首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Fluvial processes, especially rates of floodplain accretion, are less well understood in the wet tropics than in other environments. In this study, the caesium-137 (137Cs) method was used to examine the recent historical sedimentation rate on the floodplain of the Wainimala River, in the basin of the Rewa River, the largest fluvial system in Fiji and the tropical South Pacific Islands. 137Cs activity in the floodplain stratigraphy showed a well-defined profile, with a clear peak at 115 cm depth. Our measured accretion rate of 3.2 cm year−1 over the last ca. 45 years exceeds rates recorded in humid regions elsewhere. This is explained by the high frequency of tropical cyclones near Fiji (40 since 1970) which can produce extreme rainfalls and large magnitude floods. Since the beginning of hydrological records, large overbank floods have occurred every 2 years on average at the study site. The biggest floods attained peak flows over 7000 m3 s−1, or six times the bankfull discharge. Concentrations of suspended sediments are very high (max. 200–500 g l−1), delivered mainly by channel bank erosion. In the future, climatic change in the tropical South Pacific region may be associated with greater tropical cyclone intensities, which will probably increase the size of floods in the Rewa Basin and rates of floodplain sedimentation.  相似文献   

2.
Floodplains contain valuable stratigraphic records of past floods, but these records do not always represent flood magnitudes in a straightforward manner. The depositional record generally reflects the magnitude, frequency, and duration of floods, but is also subject to storm-scale hysteresis effects, flood sequencing effects, and decade-scale trends in sediment load. Many of these effects are evident in the recent stratigraphic record of overbank floods along the Upper Mississippi River (UMR), where the floodplain has been aggrading for several thousand years. On low-lying floodplain surfaces in Iowa and Wisconsin, 137Cs profiles suggest average vertical accretion rates of about 10 mm/year since 1954. These rates are slightly less than rates that prevailed earlier in the 20th Century, when agricultural land disturbance was at a maximum, but they are still an order of magnitude greater than long-term average rates for the Holocene. As a result of soil conservation practices, accretion rates have decreased in recent decades despite an increase in the frequency of large floods.The stratigraphic record of the Upper Mississippi River floodplain is dominated by spring snowmelt events, because they are twice as frequent as rainfall floods, last almost twice as long, and are sometimes associated with very high sediment concentrations. The availability of sediment during floods is also influenced by a strong hysteresis effect. Peak sediment concentrations generally precede the peak discharges by 1–4 weeks, and concentrations are usually low (<50 mg/l) during the peak stages of most floods. The lag between peak concentration and peak discharge is especially large during spring floods, when much of the runoff is contributed by snowmelt in the far northern reaches of the valley.The great flood of 1993 on the Mississippi River focused attention on the geomorphic effectiveness and stratigraphic signature of large floods. At McGregor, where the peak discharge had a recurrence interval of 14 years, the flood was most notable for its long duration (168 days above 1600 m3s−1), high sediment concentrations (three episodes >180 mg/l), and large suspended load (1.71 Mt). The flood of 2001, despite its greater magnitude (recurrence interval 70 years), was associated with relatively low sediment concentrations (<60 mg/l). The 1993 and 2001 floods each left 30–80 mm of silty fine sand on most low-lying floodplain surfaces, but the 2001 flood produced sandy levees near the channel while the 1993 flood did not. The stratigraphic signature of these recent floods is more closely related to the duration and total suspended load of the event than to the magnitude of the peak discharge.  相似文献   

3.
Low‐energy gamma ray spectroscopy has been employed to estimate floodplain sedimentation rates using measurements of 210Pb in floodplain alluvium. The utility of the technique is assessed through the analysis of excess (unsupported) 210Pb profiles in three sediment cores taken from the floodplain of the Labasa River on Vanua Levu in northern Fiji. A low‐energy germanium spectrometer (LEGe) was used for the nondestructive determination of excess 210Pb in a region cultivated intensively with sugarcane. Measured average historical (c. 25 years) vertical accretion rates are between 2.2 and 4.4 cm yr?1. The findings are broadly comparable with published sedimentation rates from analyses of radionuclide profiles elsewhere in the tropical South Pacific Islands, but the rates are higher than those measured previously at the same Labasa River sites using 137Cs profiles. Accelerated soil erosion owing to cane burning and land tillage seems to be largely responsible for sediment production, although flood‐related effects such as channel accretion by coarse bedload and the emplacement of large organic debris also influence floodplain sedimentation. However, application of the 210Pb technique in Fiji (and perhaps neighbouring island countries) is found to have serious drawbacks compared to the more robust 137Cs method, owing principally to the low 210Pb concentrations in the sandy alluvial sediment tested.  相似文献   

