HFSE-rich garnet pyroxenite. The spinifex basalt is an evidence for the Pechenga-type ferropicritic volcanism taken place in a Permian oceanic plateau, which accreted to the Asian continental margin as greenstone slices in Jurassic time.  相似文献   
7.
Abstract The Permian ophiolite emplaced in the Yakuno area, Kyoto Prefecture, consists of metavolcanic sequences, metagabbro and a troctolitic intrusion. The metavolcanics are associated with thick mudstone through a contact that shows the flowage of lava over unconsolidated mud layers on the sea floor. The metavolcanics and metagabbro have rare earth element (REE) patterns that are similar to enriched (E)‐ and transitional (T)‐types ([La/Yb]N = 0.77–11.2) of mid‐oceanic ridge basalts (MORB), whereas their Nb/La ratios (0.40–1.20) are as low as those of back‐arc basin basalts (BABB). Cr‐spinels in the metavolcanic rocks have Cr? of 40–73 and an Fe3+? of 9–24, numbers which are comparable to the values of BABB. These lines of evidence suggest that the Yakuno ophiolite originated more likely from an early stage back‐arc basin rather than from an oceanic plateau, as has been suggested by some researchers. The troctolitic body that intrudes as a 0.5‐km long lens in the metagabbro is composed of troctolite, olivine gabbro and microgabbro. The troctolite is marked by an olivine–plagioclase crystallization sequence, different from the commonly observed olivine–clinopyroxene sequence in other mafic/ultramafic cumulates of the Yakuno ophiolite. The microgabbro, with a composition close to that of the parental magma of the troctolite, is depleted in light REE ([La/Yb]N = 0.18–0.55) so that it has an REE pattern that mimics normal (N)‐type MORB. The interstitial clinopyroxene of the troctolite has highly variable TiO2 contents (0.2–1.4 wt%), which is interpreted to result from postcumulus crystallization of heterogeneous intercumulus melts. The troctolitic intrusion may represent a late stage intrusion that formed in an off‐ridge environment during sea floor spreading of the back‐arc basin. The geochemical variation observed in the Yakuno ophiolite, ranging from N‐ to E‐MORB affinities, reflects the changes in both mantle source compositions and processes involved in magma generation during the evolution of the back‐arc basin.  相似文献   
8.
Abstract During the Hakuho‐Maru KH03‐3 cruise and the Tansei‐Maru KT04‐28 cruise, more than 1000 rock samples were dredged from several localities over the Hahajima Seamount, a northwest–southeast elongated, rectangular massif, 60 km × 30 km in size, with a flat top approximately 1100 m deep. The rocks included almost every lithology commonly observed among the on‐land ophiolite outcrops. Volcanic rocks included mid‐oceanic ridge basalt (MORB)‐like tholeiitic basalt and dolerite, calc‐alkaline basalt and andesite, boninite, high‐Mg adakitic andesite, dacite, and minor rhyolite. Gabbroic rocks included troctolite, olivine gabbro, olivine gabbronorite (with inverted pigeonite), gabbro, gabbronorite, norite, and hornblende gabbro, and showed both MORB‐type and island arc‐type mineralogies. Ultramafic rocks were mainly depleted mantle harzburgite (spinel Cr? 50–80) and its serpentinized varieties, with some cumulate dunite, wehrlite and pyroxenites. This rock assemblage suggests a supra‐subduction zone origin for the Hahajima Seamount. Compilation of the available dredge data indicated that the ultramafic rocks occur in the two northeast–southwest‐oriented belts on the seamount, where serpentinite breccia and gabbro breccia have also developed, but the other areas are free from ultramafic rocks. Although many conical serpentinite seamounts 10 km in size are aligned along the Izu–Ogasawara (Bonin)–Mariana forearc, the Hahajima Seamount may be better interpreted as a fault‐bounded, uplifted massif composed of ophiolitic thrust sheets, resembling the Izki block of the Oman ophiolite in its shape and size. The ubiquitous roundness of the dredged rocks and their thin Mn coating (<2 mm) suggest that the Hahajima Seamount was uplifted above sealevel and wave‐eroded, like the present Macquarie Is., a rare example of ophiolite exposure in an oceanic setting. The Ogasawara Plateau on the Pacific Plate is adjacent to the east of the Hahajima Seamount, and collision and subduction of the plateau may have caused uplift of the forearc ophiolite body.  相似文献   
9.
Sills, pillow lavas and hyaloclastites of the HFSE-rich picrite and related rocks (ankaramite and basanite) occur in the Middle Permian cherts in the Mino Jurassic accretionary complex, southwestern Japan. These rocks show systematic trace element patterns enriched in incompatible elements, which indicate that the associated ankaramite and basanite are formed by the crystal fractionation from the picrite. The presence of the hyaloclastite in the chert sequence covering a large tholeiitic greenstone body indicates that the picrite was produced in an intraoceanic setting in the Middle Permian time subsequent to the extrusion of the voluminous oceanic island tholeiite. The Mino picrites resemble the Siberian meimechite and Polynesian picrites in its HFSE-rich chemical composition. The HFSE enrichment in these picrites cannot be explained by low degree of partial melting of primitive peridotite mantle only, and needs a source material involving recycled oceanic crust (eclogite). The differences in MgO content and in TiO2/Al2O3 and Zr/Y ratios among the HFSE-rich picrites indicate that the melting pressure increases from the Polynesian picrite through Mino picrite to Siberian picrite. This may reflect the increasing thickness of the overlying lithosphere at the time and place of magmatism. The HFSE-rich picrites may be a product of a superplume event. The presence of HFSE-rich picrite in Mino and Siberia indicate that the superplume activities occur in both continental and oceanic settings in the Permian time.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号