首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A total of 48 precipitation samples have been collected from individual precipitation events at the Nam Co Monitoring and Research Station for Multisphere Interactions (Nam Co Station, 30°47′N, 90°58′E; 4730 m a.s.l) located in the central Tibetan Plateau from August 2005 to August 2006. All samples were analyzed for major cations (NH4+, Na+, K+, Ca2+ and Mg2+) and anions (Cl, NO3 and SO42−), conductivity and pH. Precipitation pH values ranged from 6.03 to 7.38 with an average value of 6.59. The high pH is due to large inputs of crustal aerosols in the atmosphere, which contain a large fraction of carbonate. Ca2+ is the dominant cation in precipitation with an average value of 65.58 μeq L− 1 (4.91–301.41 μeq L− 1), accounting for 54% of the total cations in precipitation. HCO3 is the predominant anion, accounting for 62% of the total anions. When compared with data from a snow pit in the Zhadang Glacier 50 km away (5800 m a.s.l), major ion concentration in precipitation at the Nam Co Station is much higher due to local aerosol inputs. Correlation and empirical orthogonal function (EOF) analysis indicate that regional crustal aerosols and species from combustion emissions of residents are the major sources for these ions, lake salt aerosols from the Nam Co nearby and regional mineral aerosols from dry lake sediments are secondary sources, and sea salt contribution is the least due to the long distance transport.  相似文献   

2.
In this study, variations of the chemical composition of precipitation in Nanjing, China, over a 12-year period (1992–2003) are presented. The average annual concentration of pH value was 5.15, ranging from 4.93 to 5.36, and there was no significant trend in the acidity of precipitation. SO42−, Cl and NO3 were the main anions, while Ca2+, NH4+ and Mg2+ were the main cations. The concentrations of these main ions were very high compared to those reported in many other areas around the world. Most of the ions came from anthropogenic and crustal sources. High correlations were found among dust-derived cations Ca2+, Mg2+and K+, between Cl and SO42−, between Cl and NH4+ and between acidic anions and dust-derived cations, such as SO42− and Ca2+, SO42− and K+, Cl and Ca2+, Cl and K+, F and Mg2+ and F and K+. A significant decreasing trend was observed in concentration of SO42− because of the abatement strategies for SO2 emissions and energy policy change, while a significant increasing trend was found in the contribution of NO3 to acidification due to the rapidly growing number of motor vehicles. A significant decreasing trend was found in dust-derived cation Ca2+ due to more stringent controls of industrial dust emissions and rapid urbanization reducing the amount of open land, while the contribution of NH4+ to neutralization increased relatively.  相似文献   

3.
The changing chemical composition of cloud water and precipitation in the Western Sudety Mountains are discussed against the background of air-pollution changes in the Black Triangle since the 1980s until September 2004. A marked reduction of sulphur dioxide emissions between the early 1990's and the present (from almost 2 million tons to around 0.2 million tons) has been observed, with a substantial decline of sulphate and hydrogen concentration in cloud water (SO42− from more than 200 to around 70 μmol l− 1; H+ from 150 to 50 μmol l− 1) and precipitation (SO42− from around 80 to 20–30 μmol l− 1; H+ from around 60 to 10–15 μmol l− 1) samples. At some sites, where fog/cloud becomes the major source of pollutants, deposition hot spots are still observed where, for example, nitrogen deposition can exceed 20 times the relevant critical load. The results show that monitoring of cloud water chemistry can be a sensitive indicator of pollutant emissions.  相似文献   

