首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, size‐exclusion chromatography (SEC) was used to determine the metal concentration in different size fractions of a bog lake water. Two methods were applied: (a) preparative SEC with off‐line metal concentration analysis and (b) direct coupling of an analytical SEC system on‐line with an inductively‐coupled plasma mass spectrometer (ICP‐MS). In the preparative SEC measurements, maximum concentrations were found for different metal ions in different size fractions of the natural organic matter (NOM). Normalization of metal concentrations to dissolved organic carbon concentration (DOC) yielded two maxima in the high and in the very low molecular‐weight fractions. Whereas good recoveries were found for Al, Fe, and Ni, only 40% were obtained for Pb. This indicates that Pb formed labile complexes with NOM, and hence could strongly interact with the column material. In the experiments with the analytical SEC‐ICP‐MS system, the same trends were observed, but with even lower recoveries than in the preparative system. Sample preconcentration and storage were also investigated with respect to decrease in metal concentration. During the ultrafiltration preconcentration step Al and Fe were removed only to a small extent, whereas about half of the initial Pb was lost. This indicates that Al and Fe were mainly bound to high molecular‐weight fractions of NOM. In contrast to that, Al and in particular Fe were removed from solution more than proportionally with respect to DOC because of aggregation of the NOM during storage, whereas Pb and Ni were concentrated relative to the DOC.  相似文献   

2.
UV-induced transformation of dissolved organic matter (DOC) is often accompanied by reduction of molecular weight and aromaticity and an increase of low-molecular weight (LMW) matter that can be utilized as a substrate by heterotrophic bacteria. Moreover, the generation of reactive transients and mineralization of DOC occurs. For a better understanding of the modification that starts after irradiation and to distinguish between possible chemical and biological modifications, we selected different natural organic matter (NOM) from Norway and Germany. The aqueous solutions were treated by UV irradiation and divided into two aliquot samples. NaN3 anti-bacterial treatment was applied to one sample, and high-pressure size-exclusion chromatography (HPSEC) analysis was used for both. In all samples, we found typical modifications of NOM after UV irradiation. Incubation (>7?days) of UV-irradiated NOM samples resulted in lower levels of LMW matter and increased aromaticity. Parallel to these changes of carbon fractions, an increase in bacterial cell numbers was observed. Addition of NaN3 to NOM, however, inhibited the reduction of LMW matter, indicating that microbial activity accounted for the observed changes in NOM. Analysis of the bacterial community composition by denaturing gradient gel electrophoresis (DGGE) of the amplified 16S rRNA genes revealed that bacterial communities of non-irradiated and UV-irradiated NOM were different and that UV selected for specific members of ??-proteobacteria, ??-proteobacteria, and Bacteriodetes. Our results imply that after UV-irradiation of NOM, specific bacterial members are well adapted to low pH, high LMW DOC concentrations, and oxidative stress, and therefore thrive well on UV-irradiated humic matter.  相似文献   

3.
4.
The adsorption characteristics of sediment particles from a prealpine Swiss lake were compared with those of γ-aluminum oxide. Under lake water conditions, i.e. with particle concentration of 2–16 mg/1 and DOC concentrations of 1–4 mg/1 at pH=8, the adsorption of copper, zinc and orthophosphate is reduced significantly by the presence of natural organic matter (NOM). It is postulated that the binding sites of the natural mineral surfaces are occupied almost completely by NOM under natural conditions. A simple ligand exchange model can explain the observed phenomena.  相似文献   

5.
6.
Managed aquifer recharge (MAR) provides means to remove natural organic matter (NOM) from surface waters. Recent studies have explored the degree of NOM removal in groundwater. In this study, we further elaborate the NOM removal at a lakeside natural bank infiltration site that functions as a surrogate for MAR. Our objective was to quantify the carbon budget in the aquifer based on concentration measurements of dissolved (in)organic carbon, and the molecular changes in NOM using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). According to the carbon budget, only 25% of the dissolved carbon entering the aquifer was organic, and it predominantly originated from lake water. Of the inorganic majority, on average 40% was produced in the vadose zone above the groundwater table, 31% in the lake bank, 22% in the aquifer as a result of degrading organic matter of lake water, and 7% in the lake. Seasonal concentration variations suggested that the lake bank was the main carbon source in the summer, increasing the carbon concentration of infiltrating lake water, that is, 3.0 mg/L to 7.9 mg/L. FT-ICR MS results showed 4960 to 5330 individual compounds in lake and groundwater. NOM removal in the aquifer was selective: the relative abundance of oxygen-containing species decreased from 75 to 31%, while the relative abundance of sulfur-containing species increased from 15 to 57%. The average molecular weights of both species remained unchanged. The study highlighted the role of lake bank processes and sulfur-containing species in groundwater quality.  相似文献   

