首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
利用Hadley气候预测与研究中心的区域气候模式系统PRECIS单向嵌套该中心全球海-气耦合气候模式HadCM3高分辨率的大气部分HadAM3H,分析了SRES A2情景下2071-2100年相对于气候基准时段(1961-1990年)中国区域的气候变化,包括气温和降水的年际、季节和日时间尺度的变化以及极端气候事件的变化趋势。模拟结果表明:气温呈明显增加趋势,其中新疆和东北地区增温明显。而降水表现了更大的年际变化和季节变化,冬季南方降水减少,但沿黄河流域的降水明显增加,夏季与冬季相比呈现出相反的趋势。此外,连续高温日数呈现增加趋势,而连续霜冻日数呈现减少趋势。连续湿日数也表现出一定的增加趋势。  相似文献   

2.
1961~2010年西北地区极端气候事件变化特征   总被引:1,自引:0,他引:1  
利用1961~2010年西北地区131个气象站的逐日平均气温、最高和最低气温及逐日降水资料,分析了西北地区极端气候事件的变化趋势及空间分布特征。结果表明:气候变暖背景下,西北地区近50 a来气温整体呈增加趋势,极端高温事件增多,极端低温事件减少;降水量呈微弱的增加趋势,极端降水事件增多;极端高温日数分别在1982年和1996年发生转折,95%、99%极端低温日数均在1980年前后发生突变,95%、99%极端降水日数分别在2000年和1980年出现转折,这与气温和降水的变化趋势一致。极端低温日数减少的幅度大于极端高温日数增加的幅度,表明气温日较差呈减小趋势,存在非对称性增温特征。空间上,增温率大的区域其极端高温日数增加,极端低温日数显著减少;95%、99%极端降水日数增率大的区域多位于降水量倾向率较高的地区。  相似文献   

3.
近45年来河北省极端降水事件的变化研究   总被引:7,自引:1,他引:6  
高霞  王宏  于成文  戴新刚  史丽红 《气象》2009,35(7):10-15
利用河北省1961-2005年逐日降水资料,采用通用的极端气候指数,分析了近45年河北省极端降水事件频率变化的时空特征.结果表明,全省平均年最大日降水量呈下降趋势,1980年为由多向少的转折点;强降水日数和暴雨日数变化不大,但南部平原地区一般减少,北部山地区域多有增加,暴雨日数和强度在1990年代中后期显著增加;降水日数有较明显减少,南部和东南部平原减少更显著;降水日数的减少主要是中、小雨(雪)日数减少造成的.这些结果说明,河北省强降水日数和暴雨日数在降水日数中的比重有增大趋势,强降水量和暴雨降水量在总降水量中的比重可能增加了.这种相对增加趋势主要发生在1990年代中期以后.  相似文献   

4.
使用区域气候模式RegCM3,进行了人类活动(植被分布和CO2含量的变化)对中国区域气候及水循环影响的数值模拟试验.模拟结果表明:在植被退化和CO2浓度增加的共同影响下,春、夏季气温增加明显,特别是北部地区,秋、冬季我国气温降低明显,说明气温的年较差变大,极端气温事件发生的几率也随之变大;我国降水大体上呈现南方降水增多、北方降水减少的趋势,华北、内蒙古地区减少最多,而降水增加区域则集中在长江以南地区,这样的变化趋势将使得降水异常事件发生更加频繁.  相似文献   

