首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
David R. Gray 《Climatic change》2008,87(3-4):361-383
The relationship between outbreak characteristics of the spruce budworm and the combination of climate, forest composition, and spatial location was examined in eastern Canada by the method of constrained ordination. Approximately 54% of the spatial variability in outbreak pattern, as described by a matrix of four outbreak characteristics, was explained by the spatial pattern of the climate (a matrix of six variables), forest composition (a matrix of seven variables), and spatial location (a matrix of two variables). The relationships between outbreak variables and climate variables were highlighted, and future outbreak characteristics of the spruce budworm were projected using simulations of a global circulation model for the period 2081–2100 where CO2 concentrations reach a maximum of approximately 550 ppm. Future outbreaks are predicted to be an average of approximately 6 years longer with an average of 15% greater defoliation. The methodology is described and the potential effects of climate change on landscape-scale outbreaks of the insect are discussed.  相似文献   

3.
The forest model ForClim was used to evaluate the applicability of gap models in complex topography when the climatic input data is provided by a global database of 0.5° resolution. The analysis was based on 12 grid cells along an altitudinal gradient in the European Alps. Forest dynamics were studied both under current climate as well as under four prescribed 2 × CO2 scenarios of climatic change obtained from General Circulation Models, which allowed to assess the sensitivity of mountainous forests to climatic change.Under current climate, ForClim produces plausible patterns of species composition in space and time, although the results for single grid cells sometimes are not representative of reality due to the limited precision of the climatic input data.Under the scenarios of climatic change, three responses of the vegetation are observed, i.e., afforestation, gradual changes of the species composition, and dieback of today's forest. In some cases widely differing species compositions are obtained depending on the climate scenario used, suggesting that mountainous forests are quite sensitive to climatic change. Some of the new forests have analogs on the modern landscape, but in other cases non-analog communities are formed, pointing at the importance of the individualistic response of species to climate.The applicability of gap models on a regular grid in a complex topography is discussed. It is concluded that for their application on a continental scale, it would be desirable to replace the species in the models by plant functional types. It is suggested that simulation studies like the present one must not be interpreted as predictions of the future fate of forests, but as means to assess their sensitivity to climatic change.  相似文献   

4.
The world’s forests play an important role in regulating climate change through their capacity to sequester carbon. At the same time, they are also increasingly vulnerable to the impacts of climate change. In the western Canadian province of British Columbia, changes in temperature, precipitation, and disturbance regimes are already impacting forests. In response to these observed and anticipated changes, adapted reforestation practices are being developed and proposed as a means to help forest ecosystems adjust to changing climatic conditions. One such practice under consideration is assisted migration—planting species within or outside of the native historical range into areas that are anticipated to be climatically suitable in the future. We used a survey of British Columbia’s population at large (n?=?1923) to quantify levels of support for a range of potential reforestation options (including assisted migration) to adapt to climate change, and to explore what factors can help predict this support. Our findings reveal that the likely location of potential public controversy resides not with the potential implementation of assisted migration strategies per se, but rather with assisted migration strategies that involve movement of tree species beyond their native range.  相似文献   

5.
We estimated how the possible changes in wind climate and state of the forest due to climate change may affect the probability of exceeding critical wind speeds expected to cause wind damage within a forest management unit located in Southern Sweden. The topography of the management unit was relatively gentle and the forests were dominated by Norway spruce (Picea abies (L.) Karst.). We incorporated a model relating the site index (SI) to the site productivity into the forest projection model FTM. Using estimated changes in the net primary production (NPP) due to climate change and assuming a relative change in NPP equal to a relative change in the site productivity, we simulated possible future states of the forest under gradual adjustment of SI in response to climate change. We estimated changes in NPP by combining the boreal-adapted BIOMASS model with four regional climate change scenarios calculated using the RCAO model for the period 2071–2100 and two control period scenarios for the period 1961–1990. The modified WINDA model was used to calculate the probability of wind damage for individual forest stands in simulated future states of the forest. The climate change scenarios used represent non-extreme projections on a 100-year time scale in terms of global mean warming. A 15–40% increase in NPP was estimated to result from climate change until the period 2071–2100. Increasing sensitivity of the forest to wind was indicated when the management rules of today were applied. A greater proportion of the calculated change in probability of wind damage was due to changes in wind climate than to changes in the sensitivity of the forest to wind. While regional climate scenarios based on the HadAM3H general circulation model (GCM) indicated no change (SRES A2 emission scenario) or a slightly reduced (SRES B2 emission scenario) probability of wind damage, scenarios based on the ECHAM4/OPYC3 GCM indicated increased probability of wind damage. The assessment should, however, be reviewed as the simulation of forest growth under climate change as well as climate change scenarios are refined.  相似文献   

