首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 193 毫秒
1.
《International Geology Review》2012,54(14):1861-1876
Currently mechanisms for the onset of the widespread aeolian dust accumulation in the Chinese Loess Plateau since 8–7 Ma remain elusive. In this study, we compile 11 records of climate (14–7 Ma) and tectonic activity of the Tibetan Plateau and its adjacent areas (15–6 Ma). The results suggest that strong tectonic activity in the northeastern Tibetan Plateau has produced massive debris and dust, which was deposited in the piedmont basins and reworked by weathering and fluviolacustrine erosion. At the same time, global cooling and uplift of the Tibetan Plateau over the period of 14–7 Ma intensified the East Asian winter monsoon and westerly winds (westerlies) while weakening the Asian summer monsoon, which led to the spread of dry land vegetation and aridification in interior China. Sediments in the piedmont basins were then exposed in the aridity and transported by the westerlies to the Chinese Loess Plateau and the North Pacific. We suggest that tectonic activity in the northeastern Tibetan Plateau and shifting global climate together triggered the widespread aeolian dust accumulation in the Chinese Loess Plateau and the North Pacific since 8–7 Ma.  相似文献   

2.
Since the mid-Pliocene, East Asian climates have experienced significant changes. One view suggests that significant uplift of the Tibetan Plateau during this period could have been responsible for these dramatic changes in the strength of the East Asian monsoon and for Asian interior aridification, while some other authors attribute these changes to the ongoing global cooling and rapid growth of the Arctic ice-sheet. Up to the present, which factor dominates the major changes of East Asian climate in the mid-Pliocene is still a contentious issue. This study presents an analysis of several climate proxies including grain-size, (CaO* + Na2O + MgO)/TiO2 ratio, Na/Ka ratio and dust accumulation rates of the Xifeng Red Clay sequence in the eastern Chinese Loess Plateau and the Xihe Pliocene loess-soil sequence in West Qinling. They reveal that aridity in the continental interior and winter monsoon circulation both intensified, whereas the East Asian summer monsoon showed a weakening rather than intensifying trend since the mid-Pliocene. These changes are also supported by the other multi-proxy records from various regions in East Asia. Previous numerical modeling studies have demonstrated that uplift of the Tibetan Plateau would have simultaneously enhanced continental-scale summer and winter monsoon strength as well as central Asian aridity. The mid-Pliocene climate changes in East Asia are therefore unlikely to be a response to Plateau uplift. On the contrary, our recent modeling results give support to the view that ongoing cooling could have intensified both the aridity of the interior and the strength of the winter monsoon, but weakened the summer monsoon in East Asia.  相似文献   

3.
The Asian monsoon is an important component of the global climate system. Seasonal variations in wind, rainfall, and temperature associated with the Asian monsoon systems affect a vast expanse of tropical and subtropical Asia. Speleothem-derived summer monsoon variation in East Asia was previously found to be closely associated with millennial-scale change in temperature in the North Atlantic region between 75 and 10 ka. New evidence recovered from East Asia, however, suggests that the teleconnection between summer monsoon in East Asia and temperature change in the North Atlantic region may have significantly reduced during 120 to ~ 110 ka, a period directly after the full last interglaciation and corresponding roughly to marine oxygen isotope stage 5d. This reduction may be due to the low ice volume in the North Hemisphere at that time, which makes the millennial-scale change in temperature in the North Atlantic region less effective in influencing the Asian summer monsoon. This is important for investigating the mechanisms controlling the Asian summer monsoon and the paleoclimatic teleconnection between East Asia and the North Atlantic region, and for predicting monsoon-associated precipitation in East Asia under a global-warming trend.  相似文献   