7.
Twentyfive years of research on the effects of acid rain on rivers and lakes has, to a very small extent, documented changes in the nature and properties of natural organic matter (NOM). In Western Norway, a "whole-watershed-artificial-acidification-experiment" took place in the period 1988–1996. The goals of this long-term experiment were to study the role of NOM in acidification of surface water and the effects of acid precipitation on the quality and properties of NOM. In the HUMEX project (Humic Lake Acidification Experiment) one half of a lake and the corresponding catchment was artificially acidified with H2SO4 and NH4NO3 over a period of 5 years. The other half of the lake and catchment served as a control. In addition to monitoring of the general chemical composition of the water from the two lake halves, a number of other chemical and biological characteristics were studied. Here, we report the results related to changes in the nature and chemical properties of NOM. During the first few years of acidification, a significantly lower concentration of NOM was recorded in the acidified half of the catchment, compared with the control. However, statistical analyses of all data (covering a 2-years pre-treatment period and 5 years of treatment) related to the concentration of NOM (TOC, colour, and UV absorbance) did not suggest any significant effect on the quantity of NOM. This apparent discrepancy between the initial decrease in the concentration of NOM and no effect when the whole 5-years period is considered, may be due to the results of two different simultaneous processes. The results suggest that there first was a reduction of TOC and colour, as a consequence of the acidification, followed by an increase, perhaps owing to increased fertilisation (nitrogen) and in addition to a general temperature increase during the period. In addition, short-term studies of the aquatic surface microlayers, lipophilicity of the NOM, content of organic sulfur, and molecular size indicate differences in the quality of the NOM between the two lake halves, which could affect light absorption.  相似文献   

8.
Fluorescence and UV‐VIS techniques were employed for the investigation of natural organic matter (NOM) of a tropical lake. The relationships of absorbance/dissolved organic carbon (A/DOC), fluorescence intensity/dissolved organic carbon (FI/DOC), fluorescence ratio (FR), and peak wavelength with the highest intensity (PW) were used to distinguish the pedogenic or aquagenic origin of NOM. The values of FR, PW and A285/DOC of high waters (HW) or flooded period samples and of low waters (LW) period samples of the dry season, except for September 2002, confirm the predominance of pedogenic material. The spectra of water were similar to the standard fulvic acid (FA), and the spectra of FA from the lake were similar to the nearby soils, indicative of pedogenic predominance. The results confirm that the dissolved NOM of Patos Lagoon – MS (Brazil), in all sampling periods, predominantly consisted of humic substances (FA) of pedogenic origin.  相似文献   

9.
In their article, “New light on a dark subject: On the use of fluorescence data to deduce redox states of natural organic matter,” Macalady and Walton-Day (2009) subjected natural organic matter (NOM) samples to oxidation, reduction, and photochemical transformation. Fluorescence spectra were obtained on samples, which were diluted “to bring maximum uvvisible absorbance values below 1.0.” The spectra were fit to the Cory and McKnight (2005) parallel factor analysis (PARAFAC) model, and consistent variation in the redox state of quinone-like moieties was not detected. Based on these results they concluded that fitting fluorescence spectra to the Cory and McKnight (2005) PARAFAC model to obtain information about the redox state of quinone-like moieties in NOM is problematic. Recognizing that collection and correction of fluorescence spectra requires consideration of many factors, we investigated the potential for inner-filter effects to obscure the ability of fluorescence spectroscopy to quantify the redox state of quinone-like moieties. We collected fluorescence spectra on Pony Lake and Suwannee River fulvic acid standards that were diluted to cover a range of absorbance wavelengths, and fit these spectra to the Cory and McKnight (2005) PARAFAC model. Our results suggest that, in order for the commonly used inner-filter correction to effectively remove inner-filter effects, samples should be diluted such that the absorbance at 254 nm is less than 0.3 prior to the collection of fluorescence spectra. This finding indicates that inner-filter effects may have obscured changes in the redox signature of fluorescence spectra of the highly absorbing samples studied by Macalady and Walton-Day (2009).  相似文献   