6.
To interpret past vegetation and climate changes from pollen data, we need to reveal the degree of similarity between modern analogues and fossil pollen spectra, which would help us predict the future climate and vegetation. Ninety surface pollen samples across six vegetation zones along an altitudinal gradient from 460 to 3510 m and 44 fossil samples at Caotan Lake were collected in the central Tianshan Mountains, northern Xinjiang, China. Discriminant analyses results, fossil pollen and phytolith assemblages were then used to reconstruct palaeovegetation and palaeoclimate in the area. The 90 surface samples were divided into six pollen zones (alpine cushion, alpine and subalpine meadow, montane Tianshan spruce forest, forest-steppe ecotone, Artemisia desert, typical desert), corresponding to the major vegetation types in the area. These zones follow a climatic gradient of increasing precipitation with increasing elevation. Paleovegetation reconstructed from 44 fossil pollen assemblages through discriminant analysis reflects the regional vegetation shifted from typical desert to Artemisia desert since 4640 cal. year BP in the Caotan Lake wetland. The fossil pollen and phytolith record also reveal the arid climate has not fundamentally changed in the period. But a dry-wet-dry local climate oscillation since 2700 cal. year BP has a fundamental influence on local wetland vegetation dynamics and peat accumulation of the Caotan wetland. Modern wetland landscape and surface pollen assemblages from the Ebinur Lake Wetland Nature Reserve provide further evidence for ferns and Betula growing in the Caotan Lake wetland during the historical period.  相似文献   

7.
The extensive forests of Eastern Eurasia cover an area of ca. 6 million km2. The FAREAST model, a forest gap model that simulates the stand composition and dynamics of Eastern Eurasian forests under the current climate, was used to simulate the responses of the Eastern Eurasia Forests to the climate change. Two different scenarios of possible future climatic change were obtained from the IPCC (2001) report (CMIP2 and IS92a-GS) and were used as input to the FAREAST model to determine the compositional and structural sensitivity to climate changes for several locations and along montane elevation gradients. The simulation results suggest that, under the influence of the conditions in the two climate-change scenarios, the underlying forest dynamics should be quite different. Further, Eastern Eurasian forests maintain currents forest structure and biomass only within a small range of climate change. Broad-leaved deciduous trees of such genera as Fraxinus, Quercus and Tilia increase their ranges over Eastern Eurasia under the climate-change scenarios. Conifers, such as Larix and Picea, decrease sharply under climate change and the area of their distributions are reduced. The overall biomass of Pinus is not decreased over the region. While the Pinus distribution range shifts, the area associated with the range of the taxa is not changed.  相似文献   

8.
The aim of this study was to estimate the potential impacts of climate change on the spatial patterns of primary production and net carbon sequestration in relation to water availability in Norway spruce (Picea abies) dominated forests throughout Finland (N 60°–N 70°). The Finnish climatic scenarios (FINADAPT) based on the A2 emission scenario were used. According to the results, the changing climate increases the ratio of evapotranspiration to precipitation in southern Finland, while it slightly decreases the ratio in northern Finland, with regionally lower and higher soil water content in the south and north respectively. During the early simulation period of 2000–2030, the primary production and net carbon sequestration are higher under the changing climate in southern Finland, due to a moderate increase in temperature and atmospheric CO2. However, further elevated temperature and soil water stress reduces the primary production and net carbon sequestration from the middle period of 2030–2060 to the final period of 2060–2099, especially in the southernmost region. The opposite occurs in northern Finland, where the changing climate increases the primary production and net carbon sequestration over the 100-year simulation period due to higher water availability. The net carbon sequestration is probably further reduced by the stimulated ecosystem respiration (under climate warming) in southern Finland. The higher carbon loss of the ecosystem respiration probably also offset the increased primary production, resulting in the net carbon sequestration being less sensitive to the changing climate in northern Finland. Our findings suggest that future forest management should carefully consider the region-specific conditions of sites and adaptive practices to climate change for maintained or enhanced forest production and carbon sequestration.  相似文献   