4.
The effects of below-cloud aerosol on the acidification process of rain   总被引:1,自引:0,他引:1  
Using a model of the acidification process of rain, we calculate and analyze the effects and contributions of a below-cloud aerosol in its different concentrations and acidities on the pH and ion components of rain (SO 4 2– , H+, NO 3 , NH 4 + , etc.) under the conditions of different concentrations of pollution gases. The results show that the aerosol has an acidification or alkalization effect on the rain which changes the pHs of rain and aerosol. As acidifying pollution gas concentrations (SO2, HNO3) are low, the acid aerosol has important effects on the pH and H+ of rain, but as the gas concentrations are high, the acid aerosol has very little effect. The alkalizing aerosol makes the pH of rain increase by between 0.3 and 0.5 and neutralizes about 60% of H+ in the rain. As alkalizing pollution gas NH3 exists, the acid aerosol has important effects on the pH and H+ of rain. But the alkalizing aerosol has very little effect, especially as the NH3 concentration is high. The percentage contribution of the aerosol to SO 4 2– in rain is generally 7–15%, the contribution of the aerosol to NO 3 is nearly the same as that of HNO3=1 ppb, and the contribution of the aerosol to NH 4 + is nearly the same as that of NH3, from 5 to 7 ppb, and is an important source of NH 4 + in rain. Finally, according to the actual conditions of typical regions in the south and north of China (Chongqing and Beijing), we analyze the effects of aerosol and pollution gases on the ion components of rain.  相似文献   

5.
In this paper, the basic composition of fog and low cloud water are presented, resulting from the analyses of water samples from 111 fog/cloud events. The samples were collected at five sites located in various regions of the Czech Republic. Two sampling sites are in mountainous regions and three sites represent various urban areas. The mountain stations are located in two regions of the Czech Republic with different industry types. At all the sites, active fog collectors were employed. In the water samples, the conductivity, acidity (pH), cations (H+, Na+, K+, NH4+, Mg2+, Ca2+) and anions (F, Cl, NO3, SO42−) were determined.A mean pH value of about 4.5 was obtained at mountain sites whereas the measurements in urban areas showed mean pH values from 4.9 to 6.4. The mean conductivity values in the samples from the two mountain stations were 137 and 191.5 μS cm−1. The samples from urban sites showed mean values between 127.7 and 654.4 μS cm−1. The maximum concentration means for the three dominant pollutants (expressed by the ratio mountain sites/urban sites) are 32.9/99.6 mg l−1 for NO3, 32.5/192.9 mg l−1 for SO42− and 18.5/52.7 mg l−1 for NH4+. As expected, we found higher ion concentrations in the northern part of the Czech Republic where larger numbers of lignite-burning power plants, chemical factories and opencast lignite mines are located. A decrease in ion concentrations was observed at higher altitude sites, probably reflecting at least in part higher liquid water contents at these locations.  相似文献   

6.
In the present study, the wet and dry depositions of particulate NO3, SO42−, Cl and NH4+ were measured using a wet/dry sampler as a surrogate surface. Gas phase compounds of nitrogen, sulfur and chloride (HNO3, NH3, SO2 and HCl) were measured by an annular denuder system (ADS) equipped with a back up filter for the collection of particles with diameter ≤ 5 μm. Ambient concentrations of NO, NO2 and SO2 were also taken into consideration. Sampling was conducted at an urban site in the center of the city of Thessaloniki, northern Greece. The presence of the aerosol species was examined by cold/warm period and the possible compounds in dry deposits were also considered. Dry deposition fluxes were found to be well correlated with ambient particle concentrations in order to be used for the calculation of particle deposition velocity. Average particulate deposition velocities calculated were 0.36, 0.20, 0.20 and 0.10 cm s− 1 for Cl, NO3, SO42− and NH4+, respectively. Total dry deposition fluxes (gas and particles) were estimated at 3.24 kg ha− 1 year− 1 for chloride (HCl + p-Cl), 9.97 kg ha− 1 year− 1 for nitrogen oxidized (NO + NO2 + HNO3 + p-NO3), 5.32 kg ha− 1 year− 1 for nitrogen reduced (NH3 + p-NH4) and 15.77 kg ha− 1 year− 1 for sulfur (SO2 + p-SO4). 70–90% total dry deposition was due to gaseous species deposition. The contribution of dry deposition to the total (wet + dry) was at the level of 60–70% for sulfur and nitrogen (oxidized and reduced), whereas dry chloride deposition contributed 35% to the total. The dry-to-wet deposition ratio of all the studied species was found to be significantly associated with the precipitation amount, with nitrogen species being better and higher correlated. Wet, dry and total depositions measured in Thessaloniki, were compared with other countries of Europe, US and Asia.  相似文献   