4.
Floodplains provide valuable social and ecological functions, and understanding the rates and patterns of overbank sedimentation is critical for river basin management and rehabilitation. Channelization of alluvial systems throughout the world has altered hydrological and sedimentation processes within floodplain ecosystems. In the loess belt region of the Lower Mississippi Alluvial Valley of the United States, channelization, the geology of the region, and past land-use practices have resulted in the formation of dozens of valley plugs in stream channels and the formation of shoals at the confluence of stream systems. Valley plugs completely block stream channels with sediment and debris and can result in greater deposition rates on floodplain surfaces. Presently, however, information is lacking on the rates and variability of overbank sedimentation associated with valley plugs and shoals.We quantified deposition rates and textures in floodplains along channelized streams that contained valley plugs and shoals, in addition to floodplains occurring along an unchannelized stream, to improve our understanding of overbank sedimentation associated with channelized streams. Feldspar clay marker horizons and marker poles were used to measure floodplain deposition from 2002 to 2005 and data were analyzed with geospatial statistics to determine the spatial dynamics of sedimentation within the floodplains.Mean sediment deposition rates ranged from 0.09 to 0.67 cm/y at unchannelized sites, 0.16 to 2.27 cm/y at shoal sites, and 3.44 to 6.20 cm/y at valley plug sites. Valley plug sites had greater rates of deposition, and the deposited sediments contained more coarse sand material than either shoal or unchannelized sites. A total of 59 of 183 valley plug study plots had mean deposition rates > 5 cm/y. The geospatial analyses showed that the spatial dynamics of sedimentation can be influenced by the formation of valley plugs and shoals on channelized streams; however, responses can vary. Restoration efforts in the region need to have basinwide collaboration with landowners and address catchment-scale processes, including the geomorphic instability of the region, to be successful.  相似文献   

5.
The “Ewijkse Plaat” is a floodplain along the Waal River, NL. In 1988, the floodplain was excavated as part of a program for enlargement of the discharge capacity and was assigned as a nature rehabilitation area. This paper describes the combined geomorphological and vegetation evolution of the floodplain until 16 years after the initial excavation using elevation data and data on vegetation structure derived from detailed aerial stereographic imagery. The impact of these processes on flow velocity and water surface elevation was evaluated by using a hydraulic model. Within 16 years, the excavated amount of sediment was redeposited in the area. The dominant geomorphological process after excavation was vertical accretion of the floodplain which resulted in the formation of natural levees. The amount of sedimentation was correlated to the across-floodplain flow (R2 = 0.89). In the research period, 41% of the sedimentation took place during two single major flood events. The creation of pioneer stages by excavation promoted softwood forest establishment, which influenced the sedimentation pattern significantly. The landscape evolved toward structure-rich vegetation. Nine years after excavation the initial hydraulic gain was lost by the combined effect of sedimentation and vegetation succession. Implications for river and nature management are discussed.  相似文献   

6.
The landscape evolution in Neogene intramontane basins is a result of the interaction of climatic, lithologic, and tectonic factors. When sedimentation ceases and a basin enters an erosional stage, estimating erosion rates across the entire basin can offer a good view of landscape evolution. In this work, the erosion rates in the Guadix–Baza basin have been calculated based on a volumetric estimate of sediment loss by river erosion since the Late Pleistocene. To do so, the distribution of a glacis surface at ca. 43 kyr, characterised by a calcrete layer that caps the basin infilling, has been reconstructed. To support this age, new radiometric data of the glacis are presented. The volume of sediment loss by water erosion has been calculated for the entire basin by comparing the reconstructed geomorphic surface and the present-day topography. The resulting erosion rates vary between 4.28 and 6.57 m3 ha− 1 yr− 1, and are the consequence of the interaction of climatic, lithologic, topographic, and tectonic factors. Individual erosion rates for the Guadix and Baza sub-basins (11.80 m3 ha− 1 yr− 1 and 1.77 m3 ha− 1 yr− 1 respectively) suggest different stages of drainage pattern evolution in the two sub-basins. We attribute the lower values obtained in the Baza sub-basin to the down-throw of this sub-basin caused by very recent activity along the Baza fault.  相似文献   