10.
Abiotic degradation of chlorinated solvents by reactive iron minerals such as iron sulfides, magnetite, green rust, and other Fe(II)‐containing minerals has been observed in both laboratory and field studies. These reactive iron minerals form under iron‐ and sulfate‐reducing conditions which are commonly found in permeable reactive barriers (PRBs), enhanced reductive dechlorination (ERD) treatment locations, landfills, and aquifers that are chemically reducing. The objective of this review is to synthesize current understanding of abiotic degradation of chlorinated solvents by reactive iron minerals, with special focus on how abiotic processes relate to groundwater remediation. Degradation of chlorinated solvents by reactive minerals can proceed through reductive elimination, hydrogenolysis, dehydrohalogenation, and hydrolysis reactions. Degradation products of abiotic reactions depend on degradation pathways and parent compounds. Some degradation products (e.g., acetylene) have the potential to serve as a signature product for demonstrating abiotic reactions. Laboratory and field studies show that various minerals have a range of reactivity toward chlorinated solvents. A general trend of mineral reactivity for degradation of chlorinated solvents can be approximated as follows: disordered FeS > FeS > Fe(0) > FeS2 > sorbed Fe2+ > green rust = magnetite > biotite = vermiculite. Reaction kinetics are also influenced by factors such as pH, natural organic matter (NOM), coexisting metal ions, and sulfide concentration in the system. In practice, abiotic reactions can be engineered to stimulate reactive mineral formation for groundwater remediation. Under appropriate site geochemical conditions, abiotic reactions can occur naturally, and can be incorporated into remedial strategies such as monitored natural attenuation.  相似文献   

11.
The nature of the interaction between iron oxyhydroxide compounds and natural organic matter (NOM) may take various forms and is still a matter of debate. It is an important field to understand, especially for water treatment applications and for the knowledge of iron transport in the environment. The nature of association reached between iron oligomeric species and NOM is here investigated using M?ssbauer spectroscopy and electron energy-loss spectroscopy (EELS) at the Fe-L3 edge. Raw water NOM taken from Moselle River (France), natural humic substances extracted from the riverine suspended matter, and a synthesized humic-like substance, are coagulated with iron nitrate according to a jar-test procedure. The results from M?ssbauer spectroscopy indicate that Fe is present in an octahedral coordination environment, which is consistent with prior X-ray absorption spectroscopy reported in the literature. The areas beneath the peaks (Fe L3 edge) and the peak shapes of EELS spectra differ according to the origin of the organic matter, suggesting that various types of Fe populations can be distinguished using the EELS technique. Combining the selectivity of both M?ssbauer spectroscopy for identifying trace, poorly crystalline Fe solids, oxidation state and of EELS for being able to characterize the population of Fe based on L-edge spectra, appears promising for characterizing Fe in systems containing NOM.  相似文献   

12.
The reduction in light emission of the marine bacterium Vibrio fischeri used in the standard Microtox® bioassay was measured for the metals copper and mercury. The concentration at which the light emission was reduced by 50% (EC50) was determined to be (3.43 ± 0.83) μmol/L for Cu2+ and (0.66 ± 0.01) μmol/L for Hg2+. The reduction of the toxicity of these metals by humic and fulvic acids were studied using IHSS Standard and Reference Materials. Copper toxicity was reduced 17...20% by the soil and peat fulvic acids and 9...20% by the aquatic fulvic acids. While there appeared to be little difference in the reduction of Cu toxicity by fulvic acids from soils, peats, or aquatic systems, Hg toxicity was reduced 3.6...7.3% by the soils and peats, while aquatic fulvic acids reduced Hg toxicity 14...16%. Soil fulvic acids appear to have significantly less capacity to reduce Hg toxicity than Cu toxicity. Humic acids had much higher reductions of Cu toxicity (44...124%) compared to the fulvic acids, with little difference between aquatic and soil or peat humic acids, 44...124% and 67...100%, respectively. However, humic and fulvic acids, regardless of origin, had approximately the same effect on Hg toxicity with 3.5...16% reduction by fulvic acids and 8...20% reduction by humic acids. Unlike the fulvic acids, no clear trend was observed relative to origin of the humic acids. There was no correlation between percent reduction of Cu or Hg toxicity by the organic compounds and copper binding capacity (CuBC), C/N ratio, or carboxyl content of the materials. Examination of natural organic matter (NOM) isolated by reverse osmosis techniques from three water sources had reductions of both Cu and Hg toxicity that were most similar to the Suwannee River and Nordic fulvic acids.  相似文献   