7.
On February 8, 1993, the NASA DC-8 aircraft profiled from 10,000 to 37,000 feet (3.1–11.3 km) pressure altitude in a stratified section of tropical cyclone “Oliver” over the Coral Sea northeast of Australia. Size, shape and phase of cloud and precipitation particles were measured with a 2-D Greyscale probe. Cloud/ precipitation particles changed from liquid to ice as soon as the freezing level was reached near 17,000 feet (5.2 km) pressure altitude. The cloud was completely glaciated at −5°C. There was no correlation between ice particle habit and ambient temperature. In the liquid phase, the precipitation-cloud drop concentration was 4.0 × 103 m−3, the geometric mean diameter Dg=0.5−0.7 mm, and the liquid water content 0.7−1.9 g m−3. The largest particles anywhere in the cloud, dominated by fused dendrites at concentrations similar to that of raindrops (2.5 × 103 m−3) but a higher condensed water content (5.4 g m−3 estimated) were found in the mixed phase; condensed water is removed very effectively from the mixed layer due to high settling velocities of the large mixed particles. The highest number concentration (4.9 × 104 m−3), smallest size (Dg=0.3−0.4 mm), largest surface area (up to 2.6 × 102 cm2 m−3 at 0.4−1.0 g m−3 of condensate) existed in the ice phase at the coldest temperature (−40°C) at 35,000 feet (10.7 km). Each cloud contained aerosol (haze particles) in addition to cloud particles. The aerosol total surface area exceeded that of the cirrus particles at the coldest temperature. Thus, aerosols must play a significant role in the upscattering of solar radiation. Light extinction (6.2 km−1) and backscatter (0.8 sr−1 km−1) was highest in the coldest portion of the cirrus cloud at the highest altitude.  相似文献   

8.
In November 2004–January 2005, a micro orifice uniform deposit impactor (MOUDI) and a Nanometer (nanometer)-MOUDI were used in the center of Taiwan to measure particle size (18 nm particle size 18 μm) distributions of atmospheric aerosols at a traffic site during the winter period. The average Mass in Media Aerodynamic Diameter (MMAD) of suspended particles is 0.99 μm this study. As for the ultra fine and nanometer (nanometer) particle mode, the composition order for these major ions species was SO42− NH4+ NO3 Mg2+ Ca2+ Na+ K+ Cl. An ion Chromatography (DIONEX-100) was used to analyze major anion species, Cl, NO3, SO42− and cation species, NH4+Na+, K+, Ca2+Mg2+. Their concentrations were also extracted from various particles size modes (nanometer (nanometer), ultra fine, fine and coarse). The results obtained in this study also indicated that the average portions for the major ionic species (SO42−, NH4+ and Mg2+) in the nanometer (nanometer), ultra fine, fine and coarse particulate modes are about 34%, 37%, 63% and 30%, respectively at this traffic sampling site during the winter period.  相似文献   

9.
This study is concerned with the spatial variability of some wet atmospheric precipitation parameters such as; pH, conductivity (EC). The study also depicts the spatial variability of some ions (cations and anions) of atmospheric precipitation in Jordan such as, Ca2+, Mg2+, Na+ and K+, HCO3, Cl, NO3 and SO42−. The basis of the work is to establish a relationship through the cumulative semivariogram technique between the distance ratios and the spatial dependence structure of the chemical composition of atmospheric precipitation. All semivariogram models are constructed in this study in order to understand the behavior of the spatial distribution. The spatial distributions of rainwater parameters show differences from station to station which is expressed in terms of angle, where the larger the angle the weaker the correlation. The semivariogram (SV) models are constructed to show the variation of the rainfall chemistry in Jordan. The SV models show weak correlation between mountain and leeside mountain stations, i.e. mountain and desert stations. On the other hand, good correlations are observed when transferring from south to north of the country. The larger is the found angle, the weaker is the correlation. For most of the SV model the correlation is found to be very weak between desert and mountainous locality. The Standard Regional Dependence Factor (SRDF) is used for prediction of the distribution of rain fall parameters. It shows the relative error between observed and predicted values of rainwater parameters. The overall regional relative error between the observed and estimated concentrations remains less than 15%.  相似文献   