9.
Recent temperature observations suggest a general warming trend that may be causing the range of tree species to shift to higher latitudes and altitudes. Since biotic interactions such as herbivory can change tree species composition, it is important to understand their contribution to vegetation changes triggered by climate change. To investigate the response of forests to climate change and herbivory by wild ungulates, we used the forest gap model ForClim v2.9.6 and simulated forest development in three climatically different valleys in the Swiss Alps. We used altitudinal transects on contrasting slopes covering a wide range of forest types from the cold (upper) to the dry (lower) treeline. This allowed us to investigate (1) altitudinal range shifts in response to climate change, (2) the consequences for tree species composition, and (3) the combined effect of climate change and ungulate herbivory. We found that ungulate herbivory changed species composition and that both basal area and stem numbers decreased with increasing herbivory intensity. Tree species responded differently to the change in climate, and their ranges did not change concurrently, thus causing a succession to new stand types. While climate change partially compensated for the reductions in basal area caused by ungulate herbivory, the combined effect of these two agents on the mix of the dominant species and forest type was non-compensatory, as browsing selectively excluded species from establishing or reaching dominance and altered competition patterns, particularly for light. We conclude that there is an urgent need for adaptive forest management strategies that address the joint effects of climate change and ungulate herbivory.  相似文献   

10.
Our ability to accurately predict the response of forests in eastern North America to future climatic change is limited by our knowledge of how different tree species respond to climate. When the climatic response of eastern hemlock is modeled across its range, we find that the assumed climatic response used in simulation models is not sufficient to explain how this species is presently responding to climate. This is also the case for red spruce growing in the northern Appalachian Mountains. Consequently, simulations of future change to forests that include eastern hemlock and red spruce may need to be improved. We suspect that similar findings will be made when other tree species are studied in detail using tree-ring analysis. If so, our present understanding of how individual tree species respond to climate may not be adequate for accurately predicting future changes to these forests. Tree-ring analysis can increase our understanding of how climate affects tree growth in eastern North America and, hence, provide the knowledge necessary to produce more accurate predictions.  相似文献   

11.
An 11-year remotely sensed surface albedo dataset coupled with historical meteorological and stand-level forest management data for a variety of stands in Norway’s most productive logging region is used to develop regression models describing temporal changes in forest albedo following clear-cut harvest disturbance events. Datasets are grouped by dominant tree species, and two alternate multiple regression models are developed and tested following a potential-modifier approach. This result in models with statistically significant parameters (p?<?0.05) that explain a large proportion of the observed variation, requiring a single canopy modifier predictor coupled with either monthly or annual mean air temperature as a predictor of a stand’s potential albedo. Models based on annual mean temperature predict annual albedo with errors (RMSE) in the range of 0.025–0.027, while models based on monthly mean temperature predict monthly albedo with errors ranging between of 0.057–0.065 depending on the dominant tree species. While both models have the potential to be transferable to other boreal regions with similar forest management regimes, further validation efforts are required. As active management of boreal forests is increasingly seen as a means to mitigate climate change, the presented models can be used with routine forest inventory and meteorological data to predict albedo evolution in managed forests throughout the region, which, together with carbon cycle modeling, can lead to more holistic climate impact assessments of alternative forest harvest scenarios and forest product systems.  相似文献   