7.
J.A. Moody  R.H. Meade 《Geomorphology》2008,99(1-4):387-403
Flood processes no longer actively increase the planform area of terraces. Instead, lateral erosion decreases the area. However, infrequent extreme floods continue episodic aggradation of terraces surfaces. We quantify this type of evolution of terraces by an extreme flood in May 1978 on Powder River in southeastern Montana. Within an 89-km study reach of the river, we (1) determine a sediment budget for each geomorphic feature, (2) interpret the stratigraphy of the newly deposited sediment, and (3) discuss the essential role of vegetation in the depositional processes.Peak flood discharge was about 930 m3 s− 1, which lasted about eight days. During this time, the flood transported 8.2 million tons of sediment into and 4.5 million tons out of the study reach. The masses of sediment transferred between features or eroded from one feature and redeposited on the same feature exceeded the mass transported out of the reach. The flood inundated the floodplain and some of the remnants of two terraces along the river. Lateral erosion decreased the planform area of the lower of the two terraces (~ 2.7 m above the riverbed) by 3.2% and that of the higher terrace (~ 3.5 m above the riverbed) by 4.1%. However, overbank aggradation, on average, raised the lower terrace by 0.16 m and the higher terrace by 0.063 m.Vegetation controlled the type, thickness, and stratigraphy of the aggradation on terrace surfaces. Two characteristic overbank deposits were common: coarsening-upward sequences and lee dunes. Grass caused the deposition of the coarsening-upward sequences, which had 0.02 to 0.07 m of mud at the base, and in some cases, the deposits coarsened upwards to coarse sand on the top. Lee dunes, composed of fine and very fine sand, were deposited in the wake zone downstream from the trees. The characteristic morphology of the dunes can be used to estimate some flood variables such as suspended-sediment particle size, minimum depth, and critical shear velocity. Information about depositional processes during extreme floods is rare, and therefore, the results from this study aid in interpreting the record of terrace stratigraphy along other rivers.  相似文献   

8.
Cosmogenic nuclides produced in quartz may either decay or accumulate while sediment is moved through a river basin. A change in nuclide concentration resulting from storage in a floodplain is potentially important in large drainage basins in which sediment is prone to repeated burial and remobilization as a river migrates through its floodplain. We have modeled depth- and time-dependent cosmogenic nuclide concentration changes for 10Be, 26Al, and 14C during sediment storage and mixing in various active floodplain settings ranging from confined, shallow rivers with small floodplains to foreland-basin scale floodplains traversed by deep rivers. Floodplain storage time, estimated from channel migration rates, ranges from 0.4 kyr for the Beni River basin (Bolivia) to 7 kyr for the Amazon River basin, while floodplain storage depth, estimated from channel depth, ranges from 1 to 25 m.For all modeled active floodplain settings, the long-lived nuclides 10Be and 26Al show neither significant increase in nuclide concentration from irradiation nor decrease from decay. We predict a hypothetical response time after which changes in 10Be or 26Al concentrations become analytically resolvable. This interval ranges from 0.07 to 2 Myr and exceeds in all cases the typical residence time of sediment in a floodplain. Due to the much shorter half life of 14C, nuclide concentrations modeled for the in situ-produced variety of this nuclide are, however, sensitive to floodplain storage on residence times of < 20 kyr.The cosmogenic nuclide composition of old deposits in currently inactive floodplains that have been isolated for periods of millions of years from the river that once deposited them is predicted to either increase or decrease in 10Be and 26Al concentration, depending on the depositional depth. These conditions can be evaluated using the 26Al/10Be ratio that readily discloses the depth and duration of storage.We illustrate these models with examples from the Amazon basin. As predicted, modern bedload collected from an Amazon tributary, the Bolivian Beni River, shows no systematic change in nuclide concentration as sediment is moved through 500 km of floodplain by river meandering. In contrast, in the central Amazon floodplain currently untouched by the modern river system, low 26Al/10Be ratios account for minimum burial depths of 5 to 10 m for a duration of > 5 Myr.The important result of this analysis is that in all likely cases of active floodplains, cosmogenic 10Be and 26Al concentrations remain virtually unchanged over the interval sediment usually spends in the basin. Thus, spatially-averaged denudation rates of the sediment-producing area can be inferred throughout the entire basin, provided that nuclide production rates are scaled for the altitudes of the sediment-producing area only, because floodplain storage does not modify nuclide concentrations introduced from the sediment source area.  相似文献   