4.
千百年尺度气候快速变化及其数值模拟研究进展   总被引:1,自引:0,他引:1  
靳立亚  陈发虎 《地球科学进展》2007,22(10):1054-1065
千百年尺度全球气候快速变化是古气候研究中的一个重要内容。研究发现,末次冰期和全新世都存在着千年、百年尺度的快速气候变化,其变化幅度可以达到典型的地质变化或天文因子所造成的冰期/间冰期的气候振荡幅度,同时这些古气候事件具有全球性。对冰期和全新世气候变化的数值模拟揭示了气候系统对地球轨道参数变化的响应以及海洋、植被、冰盖、温室气体等反馈因子的重要性,其中大洋温盐环流对北大西洋淡水注入的敏感性与末次冰期和全新世气候快速变化密切相联。利用中等复杂程度的气候模式(EMIC)CLIMBER 2模拟了末次冰期典型时段(60~20 ka BP)D/O和Heinrich事件以及东亚气候的响应过程。模拟研究揭示了全新世青藏高原冰雪环境对亚洲—非洲季风气候的显著影响。今后的古气候模拟研究将在改进模式分辨率、结合古气候代用资料确定更加符合历史时期边界条件以进一步改善气候模式的基础上,更加注重气候突变机制的研究以及加强全球变化背景下的区域气候的长期变化研究。  相似文献   

5.
Holocene temperature fluctuations in the northern Tibetan Plateau   总被引:4,自引:0,他引:4  
Arid Central Asia (ACA) lies on a major climatic boundary between the mid-latitude westerlies and the northwestern limit of the Asian summer monsoon, yet only a few high-quality reconstructions exist for its climate history. Here we calibrate a new organic geochemical proxy for lake temperature, and present a 45-yr-resolution temperature record from Hurleg Lake at the eastern margin of the ACA in the northern Tibetan Plateau. Combination with other proxy data from the same samples reveals a distinct warm–dry climate association throughout the record, which contrasts with the warm–wet association found in the Asian monsoon region. This indicates that the climatic boundary between the westerly and the monsoon regimes has remained roughly in the same place throughout the Holocene, at least near our study site. Six millennial-scale cold events are found within the past 9000 yr, which approximately coincide with previously documented events of northern high-latitude cooling and tropical drought. This suggests a connection between the North Atlantic and tropical monsoon climate systems, via the westerly circulation. Finally, we also observe an increase in regional climate variability after the mid-Holocene, which we relate to changes in vegetation (forest) cover in the monsoon region through a land-surface albedo feedback.  相似文献   

6.
米浪沟湾剖面末次间冰阶层序粒度和化学元素波动韵律与由古流动砂丘砂和上覆河湖相或古土壤构成的沉积旋回颇为一致。古流动砂丘砂犹如现代流动砂丘砂,是东亚冬季风主导下干冷气候的产物;河湖相和古土壤颗粒细化,化学、生物等地球风化程度增强,含较多喜暖的软体动物化石,指示其偏南夏季风主导下的温暖湿润气候。据此,末次间冰阶萨拉乌苏河流域至少经历了10次温湿(W事件)和9次冷干(C事件)气候波动,且可划分为MIS3e(58.85~48.98kaBP)、MIS3d(48.98~39.55kaBP)、MIS3c(39.55~34.59kaBP)、MIS3b(34.59~26.47kaBP)和MIS3a(26.47~23.07kaBP)等5个亚段。其中,19次冷/暖波动可与格陵兰GRIP冰心δ18O冰段/间冰段相对应,5个亚段与我国古里雅冰心在波动性质和相位上都极为一致,与V23-81冷性浮游有孔虫数代表的北大西洋地区气候也具有较好的可比性。谱分析显示出21.70ka、1.05ka、0.64ka、0.50ka等显著周期,即该地千百年尺度气候主要受与北大西洋热盐环流波动引起的东亚冬、夏季风强弱有关,而万年尺度上则受控于岁差周期所导致的太阳辐射变化。  相似文献   