5.
基于RCP4.5情景下6.25 km高分辨率统计降尺度数据,使用国际上通用的极端气候事件指数,分析雄安新区及整个京津冀地区未来极端气候事件的可能变化。首先对当代模拟结果进行评估,结果表明,集合平均模拟可以较好地再现大部分极端气候事件指数的分布,且对与气温有关的极端气候事件指数模拟效果较好。但也存在一定偏差,特别是对连续干旱日数(CDD)的模拟效果相对较差。集合平均的预估结果表明,未来在全球变暖背景下,雄安新区及整个京津冀地区均表现为极端暖事件增多,极端冷事件减少,连续干旱日数减少,极端强降水事件增多。具体来看,到21世纪末期,日最高气温最高值(TXx)和日最低气温最低值(TNn)在整个区域上都是增加的,大部分地区增加值分别超过2.4℃和3.2℃;夏季日数(SU)和热带夜数(TR)也都表现为增加,但两者的变化分布基本相反,其中SU在山区增加幅度较大,平原地区增加幅度较小,而TR在平原地区的增加值较山区更显著,两个指数未来增加值分别为20~40 d和5~40 d;霜冻日数(FD)和冰冻日数(ID)都表现为减少,减少值分别超过10 d和5 d;与降水有关的极端气候事件指数,CDD、降雨日数(R1mm)和中雨日数(R10mm)的变化均以减少为主,但数值较小,一般都在?10%~0之间;最大5 d降水量(RX5day)、降水强度(SDII)和大雨日数(R20mm)主要表现为增加,增加值一般在0~25%之间。从区域平均的变化来看,与气温有关的极端气候事件指数的变化趋势较为显著,与降水有关的极端气候事件指数变化趋势较小。两个区域对比来看,雄安新区模式间的不确定性更大,反映出模式对较小区域模拟的不足。  相似文献   

6.
华北中部近45a极端降水事件变化特征   总被引:9,自引:1,他引:8  
利用华北中部41个气象台站1961—2005年逐日降水资料,采用通用的极端气候指数,分析了近45a来华北中部极端降水事件频率变化的时空特征。结果表明:华北中部平均年最大日降水量呈下降趋势,南部平原地区一般减少,北部山地区域多有增加,降水日数有较明显减少,强降水日数和暴雨日数变化趋势不明显,降水日数的减少主要是中、小雨(雪)日数减少造成的。暴雨日数和强度在20世纪90年代中后期显著增加。华北中部强降水日数和暴雨日数在降水日数中的比重有增大趋势,强降水量和暴雨降水量在总降水量中的比重可能也增加了。这种相对增加趋势主要发生在20世纪90年代中期以后。  相似文献   

7.
文章使用云南1961—2015年观测气象资料和RegCM4区域气候模式模拟的RCP4.5和RCP8.5情景下2016—2099年气候变化预估资料,计算了云南逐日气候舒适度指数,采用线性趋势和通径分析等方法分析了云南近55年气候舒适度的时空演变特征和变化成因,最后对未来变化趋势作了预估。结果显示:(1)云南观测资料多年平均值舒适日数最多,占全年的55%,南多北少,夏季最多;寒冷日数次多,占全年的23%,北多南少,冬季最多;冷日数比寒冷日数稍少,占全年的20%;热日数仅占全年的1%,闷热日数多年平均值为零。(2) 1961—2015年寒冷(舒适)日数年际和空间变化都呈明显的减少(增加)趋势,冷和热日数没有明显的变化趋势,闷热日数没有变化。(3)气温是云南气候舒适度各等级日数变化的主要因素,其次是风速,相对湿度只在温度高的情况下影响明显。(4) RCP4.5和RCP8.5两种情景下,2016—2099年云南寒冷(舒适)日数年际和空间变化都是减少(增加)的趋势;冷日数年变化是减少的趋势,空间变化为西北部增加;热日数只在RCP8.5情景下增加明显,主要是南部地区增加。  相似文献   

8.
利用区域气候模式RegCM4的逐日气温和降水资料,预估1.5℃和2.0℃升温情景下,东北地区平均气候和极端气候事件的变化。结果表明:RCP4.5排放情景下,模式预计在2030年和2044年左右稳定达到1.5℃和2.0℃升温;两种升温情景下,东北地区气温、积温、生长季长度均呈增加趋势,且增幅随着升温阈值的升高而增加;1.5℃升温情景下,年平均气温增幅为1.19℃,年平均降水距平百分率增幅为5.78%,积温增加247.1℃·d,生长季长度延长7.0 d;2.0℃升温情景下气温、积温、生长季长度增幅较1.5℃升温情景下显著,但是年和四季降水普遍减少,年降水距平百分率减小1.96%。两种升温情景下,极端高温事件显著增加,极端低温事件显著减少,极端降水事件普遍增加。霜冻日数、结冰日数均呈显著减少趋势,热浪持续指数呈显著增加趋势;未来东北地区降水极端性增强,不仅单次降水过程的量级增大,极端降水过程的量级也明显增大,随着升温阈值的增大,极端降水的强度也逐渐增大。  相似文献   