9.
Rates of sheet and rill erosion in Germany — A meta-analysis   总被引:2,自引:0,他引:2  
K. Auerswald  P. Fiener  R. Dikau   《Geomorphology》2009,111(3-4):182-193
Knowledge of erosion rates under real conditions is of great concern regarding sustainability of landuse and off-site effects on water bodies and settlements. Experimentally derived rates of sheet and rill erosion are often biased by experimental settings, which deviate considerably from typical landuse, by short measuring periods and by small spatial extensions, which do not account for the pronounced spatio-temporal variability of erosion events. We compiled data from 27 studies covering 1076 plot years to account for this variability. Modelling was used to correct for deficiencies in the experimental settings, which overrepresented arable land and used steeper and shorter slopes as well as higher erosivity than typically found in reality. For example, the average slope gradient was 5.9° for all arable plot experiments while it is only 2.6° on total arable land in Germany. The expected soil loss by sheet and rill erosion in Germany after taking real slopes, landuse and erosivity into account averaged 2.7 t ha− 1 yr− 1. Annual crops contributed the largest proportion (90%) but hops despite its negligible contribution to landuse (0.06%) still contribute 1.0% due to its extraordinary rapid erosion, which was even faster than the measured bare fallow soil loss standardized to otherwise identical conditions. Bare fallow soil loss, which is often used as baseline, was 80 t ha− 1 yr− 1 when standardized to 5.1° slope gradient, 200 m flow path length, and average German erosivity.  相似文献   

10.
The Mangshan loess plateau is located 25 km to the west of Zhengzhou on the south bank of the Yellow River. Here the river flows out through the Sanmen Gorge releasing most of its suspended load following a dramatic decrease in gradient. The stratigraphy of the Mangshan loess deposits, consisting of a number of loess and palaeosol sequences, was established following magnetostratigraphic studies and measurements of magnetic susceptibility and grain size distribution. The Bruhnes/Matuyama boundary was found at the depth of about 130 m, indicating that this sequence at Mangshan resembles what is observed elsewhere in the Loess Plateau.The upper part of the Mangshan loess displays extremely high sedimentation rates ( 50 m3 per 1000 years), lower susceptibility values and coarser grain-size distribution, unlike the lower part of the profile and other sections in the Loess Plateau. This striking change indicates that the upper Mangshan loess had a different sediment source, different from the deserts that act as a common source for most of the loess deposits in central China. This sediment source is believed to be the proximal Yellow River floodplain, and the ancient alluvial fan lying at the eastern end of the Sanmen Gorge. The age estimation of the formation of the alluvial fan, based on Mangshan loess, suggests that the Yellow River may have eroded the Sanmen Gorge at approximately MIS 7.  相似文献   

11.
Muddy floods, i.e. runoff from cultivated areas carrying large quantities of soil, are frequent and widespread in the European loess belt. They are mainly generated in dry zero-order valleys and are nowadays considered as the most likely process transferring material eroded from cultivated hillslopes during the Holocene to the flood plain. The huge costs of muddy flood damages justify the urgent installation of control measures. In the framework of the ‘Soil Erosion Decree’ of the Belgian Flemish region, a 12 ha-grassed waterway and three earthen dams have been installed between 2002–2004 in the thalweg of a 300-ha cultivated dry valley in the Belgian loess belt. The measures served their purpose by preventing any muddy flood in the downstream village, despite the occurrence of several extreme rainfall events (with a maximum return period of 150 years). The catchment has been intensively monitored from 2005–2007 and 39 runoff events were recorded in that period. Peak discharge (per ha) was reduced by 69% between the upstream and the downstream extremities of the grassed waterway (GWW). Furthermore, runoff was buffered for 5–12 h behind the dams, and the lag time at the outlet of the catchment was thereby increased by 75%. Reinfiltration was also observed within the waterway, runoff coefficients decreasing by a mean of 50% between both extremities of the GWW. Sediment discharge was also reduced by 93% between the GWW's inflow and the outlet. Before the installation of the control measures, specific sediment yield (SSY) of the catchment reached 3.5 t ha− 1 yr− 1 and an ephemeral gully was observed nearly each year in the catchment. Since the control measures have been installed, no (ephemeral) gully has developed and the SSY of the catchment dropped to a mean of 0.5 t ha− 1 yr− 1. Hence, sediment transfer from the cultivated dry valley to the alluvial plain should dramatically decrease. Total cost of the control measures that are built for a 20 year-period is very low (126 € ha− 1) compared to the mean damage cost associated with muddy floods in the study area (54 € ha− 1 yr− 1). Similar measures should therefore be installed to protect other flooded villages of the Belgian loess belt and comparable environments.  相似文献   