7.
青藏高原气候变化在冰期-间冰期、千年、十年际和季节尺度上受亚洲季风和西风环流的交互影响,表现出显著的区域性特征。然而全新世以来青藏高原气候变化的机制还不甚清楚,主要原因之一是缺少指示意义明确的古气候代用指标。课题组近年来利用叶蜡氢同位素(δDwax)重建了高原东北部的青海湖、中北部的令戈错、中部的达则错、西部的班公错和阿翁错不同时间尺度的大气降水同位素记录,本文对上述工作进行总结,并结合青藏高原全新世以来已发表的其他地点的同位素和古水文记录,揭示全新世以来季风与西风对青藏高原不同区域气候变化的影响。结果表明:1)早全新世青海湖、令戈错、班公错和阿翁错4个湖泊均主要受夏季风影响,夏季风可以影响到青藏高原的大部分地区,此时夏季风在青藏高原的最北界限可能位于青海湖以北、克鲁克湖以南。2)中全新世青海湖、班公错和阿翁错受夏季风影响逐渐减弱;然而令戈错在7.0~4.5 ka水汽主要来源于西风环流。3)晚全新世青海湖和班公错受季风的影响进一步减弱;西风在3.5~1.7 ka和2.0~1.0 ka分别影响到高原中部的令戈错和达则错;晚全新世阿翁错受冰川融水补给影响降水同位素异常偏负。4)本研究表明在中晚全新世季风较弱的时期,西风能够深入到青藏高原内部地区,给高原内部地区带来冷湿的水汽。  相似文献   

8.
Grain size and magnetic susceptibility measurements on samples from a typical loess–palaeosol sequence on the central Chinese Loess Plateau are used to reconstruct the Pleistocene East Asian monsoon climate. The coarse‐grained fraction, i.e. the weight percentage > 30 μm of the bulk grain‐size distribution, is used as a sensitive proxy index of the East Asia winter monsoon strength. On the basis of an absolute time‐scale, time‐series variations of this proxy show that winter monsoon strengths varied on millennial time‐scales during the periods 145–165, 240–280, 320–350, 390–440, 600–640, 860–890, 900–930 and 1330–1400 kyr BP. The wavelength of these climatic oscillations varied between 1.89 and 4.0 kyr, as is shown by spectral analysis using the multitaper method. Although numerical simulation experiments show that high frequencies also can arise from measurement errors in the grain‐size analysis, the frequencies prove to be sufficiently stable when the spectral analysis is repeated with a different number of tapers. For the time being, we do not correlate these climatic oscillations with palaeoclimatic records in the North Atlantic deep‐sea sediments because both time‐scales need to be further improved. Our data, however, certainly demonstrate that millennial‐scale East Asian winter monsoon variations in the last 1.4 million years can be detected from terrestrial loess records. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
晚中新世以来亚洲季风阶段性演化的海陆记录   总被引:4,自引:0,他引:4  
本文在综合对比晚新生代以来中国黄土高原黄土一红粘土沉积、西北太平洋粉尘沉积、南海有孔虫、阿拉伯海有孔虫记录的基础上,探讨了大约8Ma以来亚洲季风的阶段性演化历史。结果发现,黄土高原粉尘沉积在8Ma前后大规模出现,在3.5Ma前后大幅增加;印度季风在8Ma前后形成(或显著加强);南海ODP1146站位浮游有孔虫Neoglcboquadrina丰度也有两次明显增加,表明海水表面温度不断降低和海洋生产力的增加,指示东亚冬季风作用增强。北太平洋()DP885/886钻孔风成粉尘通量也有增加,指示亚洲内陆进一步的干旱化和冬季风作用的增强。印度洋沉积通量在11Ma前后开始增加。在9~8Ma时出现峰值,表明喜马拉雅山和青藏高原南部逐渐隆起。当隆起达到足够高度时,导致亚洲内陆干旱气候带扩大,同时提供大量粉尘并向东传输到中国北方和北太平洋地区。青藏高原北缘山前盆地的沉积记录显示,在3.6Ma时,高原北部的进一步快速隆升过程可能影响到整个高原,从而导致亚洲内陆更加干旱化,东亚季风增强,粉尘沉积加快,南海及印度洋陆源沉积作用加剧。  相似文献   