10.
A comprehensive study on the chemical compositions of wet precipitation was carried out from January 2004 to December 2004 in Jinhua, southeastern China's Zhejiang Province. All samples were analyzed for pH, electrical conductivity and major ions (F, Cl, NO3, SO42−, K+, Na+, Ca2+, Mg2+ and NH4+). The rainwater was typically acidic with a volume-weighted mean pH of 4.54, which ranged from 3.64 to 6.76. SO42− and NO3 were the main anions, while NH4+ and Ca2+ were the main cations. The concentrations of these major ions were generally higher compared to those reported in other parts of the world, but much lower than those in northern China.Wet deposition fluxes of major ions showed pronounced seasonal variations with maximum in spring and minimum in autumn. Significant correlations were found in soil-derived species among Ca2+, Mg2+ and K+ and sea-salt species between Na+ and Cl. Other relatively good correlations were also observed between Ca2+ and SO42-, Mg2+ and SO42-, Mg2+ and NO3, Mg2+ and Cl. Principal component analysis was also performed on individual precipitation to find possible sources of the major ionic species. Varimax rotated four components accounting for 85.9% of the total variance, and were interpreted as acid and alkaline pollutants, sea spray and mixed source, soil and acid/neutralization. Calculation of enrichment factors for rainwater components relative to soil and seawater indicated that Ca2+ and K+ mainly originated from the terrestrial source, and SO42- and NO3 were mostly attributed for the anthropogenic activities in the study area. In general, the results suggested that precipitation chemistry is strongly influenced by anthropogenic sources rather than natural and marine sources. The pollutants in rainwater were mainly derived from long distance transport, local industry and traffic sources.  相似文献   

11.
In this study bulk airborne aerosol composition measured by the PILS-IC (integration time of 3 min 24 s) during TRACE-P P3B Flight 10 are used to investigate the ionic chemical composition and mixing state of biomass burning particles. A biomass burning plume, roughly 3–4 days old, moderately influenced by urban pollution aerosols recorded in the Philippine Sea is investigated. Focusing on the fine particle NO3, SO42−, K+, NH4+, and water-soluble organics, the observed correlations and nearly 1-to-1 molar ratios between K+ and NO3 and between NH4+ and (SO42−+ inferred Organics) suggest the presence of fine-mode KNO3, (NH4)2SO4, and NH4(Organics) aerosols. Under the assumption that these ion pairs existed, and because KNO3 is thermodynamically less favored than K2SO4 in a mixture of NO3, SO42−, K+, NH4+, and Organic anions, the measurements suggest that aerosols could be composed of biomass burning particles (KNO3) mixed to a large degree externally with the (NH4)2SO4 aerosols. A “closed-mode” thermodynamic aerosol simulation predicts that a degree of external mixing (by SO42− mass) of 60 to 100% is necessary to achieve the observed ionic associations in terms of the existence of KNO3. However, the degree of external mixing is most likely larger than 90%, based on both the presence of KNO3 and the amounts of NH4NO3. Calculations are also shown that the aerosol mixing state significantly impacts particle growth by water condensation/evaporation. In the case of P3B Flight #10, the internal mixture is generally more hygroscopic than the external mixture. This method for estimating particle mixing state from bulk aerosol data is less definitive than single particle analysis, but because the data are quantitative, it may provide a complementary method to single particle chemical analysis.  相似文献   