12.
Eric C. Carson   《Geomorphology》2006,75(3-4):368
This study assesses historic overbank alluvial sedimentation along a low-gradient reach of West Fork Black's Fork in the northern Uinta Mountains, Utah. In this previously glaciated setting, an alluvial floodplain that is approximately 400 m wide by 1500 m long has been modified by the combined effects of valley morphometry and the recent history of clear-cut logging during the late 19th and early 20th Centuries. To quantify the effects on sedimentation and flow conveyance, three natural streambank exposures were sampled and analyzed for nuclear bomb fallout 137Cs. The distribution of 137Cs within the three profiles suggests that a remnant outwash terrace exerts a first-order control over the deposition of overbank alluvium. Upstream from a constriction in the floodplain caused by the terrace remnant, as much as 40 cm of overbank alluvium has been deposited since the beginning of clear-cut logging. Immediately downstream of that constriction, no evidence exists for any overbank sedimentation during that same period. Vibracore samples and Oakfield soil probe sampling throughout the study reach quantified the geographic extent and thicknesses of the historic alluvial package. Flood conveyance through the study area was modeled using the U.S. Army Corps of Engineers HEC-RAS modeling program. Model simulations were run for modern conditions (using surveyed topography) and for prehistoric conditions (using the modern topography less the historic alluvial package determined by 137Cs analyses). Model results indicate that the floodplain constriction caused a significant impediment to flood conveyance at even modest discharges during prehistoric conditions. This promoted ponding of floodwaters upstream of the constriction and deposition of alluvium. This has increased bank heights upstream of the constriction, to the point that under modern conditions 1- to 5-year recurrence interval floods are largely confined within the channel. These results confirm the validity of this new approach of combining 137Cs dating of alluvial sediments with HEC-RAS flow modeling to compare flood conveyance along a single stream reach prior to and since an abrupt change in alluvial sedimentation patterns.  相似文献   

13.
The impact of large twentieth century floods on the riparian vegetation and channel morphology of the relatively wide anabranching and braided Nahal Arava, southern Israel, was documented as part of developing tools to (a) identify recent large floods, (b) determine these flood's respective magnitudes in alluvial ungauged streams, and (c) determine long-term upper bounds to flood stages and magnitudes. Along most of its course Nahal Paran, a major tributary that impacts the morphology, floods and sediments of Nahal Arava at the study reach, is a coarse-gravel, braided ephemeral stream. Downstream of the Arava–Paran confluence, aeolian and fluvial sand delivered from eastern Arava valley alters the channel morphology. The sand has accreted up to 2.5 m above the distinct current channels, facilitating the recording of large floods. This sand enhances the establishment of denser riparian vegetation (mainly Tamarix nilotica and Haloxylon persicum) that interacts with floods and affects stream morphology. A temporal association was found between specific floods recorded upstream and tree-ring ages of re-growth of flood-damaged tamarix trees (‘Sigafoos trees’) in the past 30 years. This association can be utilized for developing a twentieth century flood chronology in hyperarid ungauged basins in the region. The minimum magnitude of the largest flood that covered the entire channel width, estimated from flood deposits, is approximately 1700–1800 m3s− 1. This is a larger magnitude than the largest gauged flood of 1150 m3s− 1 that occurred in 1970 about 30 km upstream in Nahal Paran. Our estimation agrees with flood magnitude estimated from the regional envelope curve of the largest floods. Based on Holocene alluvial stratigraphy and OSL dating in the study reach we also conclude that flood stages did not reach the late Holocene ( 2.2 ka) surface and therefore we estimate a non-exceedance upper bound of  2000 m3s− 1 flood magnitudes for Nahal Arava during that interval. This study indicates that in unfavorable areas the combination of hydrology, fluvial morphology and botanic evidence can increase our understanding of ungauged basins and give information crucial for hydrology planning.  相似文献   