10.
The transition area of three natural zones (Eastern Monsoon Region, Arid Region of Northwest China, Qinghai Tibet Plateau Region) is influenced by the Asian monsoon and middle latitude westerly circulation because of its special geographical position. And it is more sensitive to global climate change. The Koppen climate classification, which is widely used in the world, and the accumulated temperature-dryness classification, which is usually used in China, were used to study the climate zones and changes in the region of longitude 97.5°~108°E, latitude 33°~41.5°N, from 1961 to 2010. The changing areas of each climate zone were compared to the East Asian Summer Monsoon index, the South Asian Summer Monsoon index, the Summer Westerly index, the East Asian Winter Monsoon index, the Plateau Summer Monsoon index, the North Atlantic Oscillation index, the Southern Oscillation index, NINO3.4 index, to explore the response of the transition area of three natural zones to each climate system. According to the results, this region will become wetter when the Summer Westerly or the East Asian Winter Monsoon is relatively strong. When the East Asian Summer Monsoon or the South Asian Summer Monsoon becomes strong, the climate in low altitude region of the study area will easily become drier, and the climate in high altitude region of the study area is easily to become wetter. When the Plateau Summer Monsoon is relatively strong, the climate in the study area will easily become drier. When the North Atlantic Oscillation is relatively strong, the study area will easily become wetter. And when the El Niño is relatively strong, or the Southern Oscillation is relatively weak, the study area will easily become drier. In general, the moisture status of this region is mainly controlled by the middle latitude westerly circulation. The enhancement of the Asian summer monsoon could increase the precipitation in the southeast part of this regional, but, according to the degrees of dryness and the types of climate change in this paper, warming effects could offset precipitation increasing and make the area drier. The transition area of three natural zones is influenced by multiple interactions of climate systems from East Asia. A single climatic index, such as air temperature or precipitation, can not completely represent the regional features of climate change. As a result, areas of climate zones can be used as an important index in the regional climate change assessment.  相似文献   

11.
In order to examine high-frequency variations of East Asian winter monsoon in Quaternary climatic extremes, two typical loess–paleosol sequences in the Chinese Loess Plateau were investigated. Sandy layers in the loess deposits, the “Upper sand” and “Lower sand” (layers L9 and L15, respectively), which represent a high-resolution record of paleomonsoon changes, have been sampled at intervals of 5–6 cm from sections at Luochuan and Xifeng. The grain size and magnetic susceptibility was measured for all samples. The grain-size results (a proxy of winter monsoon strength) indicate that the winter monsoon strength fluctuated on a millennial timescale during cold climatic extremes, with climatic events of a few hundred to a few thousand years. However, the winter monsoon was relatively stable during warm periods. The magnetic susceptibility signal (a proxy of summer monsoon intensity) is practically constant over the same period. This is tentatively explained by the assumption that the summer monsoon intensity was too low to be recorded in the magnetic susceptibility signal. The intensified winter monsoon events show periodicities in a range of 1000 to 2770 yr, with a dominant cycle of approximately 1450 yr. The detection of this oscillation in older glacial stages strongly suggests that it may be a pervasive cycle of the cold climatic phases of the Quaternary. Millennial-scale variations of the winter monsoon may be caused by instability of the westerly jet, which is determined by temperature differences between the polar and the equatorial regions.  相似文献   

12.
REORGANIZATION OF THE ASIAN MONSOON SYSTEM AT ABOUT 2.6 Ma AGO AND ITS IMPLICATIONS FOR THE RISING OF THE TIBETAN PLATEAUheChineseResearchFoundation(KZ 951 A1 2 0 4 )  相似文献   

13.
青藏高原初春积雪的多尺度变化与北大西洋海温的关系   总被引:3,自引:3,他引:0  
陈志恒  张杰  徐玮平 《冰川冻土》2018,40(4):655-665
青藏高原冬、春季积雪变化影响东亚甚至全球春、夏季的环流及气候异常。利用中国西部环境与生态科学数据中心提供的中国雪深长时间序列数据集,美国大气海洋局提供的全球逐月扩展重建海表温度,以及欧洲中期天气预报中心提供的逐月再分析数据,对青藏高原初春(3、4月)积雪的多尺度变化与北大西洋海表温度的关系进行了研究。结果表明,初春青藏高原雪深异常与初春北大西洋关键区海温异常有显著的负相关关系。当初春关键区海温正(负)异常时,初春高原中部偏北腹地地区、东南部地区积雪深度减少(增加);初春北大西洋关键区海温异常通过激发下游青藏高原上空大气波列以及波作用通量异常来影响高原局地区域的温度和垂直运动,从而影响降雪的产生和积雪的累积。该结果为青藏高原初春积雪的多尺度变化及其影响提供了依据。  相似文献   