13.
An investigation of a sea water reverse osmosis desalination facility located in western Saudi Arabia has shown that aquifer treatment of the raw sea water provides a high degree of removal of natural organic matter (NOM) that causes membrane biofouling. The aquifer is a carbonate system that has a good hydraulic connection to the sea and 14 wells are used to induce sea water movement 400 to 450 m from the sea to the wells. During aquifer transport virtually all of the algae, over 90% of the bacteria, over 90% of the biopolymer fraction of NOM, and high percentages of the humic substance, building blocks, and some of the low molecular weight fractions of NOM are removed. Between 44 and over 90% of the transparent exopolymer particles (TEP) are removed with a corresponding significant reduction in concentration of the colloidal fraction of TEP. The removal rate for TEP appears to be greater in carbonate aquifers compared to siliciclastic systems. Although the production wells range in age from 4 months to 14 years, no significant difference in the degree of water treatment provided by the aquifer was found.  相似文献   

14.
The adsorption performance of β‐ionone on four types of granular activated carbon (GAC) in water was investigated through batch experiments. The effect of initial β‐ionone concentrations and natural organic matter (NOM) adsorbed on GAC, adsorption kinetic and isothermal models were also studied. The results showed that four types of GAC all had good adsorption performance for β‐ionone, the equilibrium adsorption amount of the GAC employed was in the order of YK > GK > MZ‐A > MZ‐B. The adsorption amount increased with increasing initial concentrations. The presence of NOM could reduce adsorption of β‐ionone to a certain extent, and small molecular weight (MW) fractions (particularly <1000 Da) exhibited a remarkably competitive effect on the adsorption of β‐ionone. The experimental data showed good correlation with pseudo‐first‐order model. Furthermore, adsorption of β‐ionone on GAC fitted Freundlich, Langmuir, and Tempkin isotherms in the range of experimental concentrations, but followed Freundlich isothermal model most appropriate. The thermodynamic parameters were calculated by the results of the experiment, which showed adsorption of β‐ionone on GAC as being endothermic and spontaneous.  相似文献   

15.
This communication describes the use of differential absorbance spectroscopy to explore the intermediates formed during halogenation of natural organic matter (NOM). The differential spectra of chlorinated NOM comprise two contributions. The primary component is negative and has a peak near 270 nm. The shape of this band is independent of chlorine dose, and its intensity increases monotonically with Cl2 dose. The second component is positive, with a well‐defined peak near 280 nm and another, broader band in the 340...380 nm range. The second component is noticeable at low chlorine concentrations but disappears with increasing Cl2 dose. We attribute this component to aromatic chlorinated intermediates formed prior to the release of identifiable smaller species such as haloacetic acids. We believe that this component of the differential spectra can be used to probe the identity, formation and breakdown of the halogenated intermediates.  相似文献   

16.
Results of chemico-biological experiments in a natural water body with the use of model systems with Cu (II) introduced in them at different proportions of its chemical forms (natural and simulated) in the solution. The model forms used in the experiments were Cu complexes with benzyl- and hexadecylmalonic acids, simulating low-molecular dissolved organic substances. The experimental conditions were chosen based on a preliminary calculation using WATEQ–4f program. The complexes of Cu with hexadecylmalonic acid are found to be absorbed by suspensions and removed into bottom sediment more actively than other Cu forms. The toxicity of introduced Cu for the phyto- and zooplanktonic communities is found to depend on the concentration of Cu2+ aqua-ions in the solution, in the presence of which the higher concentrations of complexes with malonic acids do not exert their toxic effect.  相似文献   

17.
18.
19.
20.
The fluorescence decay of aquatic natural organic matter (NOM) samples was investigated using the time-correlated single photon counting technique (TCSPC). Two different approaches for the data analysis are presented: the discrete component approach (DCA) and the exponential series method (ESM). The parameter set obtained in the DCA is discussed in terms of characterization for NOM of different origins. However, the obtained parameter set can only be interpreted as operationally defined. Using the ESM for a fluorescence decay time distribution analysis no a priori assumption about the number of fluorescing components was introduced into the data analysis. The interpretation of fluorescence decay time data for samples before and after ozonation is in good agreement with results of other analytical methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号