14.
Gully erosion is an important environmental hazard in the black soil region of northeastern China. It is a primary sediment source in the region which needs appropriate soil conservation practices. Gully incision in rolling hills typical of this region was monitored using real-time kinematic GPS to assess the rates of gully development and the resultant sediment production. From 2002 to 2005, gully heads in the study area retreated between 15.4 and 33.5 m, giving an average retreat rate of 8.4 m yr− 1. Field measurements showed that total sediment production due to gully erosion during the three years ranged between 257 and 1854 m3 yr− 1, which is equivalent to 326 to 2355 t yr− 1, with gully-head retreat accounting for 0 to 21.7% (4.4% in average). The sediment delivery ratio was especially high during the summer rainy season (56% in average). Sediment production by ephemeral gullies and permanent gullies was 1.5 times greater than that from surface erosion. Gully heads retreated faster in the spring freeze–thaw period than in the summer. The stage of gully development could be identified based on short-term changes in the gully erosion rate.  相似文献   

15.
Terrestrial cosmogenic nuclide (TCN) 10Be surface exposure ages for strath terraces along the Braldu River in the Central Karakoram Mountains range from 0.8 to 11 ka. This indicates that strath terrace formation began to occur rapidly upon deglaciation of the Braldu valley at  11 ka. Fluvial incision rates for the Braldu River based on the TCN ages for strath terraces range from 2 to 29 mm/a. The fluvial incision rates for the central gorged section of the Braldu River are an order of magnitude greater than those for the upper and lower reaches. This difference is reflected in the modern stream gradient and valley morphology. The higher incision rates in the gorged central reach of the Braldu River likely reflect differential uplift above the Main Karakoram Thrust that has resulted in the presence of a knickpoint and more rapid fluvial incision. The postglacial fluvial incision rate (2–3 mm/a) for the upper and lower reaches are of the same order of magnitude as the exhumation rates estimated from previously published thermochronological data for the Baltoro granite in the upper catchment region and for the adjacent Himalayan regions.  相似文献   

16.
The “La Clapière” area (Tinée valley, Alpes Maritimes, France) is a typical large, complex, unstable rock slope affected by Deep Seated Gravitational Slope Deformations (DGSD) with tension cracks, scarps, and a 60 × 106 m3 rock slide at the slope foot that is currently active. The slope surface displacements since 10 ka were estimated from 10Be ages of slope gravitational features and from morpho-structural analyses. It appears that tensile cracks with a strike perpendicular to the main orientation of the slope were first triggered by the gravitational reactivation of pre-existing tectonic faults in the slope. A progressive shearing of the cracks then occurred until the failure of a large rock mass at the foot of the slope. By comparing apertures, variations and changes in direction between cracks of different ages, three phases of slope surface displacement were identified: 1) an initial slow slope deformation, spreading from the foot to the top, characterized by an average displacement rate of 4 mm yr− 1, from 10–5.6 ka BP; 2) an increase in the average displacement rate from 13 to 30 mm yr− 1 from the foot to the middle of the slope, until 3.6 ka BP; and 3) development of a large failure at the foot of the slope with fast displacement rates exceeding 80 mm yr− 1 for the last 50 years. The main finding of this study is that such a large fractured slope destabilization had a very slow displacement rate for thousands of years but was followed by a recent acceleration. The results obtained agree with several previous studies, indicating that in-situ monitoring of creep of a fractured rock slope may be useful for predicting the time and place of a rapid failure.  相似文献   

17.
Paleolimnological studies show that phosphorus (P) loads to the federally protected St. Croix River, a tributary of the Upper Mississippi River, have increased about threefold over the last century. Ongoing management efforts to protect and restore the river hinge on the question of whether the increased nutrient load results from point-source discharges or nonpoint runoff from agricultural intensification and urban expansion. Here we determine the historical contribution of point source phosphorus (P) loads to the St. Croix watershed from 1900–2000 A.D. Historical point source loads were estimated based on discharge volumes, demographics, industrial sources, wastewater technologies, and facility discharge records, where available. Sewering in the basin began in 1905, and since that time, there have been as many as 169 permitted point source dischargers basinwide, including municipal, industrial, and agricultural facilities. Early wastewater management typically discharged untreated sewage; technological advances had secondary treatment in place at most facilities by the 1960s–1970s and much of the municipal population was served by tertiary treatment by the 1990s. Peak nutrient discharges from point sources occurred in the 1960s–1970s. Detergent phosphorus bans instituted in the late 1970s for Minnesota and Wisconsin, greater use of land and groundwater effluent disposal, and improvements in treatment technology brought about decreases in P loads in the 1980s and 1990s. Point-source discharges were compared to historical total phosphorus loads estimated in a whole-basin phosphorus mass balance to calculate the historical contribution of point sources, anthropogenic nonpoint sources, and natural or background sources. We estimated 1990s point source loads at 48 t P yr−1, which represents about 10% of the total phosphorus load (459 t P yr−1, flow-corrected to 412 t P yr−1) to the basin. Without further controls on nutrient inputs to the St. Croix River, annual flow-corrected P loads are projected to increase to 498 t P yr−1 by the 2020s with point source phosphorus loading contributions at 65 t P yr−1 or 13% of the total load. However, if we exclude background P loads to the St. Croix (166 t P yr−1), recent nutrient loads are primarily from anthropogenic nonpoint sources. Point sources also contribute over 19% of the current and future phosphorus load that can be attributed to human activities in the watershed. Interstate and federal efforts to decrease P loading to the St. Croix River by 20% will need to target both point and nonpoint sources. This is one of eight papers dedicated to the “Recent Environmental History of the Upper Mississippi River” published in this special issue of the Journal of Paleolimnology. D.R. Engstrom served as guest editor of the special issue.  相似文献   