12.
Forest gap models have been used widely in the study of forest dynamics, including predicting long-term succession patterns and assessing the potential impacts of climate change on forest structure and composition. However, little effort is devoted to predict forest dynamics in the high elevation areas, although they have the sensitive response to global climate change. In the present study, based on a modified height-diameter function, we developed a new version (FAREAST-GFSM) of the forest patch model, FAREAST for simulating the changes of subalpine forests. The observed data from the Gongga Mt. Alpine Station were also used to test model precision. With the improved performance of FAREAST-GFSM, we explored the impact of three warming scenarios on subalpine forest on the eastern Tibetan plateau within a 100-year period. The study result indicates that the effects of climate change were evident on subalpine forests in the high elevation areas. The response of different species to the warming climate might eventually transform the subalpine Abies fabric forest into Betula utilis forest similar to that which is now widely distributed in the eastern Tibetan Plateau mountainous areas with the relatively lower elevation. Subalpine forests could move to higher and colder areas, which are currently tundra.  相似文献   

13.
The probability of wind damage in forestry under a changed wind climate   总被引:1,自引:0,他引:1  
We (1) estimated how the possible changes in wind climate due to climatic change may affect the probability of exceeding critical wind speeds (CWS) expected to cause significant wind damage within a forest management unit located in southern Sweden, (2) analysed how the probability of exceeding an approximate CWS as observed in the management unit would change in different regions in Sweden if expecting a similar kind of forested area to occur in different geographical locations. The topography of the management unit was relatively gentle and the forests were dominated by Norway spruce (Picea abies (L.) Karst.). Seven regions across Sweden were selected for comparison of possible future probability of damaging wind speed. The model-system WINDA was modified and used for calculations of the probability of wind damage together with regionally downscaled climate change scenario (CCS) data. In total, two climate scenarios downscaled using the RCAO model for the control period 1961–1990 and four for the period 2071–2100 were used. The CCSs represent fairly central projections on a 100-year time scale in terms of global mean warming. Although there is ambiguity between different CCSs, the results indicated that the present pattern of more windy conditions in southern than in northern Sweden will remain. For most sites the probability of exceeding the CWS from westerly to south-westerly directions was indicated to remain comparatively high and the probability of damaging wind from south-westerly to south-easterly directions was indicated to increase in many places. For southernmost Sweden increasing probability of exceeding the CWS from the north-westerly to south-easterly wind directions were indicated for all but one CCS. The results were discussed with respect to spatial planning in forestry under a changing wind climate.  相似文献   

14.
The sensitivity of some high-latitude boreal forests to climatic parameters   总被引:1,自引:0,他引:1  
A gap model of environmental processes and vegetation patterns in boreal forests was used to examine the sensitivity of permafrost and permafrostfree forests in interior Alaska to air temperature and precipitation changes. These analyses indicated that in the uplands of interior Alaska, the effect of climatic warming on the ecology of boreal forests may not be so much a direct response to increased air temperature as it may be a response to the increased potential evapotranspiration demands that will accompany climatic warmings. On poorlydrained north slopes with permafrost, the drier forest floor reduced the flux of heat into the soil profile. This was offset by increased fire severity, which by removing greater amounts of the forest floor increased the depth of soil thawing and converted the cold black spruce forests to warmer mixed hardwood-spruce forests. On well-drained south slopes, the increased potential water loss reduced available soil moisture, converting these mesic sites to dry aspen forests, or if too dry to steppe-like vegetation. Increases in precipitation offset the effects of increased potential evapotranspiration demands and mitigated these forest changes.  相似文献   

15.
Evidence is presented of how Pinus halepensis Miller from dry habitats at <300 m elevation of four Greek island regions have responded to climatic conditions of the last two centuries. We compared historical periods of low growth due to low precipitation with the recent period of significant precipitation decline. In all cases trees?? growth patterns across the twentieth century were consistent with trends in annual (rather than seasonal) precipitation, with lowest values in both precipitation and radial growth during the last two decades of the twentieth century, the worst conditions for tree growth in more than 200 years. The data are compared with trends across different vegetation belts of the northern Mediterranean basin. Drought related tree mortality in Greece in 2000 and 2007 coincided with the most severe fire outbreaks on record. IPCC WG I (2007) climate scenarios for the Mediterranean suggest a further decline in precipitation, particularly in the eastern regions. Should this occur, growth reduction in trees, tree mortality and damage from forest fires are likely to become more severe.  相似文献   