12.
The remarkable wide range spatial scaling of TRMM precipitation   总被引:1,自引:0,他引:1  
The advent of space borne precipitation radar has opened up the possibility of studying the variability of global precipitation over huge ranges of scale while avoiding many of the calibration and sparse network problems which plague ground based rain gage and radar networks. We studied 1176 consecutive orbits of attenuation-corrected near surface reflectivity measurements from the TRMM satellite PR instrument. We find that for well-measured statistical moments (orders 0 < < 2) corresponding to radar reflectivities with dBZ < 57 and probabilities > 10− 6, that the residuals with respect to a pure scaling (power law) variability are remarkably low: ± 6.4% over the range 20,000 km down to 4.3 km. We argue that higher order moments are biased due to inadequately corrected attenuation effects. When a stochastic three — parameter universal multifractal cascade model is used to model both the reflectivity and the minimum detectable signal of the radar (which was about twice the mean), we find that we can explain the same statistics to within ± 4.6% over the same range. The effective outer scale of the variability was found to be 32,000 ± 2000 km. The fact that this is somewhat larger than the planetary scale (20,000 km) is a consequence of the residual variability of precipitation at the planetary scales. With the help of numerical simulations we were able to estimate the three fundamental parameters as α ≈ 1.5, C1 = 0.63 ± 0.02 and H = 0.00 ± 0.01 (the multifractal index, the codimension of the mean and the nonconservation parameter respectively). There was no error estimate on α since although α = 1.5 was roughly the optimum value, this conclusion depended on assumptions about the instrument at both low and high reflectivities. The value H = 0 means that the reflectivity can be modeled as a pure multiplicative process, i.e. that the reflectivity is conserved from scale to scale. We show that by extending the model down to the inner “relaxation scale” where the turbulence and rain decouple (in light rain, typically about 40 cm), that even without an explicit threshold, the model gives quite reasonable predictions about the frequency of occurrence of perceptible precipitation rates.While our basic findings (the scaling, outer scale) are almost exactly as predicted twenty years ago on the basis on ground based radar and the theory of anisotropic (stratified) cascades, they are incompatible with classical turbulence approaches which require at least two isotropic turbulence regimes separated by a meso-scale “gap”. They are also incompatible with classical meteorological phenomenology which identifies morphology with mechanism and breaks up the observed range 4 km–20 000 km into several subranges each dominated by different mechanisms. Finally, since the model specifies the variability over huge ranges, it shows promise for resolving long standing problems in rain measurement from both (typically sparse) rain gage networks and radars.  相似文献   

13.
The pH variation and chemical characteristics of rainwater were investigated from January 2006 to December 2006 at an urban site of Guangzhou, South China. The rainwater was typically acidic with a volume-weighted mean pH value of 4.49, which ranged from 3.52 to 6.28. The volume-weighted mean equivalent concentration of components followed the order: SO42− > Ca2+ > Cl > NH4+ > Na+ > NO3 > K+ > Mg2+ > F, indicating that SO42−, Cl and NO3 were the main anions, while Ca2+ and NH4+, were the main cations. Ca2+ and NH4+ were major neutralization constituents of the precipitation. Furthermore, correlation analysis and principal component analysis method were performed to identify possible common sources of major ions. Sources of the major ions were assessed based on enrichment factor method.  相似文献   

14.
Inorganic ions and trace metals in total suspended particles were measured during the period 2006–2007 at four sites; three urban sites in the Mexico City Metropolitan Area (MCMA) and one nearby rural site in the state of Morelos. SO42−, NO3, Cl and NH4+ ions were analyzed by ion chromatography; Na+, K+, Ca2+ and Mg2+ by flame atomic absorption spectroscopy, and Al, Cd, Cr, Mn, Pb and V by an atomic absorption spectrometer with a graphite furnace attachment. The results indicated that SO42− was the most abundant ion. All trace elements except Mn and V showed statistically significant differences between sampling sites. Pearson's correlation applied to all data showed a high correlation among SO42−, NO3 and NH4+, indicating a common anthropogenic origin. In addition, the correlation observed between Ca2+ and Al indicated a crustal origin, as supported by the enrichment factors. Over the total sampling period, significant differences in particles and trace metals were found between sites and meteorological seasons. To gain a better insight into the origin of trace metals and major inorganic ions, a Principal Component Analysis was applied to the results for six trace metal and eight inorganic ions.  相似文献   

15.
Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were determined in urban air samples of Konya, Turkey between August 2006 and May 2007. The concentrations of pollutants in both the gas and particulate phase were separately analysed. The average total (gas + particulate) concentrations of PAHs, PCBs and OCPs were determined as 206 ng m− 3, 0.106 ng m− 3, 4.78 ng m− 3 respectively. All of the investigated target compounds were dominantly found in the gas phase except OCPs. Higher air concentrations of PAHs were found at winter season while the highest concentrations of PCBs were determined in September. The highest OCPs were detected in October and in March. In urban air of Konya, PCB 28 and PCB 52 congeners represent 46% and 35% of total PCBs while Phenanthrene, Fluoranthene, Pyrene accounted for 29%, 13%, 10% of total PAHs. HCH compounds (α + β + γ + δ-HCH), total DDTs (p,p′-DDE, p,p′-DDD, p,p′-DDT), Endosulfan compounds (Endosulfan I, Endosulfan II, Endosulfan sulfate) were dominantly determined as 30%, 21%, 20% of total OCPs respectively. Considering the relation between these compounds with temperature, there was no significant correlation observed. Despite banned/restricted use in Turkey, some OCPs were determined in urban air. These results demonstrated that they are either illegally being used in the course of agricultural activity and gardens in Konya or they are residues of past use in environment. According to these results, it can be suggested that Konya is an actively contributing region to persistent organic pollutants in Turkey.  相似文献   