18.
This paper describes the activity of a small meandering stream and the development of its floodplain during the last 4600 years (calendar years BP) in the northern boreal zone of Québec. Three trenches were excavated across the floodplain's full width and permitted the interpretation of morphosedimentary units in relation to modern analogs. Chronological controls within trenches was provided by the dendrochronological and radiocarbon dating of buried tree trunks. From 4600 to 2900 cal. BP and from 1000 to 120 cal. BP, the channel migrated and constructed its floodplain at very slow rates, mostly because of low flow velocities, vegetated streambanks and the cohesive texture of marine sediments reworked by the channel. Vertical accretion rates were extremely variable on the floodplain, with high rates proximal to the modern channel and low rates over distal (also older) portions of the floodplain. Following a major channel shift (meander cut-off or avulsion) around 2900 cal. BP, channel migration appears to have been constrained to a narrow zone adjacent to the modern channel. Within this constrained zone, the migrating channel has reworked its own sediments leading to a marked unconformity between 2900–1000 cal. BP. It is thought that underlying marine sediments protrusions, and perhaps the forested banks, protected older alluvial sediments from being eroded during the last three millenniums. Our study shows that small boreal floodplains may contain, in a very small area, abundant and diversified archives of their evolution.  相似文献   

19.
A new and simple method is developed to efficiently quantify erosion and deposition rates based on stock unearthing measurements. This is applicable to spatial scales ranging from plot to hillslopes, and to time scales ranging from single hydrologic events to centennial scales. The method is applied to a plot area on vineyard hillslopes in Burgundy (Monthélie, France), with measurement of 4328 vine plants. A sediment budget established at the plot scale shows a mean soil lowering of 3.44 ± 1 cm over 20 years, involving a minimal erosion rate of 1.7 ± 0.5 mm yr− 1. Locally, erosion rates can reach up to 8.2 ± 0.5 mm yr− 1.This approach allows the sediment redistribution to be mapped and analyzed at 1-m resolution. It provides novel insights into the characterization of erosion patterns on pluri-decennial scales and into the analysis of spatial distribution of erosion processes on cultivated hillslopes.  相似文献   

20.
To determine for how long a landslide affects sediment discharge, the sediment yields of 15 check-dam basins were compared with the time series of landslide distributions in a mountain basin in the Tanzawa region, central Japan. The distribution of sediment yield was quantitatively estimated from deposition in the sediment pools of check dams. The relationship between the landslide history and sediment discharge in the Nakagawa River basin was examined for an approximately 80-year period. Two major landslide events occurred during this period: the 1923 Kanto Earthquake and the 1972 disaster caused by heavy rainfall. The resulting trend in sediment discharge of the whole basin, estimated using reservoir sedimentation in the Miho Dam at its base, was nearly constant, with high sediment discharge (2897 m3 km− 2 yr− 1) in the intervening quarter-century, despite the recovery of vegetation on landslide areas in this period. Comparisons of the landslide distributions resulting from the two disasters, the sediment yields of check-dam basins, and the sediment discharge of the whole basin indicate that recent sediment discharge contains landslide debris that was originated by the Kanto Earthquake that occurred over 80 years ago. Thus, to understand high sediment discharge, it is essential to investigate not only the current basin condition and recent events, but also the landslide history of the basin for at least the previous 100 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号