16.
Many forest pest species strongly depend on temperature in their population dynamics, so that rising temperatures worldwide as a consequence of climatic change are leading to increased frequencies and intensities of insect-pest outbreaks. In the Mediterranean area, the climatic conditions are strongly linked to the effects of the North Atlantic Oscillation (NAO). The aim of this work is to analyze the dynamics of the pine processionary moth (Thaumetopoea pityocampa), a severe pest of Pinus species in the Circunmediterranean, throughout a region of southern Spain, in relation to NAO indices. We related the percentage of forest plots with high defoliation by pine processionary moth each year with NAO values for the present and the three previous winters, using generalized linear models with a binomial error distribution. The time series is 16-year long, and we performed analyses for the whole database and for the five main pine species separately. We found a consistent relationship between the response variable and the NAO index. The relationship is stronger with pine species living at medium-high altitudes, such as Aleppo (P. halepensis), black (P. nigra), and Scots (Pinus sylvestris) pine, which show the higher defoliation intensities up to 3?years after a negative NAO phase. The results highlight, for the first time, the usefulness of using global drivers in order to understand the dynamics of pest outbreaks at a regional scale, and they open the window to the development of NAO-based predictive models as an early-warning signal of severe pest outbreaks.  相似文献   

17.
Liu  Tingxiang  Zhang  Shuwen  Yu  Lingxue  Bu  Kun  Yang  Jiuchun  Chang  Liping 《Theoretical and Applied Climatology》2017,130(3-4):971-978
Currently, US forests constitute a large carbon sink, comprising about 9 % of the global terrestrial carbon sink. Wildfire is the most significant disturbance influencing carbon dynamics in US forests. Our objective is to estimate impacts of climate change, CO2 concentration, and nitrogen deposition on the future net biome productivity (NBP) of US forests until the end of twenty-first century under a range of disturbance conditions. We designate three forest disturbance scenarios under one future climate scenario to evaluate factor impacts for the future period (2011–2100): (1) no wildfires occur but forests continue to age (Saging), (2) no wildfires occur and forest ages are fixed in 2010 (Sfixed_nodis), and (3) wildfires occur according to a historical pattern, consequently changing forest age (Sdis_age_change). Results indicate that US forests remain a large carbon sink in the late twenty-first century under the Sfixed_nodis scenario; however, they become a carbon source under the Saging and Sdis_age_change scenarios. During the period of 2011 to 2100, climate is projected to have a small direct effect on NBP, while atmospheric CO2 concentration and nitrogen deposition have large positive effects on NBP regardless of the future climate and disturbance scenarios. Meanwhile, responses to past disturbances under the Sfixed_nodis scenario increase NBP regardless of the future climate scenarios. Although disturbance effects on NBP under the Saging and Sdis_age_change scenarios decrease with time, both scenarios experience an increase in NBP prior to the 2050s and then a decrease in NBP until the end of the twenty-first century. This study indicates that there is potential to increase or at least maintain the carbon sink of conterminous US forests at the current level if future wildfires are reduced and age structures are maintained at a productive mix. The effects of CO2 on the future carbon sink may overwhelm effects of other factors at the end of the twenty-first century. Although our model in conjunction with multiple disturbance scenarios may not reflect the true conditions of future forests, it provides a range of potential conditions as well as a useful guide to both current and future forest carbon management.  相似文献   