9.
1955—2014年杭州极端气温和降水指数变化特征   总被引:1,自引:0,他引:1  
根据杭州市1955—2014年降水量、气温逐日资料,采用国际通用的极端天气指数和线性倾向估计、M-K检验等方法,分析了杭州市近60 a极端气温和降水的变化特征。结果表明:1)杭州市近60 a的气温呈一致升高趋势,且变化显著,表现为极端高温阈值和极端低温阈值的升高及极端高温日数的增多;极端冷事件显著减少,暖事件显著增多。2)极端降水指数中只有强降水量的增加较明显,主要贡献为夏季和冬季强降水量的增强。3)冬季平均气温、极端低温阈值、霜冻日数等极端冷事件的突变发生于20世纪80年代初中期,夏季平均气温、极端高温阈值、高温日数等极端暖事件的突变发生于20世纪末21世纪初,与全国范围内的气候增暖进程基本一致。另外,降水强度、极端降水阈值等极端降水指数的突变时间在2008年左右,即2008年后气温升高和降水强度的增加突变期叠加,尤其在夏季和冬季表现更突出,可能诱发更多的异常天气。  相似文献   

10.
内蒙古地区极端降水事件分布特征   总被引:3,自引:1,他引:2  
基于内蒙古地区94个气象站1961—2007年逐日降水量资料,利用累积频率法,分析了极端降水事件变化特征。结果表明:(1)近50年内蒙古地区极端降水事件和极端强降水事件发生的强度和出现的频次均呈现出增多趋势,尤其在1977年降水发生突变之后,增加趋势更为明显。(2)近50年内蒙古地区最长连续无降水日数和最长连续降水日数持续时间缩短,表明连续性干旱和降水的持续性减弱,尤其是进入本世纪后,最长连续无降水日数陡升和最长连续降水日数陡降,气候湿润程度下降,加之全球气候变暖,使内蒙古地区进入本世纪后暖而干的气候特征更为明显,这对农牧业生产和生态环境保护极为不利。(3)内蒙古地区近50年小雨和暴雨日数的减少,降水强度的加大,使全区降水不稳定性增加,降水有极端化发展趋势,尤其是在1987年气温发生突变之后,降水强度变化更大。  相似文献   

11.
基于乌鲁木齐市及其周边9个气象站1961-2020年气候资料以及综合气候舒适度指数模型,采用统计学方法和ArcGIS的精细化空间插值技术对近60a气候舒适度时空变化进行分析。结果表明,乌鲁木齐市气候舒适度及其变化具有明显的区域性和季节性差异:(1)气候舒适度指数的年内变化,平原地带呈双峰双谷的“M”型,山区为单峰单谷的“∩”型。(2)受气温升高、相对湿度增大、风速减小、日照时数减少的综合影响,近60a平原地带春、秋、冬季气候舒适度指数显著(P=0.05)增大,夏季显著减小;山区夏、秋季气候舒适度指数显著增大,冬、春季变化不明显。(3)近30a(199l-2020年)较前30a(196l-1990年),春季和秋季平原地带气候较舒适区海拔上限升高了100-150m,山区气候较不舒适区和不舒适区向高海拔抬升了50-100m;夏季北部平原气候较舒适区海拔上限升高了100-150m,山前倾斜平原至中山带的气候舒适区向高海拔抬升了约100m,高山带气候较不舒适区和不舒适区也向高海拔抬升并压缩了50-100m;冬季虽气候舒适度指数有所增大,但全市属于气候不舒适区的状况未发生改变。  相似文献   

12.
利用1961-2017年成都市西部邛崃国家气象观测站日平均气温、日最高气温、日平均风速、日平均相对湿度和日最小相对湿度计算逐日人体舒适度指数及白天和夜间舒适度指数,并通过线性倾向估计方法分析近30年邛崃市人体舒适度变化特征。结果表明:近30年邛崃市没有暑热和寒冷天气,人体舒适度日数舒适级别日数最多,其次是冷不舒适级别日数,热不舒适级别日数最少;年平均人体舒适度指数呈现较小的上升趋势;舒适日数集中在春季、夏季、秋季三个季节;热不舒适日数和舒适日数21世纪初期相比20世纪90年代有所增加,冷不舒适日数有所减少;近30年白天人体舒适度指数有着较明显的升高趋势,夜间人体舒适度指数变化不大。  相似文献   