14.
Uranium-series dating of oxygen and carbon isotope records for stalagmite SJ3 collected in Songjia Cave, central China, shows significant variation in past climate and environment during the period 20-10 ka. Stalagmite SJ3 is located more than 1000 km inland of the coastal Hulu Cave in East China and more than 700 km north of the Dongge Cave in Southwest China and, despite minor differences, displays a clear first-order similarity with the Hulu and Dongge records. The coldest climatic phase since the Last Glacial Maximum, which is associated with the Heinrich Event 1 in the North Atlantic region, was clearly recorded in SJ3 between 17.6 and 14.5 ka, in good agreement in timing, duration and extent with the records from Hulu and Dongge caves and the Greenland ice core. The results indicate that there have been synchronous and significant climatic changes across monsoonal China and strong teleconnections between the North Atlantic and East Asia regions during the period 20-10 ka. This is much different from the Holocene Optimum which shows a time shift of more than several thousands years from southeast coastal to inland China. It is likely that temperature change at northern high latitudes during glacial periods exerts stronger influence on the Asian summer monsoon relative to insolation and appears to be capable of perturbing large-scale atmospheric/oceanic circulation patterns in the Northern Hemisphere and thus monsoonal rainfall and paleovegetation in East Asia. Climatic signals in the North Atlantic region propagate rapidly to East Asia during glacial periods by influencing the winter land-sea temperature contrast in the East Asian monsoon region.  相似文献   

15.
冰芯所记录的环境变化及空间耦合特征   总被引:24,自引:3,他引:24       下载免费PDF全文
近年来,我们先后在青藏高原的古里雅冰帽、唐古拉冰川和希夏邦马地区钻。取了大量冰芯。在这些冰芯中保存着大量的环境变化信息。特别是反映沙暴、尘暴和浮尘等环境事件的尘埃冰志记录,是目前我们所能得到的记录最详细、分辨率最高和最连续的资料系列。青藏高原冰芯中尘埃指标显示,在气候变冷时,青藏高原的尘暴、沙暴和浮尘等事件出现的频率增多,强度增大;在气候变暖时,则尘暴、沙暴和浮尘等事件的频率减少,强度减小。目前,在青藏高原面上,正经历着气候变暖、环境改善的过程。  相似文献   