18.
The response of terrestrial ecosystems to climate warming has important implications to potential feedbacks to climate. The interactions between topography, climate, and disturbance could alter recruitment patterns to reduce or offset current predicted positive feedbacks to warming at high latitudes. In northern Alaska the Brooks Range poses a complex environmental and ecological barrier to species migration. We use a spatially explicit model (ALFRESCO) to simulate the transient response of subarctic vegetation to climatic warming in the Kobuk/Noatak River Valley (200 × 400 km) in northwest Alaska. The model simulations showed that a significantly warmer (+6 °C) summer climate would cause expansion of forest through the Brooks Range onto the currently treeless North Slope only after a period of 3000–4000 yr. Substantial forest establishment on the North Slope didnot occur until temperatures warmed 9 °C, and only following a 2000 yr time lag. The long time lags between change in climate and change in vegetation indicate current global change predictions greatly over-estimate the response of vegetation to a warming climate in Alaska. In all the simulations warming caused a steady increase in the proportion of early successional deciduous forest. This would reduce the magnitude of the predicted decrease in regional albedo and the positive feedback to climate warming. Simulation of spruce forest refugia on the North Slope showed forest could survive with only a 4 °C warming and would greatly reduce the time lag of forest expansion under warmer climates. Planting of spruce on the North Slope by humans could increase the likelihood of large-scale colonization of currently treeless tundra. Together, the long time lag and deciduous forest dominance would delay the predicted positive regional feedback of vegetation change to climatic warming. These simulated changes indicate the Brooks Range would significantly constrain regional forest expansion under a warming climate, with similar implications for other regions possessing major east-west oriented mountain ranges.  相似文献   

19.
Scaling Issues in Forest Succession Modelling   总被引:5,自引:0,他引:5  
This paper reviews scaling issues in forest succession modelling, focusing on forest gap models. Two modes of scaling are distinguished: (1) implicit scaling, i.e. taking scale-dependent features into account while developing model equations, and (2) explicit scaling, i.e. using procedures that typically involve numerical simulation to scale up the response of a local model in space and/or time. Special attention is paid to spatial upscaling methods, and downscaling is covered with respect to deriving scenarios of climatic change to drive gap models in impact assessments. When examining the equations used to represent ecological processes in forest gap models, it becomes evident that implicit scaling is relevant, but has not always been fully taken into consideration. A categorization from the literature is used to distinguish four methods for explicit upscaling of ecological models in space: (1) Lumping, (2) Direct extrapolation, (3) Extrapolation by expected value, and (4) Explicit integration. Examples from gap model studies are used to elaborate the potential and limitations of these methods, showing that upscaling to areas as large as 3000 km2 is possible, given that there are no significant disturbances such as fires or insect outbreaks at the landscape scale. Regarding temporal upscaling, we find that it is important to consider migrational lags, i.e. limited availability of propagules, if one wants to assess the transient behaviour of forests in a changing climate, specifically with respect to carbon storage and the associated feedbacks to the atmospheric CO2 content. Regarding downscaling, the ecological effects of different climate scenarios for the year 2100 were compared at a range of sites in central Europe. The derivation of the scenarios is based on (1) imposing GCM grid-cell average changes of temperature and precipitation on the local weather records; (2) a qualitative downscaling technique applied by the IPCC for central and southern Europe; and (3) statistical downscaling relating large-scale circulation patterns to local weather records. Widely different forest compositions may be obtained depending on the local climate scenario, suggesting that the downscaling issue is quite important for assessments of the ecological impacts of climatic change on forests.  相似文献   

20.
Climatic change is likely to affect Pacific Northwest (PNW) forests in several important ways. In this paper, we address the role of climate in four forest ecosystem processes and project the effects of future climatic change on these processes across Washington State. First, we relate Douglas-fir growth to climatic limitation and suggest that where Douglas-fir is currently water-limited, growth is likely to decline due to increased summer water deficit. Second, we use existing analyses of climatic controls on tree species biogeography to demonstrate that by the mid twenty-first century, climate will be less suitable for key species in some areas of Washington. Third, we examine the relationships between climate and the area burned by fire and project climatically driven regional and sub-regional increases in area burned. Fourth, we suggest that climatic change influences mountain pine beetle (MPB) outbreaks by increasing host-tree vulnerability and by shifting the region of climate suitability upward in elevation. The increased rates of disturbance by fire and mountain pine beetle are likely to be more significant agents of changes in forests in the twenty-first century than species turnover or declines in productivity, suggesting that understanding future disturbance regimes is critical for successful adaptation to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号