13.
本文利用成都地区14个区(市)县国家级地面气象观测站1980~2016年的日平均气温、日平均相对湿度数据,采用温湿指数对成都地区气候舒适度进行评价分析,结果表明:成都地区4月和10月为非常舒适月份,无极度不舒适月份,春季和秋季为非常舒适季节,夏季为不舒适季节,冬季为较不舒适季节,近37年气候舒适度总体变好。相比,成都西北部、中部和蒲江县的气候舒适度较好。气候舒适度突变多发生在2009~2013年,冬季的突变发生在1984年,冬季气候舒适度向好转向的特征非常明显。  相似文献   

14.
利用1961-2017年岳阳市国家气象观测站日平均气温、日平均相对湿度和日平均风速资料计算逐日人体舒适度指数,并采用线性倾向估计方法、Mann-Kendall趋势检验及小波分析法分析年平均指数和各等级日数的变化特征。结果表明:19612017年岳阳舒适日数最多,冷不舒适日数次之,热不舒适日数最少;岳阳较舒适的月份是5月和10月,最热不舒适的月份是7月和8月,最冷不舒适的月份是1月;近57年来岳阳人体舒适度指数数值显著上升,主要原因是受到冷不舒适日数减少、舒适日数和热不舒适日数增多等因素共同影响;各月份不同级别日数发生了较大的变化,冷不舒适日数减少、舒适日数增多的变化在3月最明显,舒适日数减少、热不舒适日数增加的变化在7月最明显;岳阳春、秋、冬三季越来越暖,而夏季变得更热;岳阳人体舒适度各级别日数呈现出显著的周期变化,1991年冬季至1992年是岳阳人体舒适度发生突变的时间段;未来几年中岳阳冷不舒适日数将会比2017年的增加,热不舒适日数会先增加后减少,舒适日数将会减少。  相似文献   

15.
该文基于水城县国家气象观测站1986—2015年的逐日观测资料,利用线性回归、Morlet小波分析等方法,对水城县近30 a气温和降水的气候特征进行分析。结果表明:①水城县年平均气温在近30 a来呈现显著的上升趋势,其中春、夏、秋三季的平均温度对年平均气温的增加起到了重要贡献,且冬季在近15 a来更容易发生极端暖冬与冷冬事件;②水城县年平均降水量在近30 a来存在一定的减少趋势,但与气温不同,夏、秋两季的降水占到了全年的75%以上,从而与全年降水量的变化特征息息相关,并且在气候变暖的背景之下,水城县夏、秋季的降水在2000年以来年际变率显著变大,从而导致当地更容易出现极端的旱涝事件;③过去30 a水城县的年极端最高气温出现在春季和初夏的次数最多,3—6月共有25次,占比高达80.6%,年极端最低温所出现的月份则主要集中在冬季(12月—翌年1月);④水城县平均气温的增加与极端降水的变化之间存在密切联系,水城县年均暴雨日数主要集中在6—8月,在全年暴雨日数中占比达到79%(51 d),而水城县近30 a的年暴雨日数在气温升高、总降水量减少的背景之下仍出现了显著的增加趋势。  相似文献   

16.
1961—2008年淮河流域气温和降水变化趋势   总被引:6,自引:2,他引:4  
王珂清  曾燕  谢志清  苗茜 《气象科学》2012,32(6):671-677
利用淮河流域170个地面气象观测站观测数据,统计分析了淮河流域1961—2008年间气温和降水的时空变化趋势。结果表明:48 a间淮河流域年平均气温呈显著上升趋势,冬季平均气温的增温幅度最大,春、秋次之;年极端最低气温亦呈显著上升趋势,年极端低温日数(满足该站极端低温阈值)则呈明显下降趋势;流域西北部年极端最高气温呈显著下降趋势,流域西部年极端高温日数(满足该站极端高温阈值)呈显著下降趋势;降水量总体变化趋势未通过统计检验,但1990s开始,秋季降水量呈下降趋势,2000年之后年降水量明显增加,夏季降水量亦增加;春季和秋季降水日数呈显著下降趋势,夏季和冬季无明显变化。  相似文献   