16.
Fluctuations in climatic proxies of the Milanggouwan section in the Salawusu River valley of the Ordos Plateau (Inner Mongolia, China) during Marine Isotope stage 3 (MIS 3) coincide well with sedimentary cycles for palaeo‐mobile dune sands alternating with fluvial–lacustrine facies and palaeosols. We compared the palaeo‐mobile dune sands with modern mobile dune sands (products of a cold and dry climate dominated by the East Asian winter monsoon), whereas the fluvial–lacustrine facies and palaeosols were controlled by a wet–warm climate similar to that of the East Asian summer monsoon. The MIS 3 climate of the Salawusu River valley appears to have experienced at least nine wet–warm and ten cold–dry fluctuations, divided into five stages: MIS 3e (58 900–49500 yr BP), MIS 3d (49 500–40 700 yr BP), MIS 3c (40 700–36 900 yr BP), MIS 3b (36 900–27 000 yr BP) and MIS 3a (27 000–22 300 yr BP). The 19 cold–warm climatic fluctuations corresponded roughly to the GRIP and Guliyan records, and with fluctuations in the North Atlantic climate. Notable peaks in the spectral analysis occurred at 19 500 yr, 1020 yr, 640 yr and 500 yr. Our results show that the millennial–centennial climate was closely related to the relative strengths of East Asian monsoons, which are controlled by the North Atlantic thermohaline circulation, and which is also closely linked to the Sun's precession period. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The sand–loess transition zone in north China is sensitive to climate change, and is an ideal place to investigate past environmental changes. However, past climate change at millennial–centennial timescales in this region has not been well reconstructed because of limited numerical dating. Alternations of sandy loam soils with aeolian sand layers in the Mu Us and Otindag sand fields, which lie along the sand–loess transition zone, indicate multiple intervals of dune activity and stability. This change is probably a response to variations of the East Asian monsoon climate during the late Quaternary. The single aliquot regeneration (SAR) optically stimulated luminescence (OSL) dating protocol, which has been successfully applied to aeolian deposits worldwide, is applied to these two sand fields in this study. The OSL ages provide reliable constraints for reconstruction of past climate changes at suborbital timescale. Sections in both sand fields contain aeolian sand beds recording millennial‐scale episodes of dry climate and widespread dune activation, including episodes at about the same time as Heinrich Event 5 and the Younger Dryas in the North Atlantic region. These results demonstrate the potential of aeolian sediments in semi‐arid north China to record millennial‐scale climatic events, and also suggest that dry–wet climate variation at the desert margin in China may be linked to climatic change elsewhere in the Northern Hemisphere, through atmospheric circulation. This article was published online on 27 November 2008. An error was subsequently identified. This notice is included in the online and print versions to indicate that both have been corrected (16 December 2008). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
The siliciclastic sediments of the uppermost section of 185 mcd(meters composite depth) from ODP Site 1146 on the northern continental slope of the South China Sea(SCS) were partitioned according to their sources using end-member modeling on grain-size data. The goal was to evaluate the evolution of the East Asian monsoon over the past 2 million years. The siliciclastic sediments were described as hybrids of four end-members, EM1, EM2, EM3, and EM4, with modal grain sizes of 8–22 μm, 2–8 μm, 31–125 μm, and 4–11 μm, respectively. EM1 and EM3 are interpreted as eolian dust and EM2 and EM4 as fluvial mud. The ratio of eolian dust to fluvial mud((EM1+EM3)/(EM2+EM4)) is regarded as an indicator of the East Asian monsoon. The variation in this ratio not only shows periodical oscillations consistent with oxygen isotope stages, but also exhibits a phased increasing trend corresponding with the phased uplifts of the Tibetan Plateau, indicating that the evolution of the East Asian Monsoon was controlled not only by glacial-interglacial cycles, but also by the phased uplifts of the Tibetan Plateau during the Quaternary.  相似文献   

19.
全球变化与亚洲季风   总被引:7,自引:0,他引:7       下载免费PDF全文
江爱良 《第四纪研究》1995,15(3):232-242
本文介绍近年来季风研究的某些进展,着重介绍和探讨青藏高原和ENSO事件对于中国和印度夏季风雨量变化的影响以及在全球变暖的背景下中国和印度季风雨量的可能变化。  相似文献   

20.
陈文  魏科 《地球科学进展》2009,24(3):272-285
东亚季风区同时受世界上最广阔的大洋和陆地的影响,这种行星尺度的海陆热力对比以及青藏高原大地形的作用,从而产生很强的行星尺度扰动,并且这种扰动具有准定常的性质。利用再分析资料研究了准定常行星波活动的变化对东亚地区冬季气候异常的影响,主要侧重于年际和季节内时间尺度上的变化。在年际时间尺度上,冬季行星波两支波导的变化存在反相关的振荡关系,这种年际振荡一方面影响了北半球环状模的位相,另外一方面导致了东亚地区的气候异常。当有异常强的低纬波导时,一般对应有西伯利亚高压的减弱和我国东北、华北地区的增温;反之当有异常弱的低纬波导时,我国东北和华北温度则普遍偏低。研究还表明,行星波传播的年际振荡与东亚地区气候异常的关系显著地受到热带平流层准两年周期振荡(QBO)的调制,只是当QBO处于东风位相时,行星波传播的年际振荡才与东亚气候异常有显著的关系。在季节内时间尺度上,准定常行星波的变化与平流层极涡的低频变化密切相关,并且这种平流层极涡的异常通过和行星波的相互作用,可以自上而下影响到对流层的短期气候;平流层极涡异常下传对对流层大气环流有明显的影响,并且这种影响在东亚地区非常显著。由于平流层变化通常维持时间长,并且平流层极涡异常下传领先于对流层,因此这为东亚冬季短期气候异常的预报提供了一个新的预报依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号