17.
利用2005—2017年赤水国家气象观测站逐小时平均气温、相对湿度和10 min平均风速计算人体舒适度指数,对赤水人体舒适程度的气候特征进行了统计分析。结果表明,赤水舒适天气较多,存在少量的偏冷和炎热天气,酷热日数极少,具有显著的季节分布特征,具体为:①偏冷天气年日数在10~46 d之间波动,开始日期主要在12月份,占比85%,结束日期主要在2—3月份,偏冷天气出现在1月份的概率最大,一天中出现在04—11时的次数最多,出现在13—21时的次数较少;②酷热天气较少,仅出现6个时次,炎热天气年日数在16~54 d之间波动,在20~30 d的年度占比54%,炎热天气开始日期在6中旬—7月上旬,结束日期在8月中旬—9月下旬,一天中13—15时出现概率最大;③舒适天气年日数在135~176 d,年平均舒适天气152 d,4、5、9、10月是最舒适月份。研究表明,春秋季节较为舒适,适宜户外活动,也是赤水旅游的黄金期;冬季后半夜到上午易出现偏冷天气,夏季午后易出现炎热天气,户外活动时需要采取一定的防护措施。  相似文献   

18.
利用乌鲁木齐市2011~2012年08时、20时L波段(1型)雷达探测的高空资料建立了乌鲁木齐大气边界层气象要素数据库,分析了乌鲁木齐边界层内气温、风向、风速和相对湿度的垂直分布及其时间变化特征。结果表明:边界层内温度廓线的日变化和季节变化比较显著,各月均有逆温出现,且08时较20时更易出现逆温,冬季08时逆温层厚度较厚且强度最大。边界层内夏、冬两季风速随高度变化波动较大,春、秋两季变化较小。近地层春、夏、秋三季08时盛行西南偏南风,冬季盛行偏东风和西南风;20时春季盛行东北风,夏秋盛行偏北风和西北风,冬季则盛行东风和东北偏东风。08时、20时风向均随高度的增加呈明显的向右偏转趋势,且日风向的变化具有明显的“山谷风”特点。08、20时的相对湿度冬季最大,夏季最小,且随高度增加,春、夏两季08、20时相对湿度的变化较大。  相似文献   

19.
采用标准有效温度和不舒适指标,分析了南京市热舒适状况。以南京市2010年全年的逐时气温和相对湿度资料为基础,计算了2010年逐月每小时气温和相对湿度平均值。通过假定在均匀的环境条件下,遮阴的室内,伏案工作活动量为1.0 met,夏季服装热阻为0.6 clo,春、秋、冬季服装热阻为0.9 clo,室内风速约为0.125 m/s,计算出各月逐时标准有效温度和不舒适指标。结果表明,南京市的热舒适状况具有明显的季节变化和日变化特征。季节变化特征显示:夏冬两季热舒适度偏低,夏季平均标准有效温度和不舒适指标分别为27.6℃和0.7,人体感觉偏热;冬季平均标准有效温度和不舒适指标分别为9.4℃和-2.8,人体感觉偏冷;春秋两季热舒适度指数高,春季平均标准有效温度和不舒适指标分别为19.7℃和-0.8,秋季为17.2℃和-1.3,人体普遍感觉舒适,但舒适期持续时间短,全年约62天。就日变化特征而言,冬季白天人体热舒适度普遍高于夜间,夏季则相反。上述结果能够较好地反映南京市人体的普遍热舒适感,可为旅游、建筑、医疗、交通等相关行业和部门提供参考。  相似文献   

20.
基于1970—2015年青藏高原地区78个站点的观测资料,应用物理方法计算了高原中东部地区的感热通量。利用小波分析、相关性分析等研究了高原中东部感热通量的时空特征和影响因子。结果表明,高原年平均和春夏季节,感热通量周期为3~4 a,而秋冬季节为2~3 a;感热通量的变化趋势为,1970—1980年和2001—2015年感热通量呈增加趋势,而1981—2000年呈减小趋势;高原年平均和各季节的最强感热加热中心均位于高原南坡E区(除冬季外),最弱加热区域位于高原西北部A区(夏季除外);高原春秋季节感热通量的空间分布均匀,冬夏季节有明显的梯度分布且梯度相反,夏季呈现自东到西的梯度;春季、夏季及秋季,高原感热通量和降水呈负相关;高原10 m风速的极值中心随季节北上南撤变化与地气温差的强弱变化共同决定了感热通量的季节变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号