16.
Aerosol size distributions were measured with Micro Orifice Uniform Deposit Impactor (MOUDI) cascade impactors at the rural Angiola and urban Fresno Supersites in California's San Joaquin Valley during the California Regional PM10/PM2.5 Air Quality Study (CRPAQS) winter campaign from December 15, 2000 to February 3, 2001. PM2.5 filter samples were collected concurrently at both sites with Sequential Filter Samplers (SFS). MOUDI nitrate (NO3) concentrations reached 66 μg/m3 on January 6, 2001 during the 1000–1600 PST (GMT-8) period. Pair-wise comparisons between PM2.5 MOUDI and SFS concentrations revealed high correlations at the Angiola site (r > 0.93) but more variability (r < 0.85) at the Fresno site for NO3, sulfate (SO4=), and ammonium (NH4+). Correlations were higher at Fresno (r > 0.87) than at Angiola (r < 0.7) for organic carbon (OC), elemental carbon (EC), and total carbon (TC). NO3 and SO4= size distributions in Fresno were multi-modal and wider than the uni-modal distributions observed at Angiola. Geometric mean diameters (GMD) were smaller for OC and EC than for NO3 and SO4= at both sites. OC and EC were more concentrated on the lowest MOUDI stage (0.056 µm) at Angiola than at Fresno. The NO3 GMD increased from 0.97 to 1.02 µm as the NO3 concentration at Angiola increased from 43 to 66 µg m− 3 during a PM2.5 episode from January 4–7, 2001. There was a direct relationship between GMD and NO3 and SO4= concentrations at Angiola but no such relationships for OC or EC. This demonstrates that secondary aerosol formation increases both concentration and particle size for the rural California environment.  相似文献   

17.
Major ion concentrations and strontium isotopic ratios (87Sr/86Sr) were measured in rainwater samples collected at the urban site of Lanzhou, a city located on the Loess Plateau in the arid and semi-arid areas of northwest China. The rainwater samples possessed alkaline pH, at a reference level of 5.6, with a range of 6.82 to 8.28 and a volume-weighted mean (VWM) pH value of 7.70. The alkaline character of rainwater in Lanzhou is due to the result of neutralization caused by the alkaline soil dusts which contain large amount of CaCO3. It was observed that Ca2+ was the most abundant cation with a VWM value of 886 µeq l− 1 (115–2184 µeq l− 1), accounting for 87.8% of the total cations. Without considering HCO3, SO42− and NO3 were dominant among the anions, accounting for 64.2% and 23.0%, respectively, of the total measured anions. Using Na as an indicator of marine origin and Al for terrestrial inputs, the proportions of sea salt and non-sea-salt elements were estimated from elemental ratios. The precipitation in this region has typical continental characteristics. The Sr concentrations varied from 0.004 to 0.885 µmol l− 1, and strontium isotopic ratios (87Sr/86Sr) lay in the range of 0.71025–0.71302, with an average of 0.71143. The 87Sr/86Sr ratios of Lanzhou rainwater are higher than that of seawater, which reflects contributions from the radiogenic Sr sources of the aerosols. The most suitable candidate for the source would be the soil dust originating from local and distant loess and desert areas. The 87Sr/86Sr ratios were used to characterize different sources of base cations in rainwater, suggesting that the samples could be interpreted in terms of combinations of at least three components: soil dust derived from the Loess Plateau and desert areas in northwest China (with 87Sr/86Sr ~ 0.7130), seawater (with 87Sr/86Sr ~ 0.70917), and anthropogenic inputs (with 87Sr/86Sr ~ 0.7103). The high 87Sr/86Sr ratio and Ca and Sr content in the rainwater from Lanzhou can be attributed to the dissolution of calcium carbonate in soil dust.  相似文献   

18.
In this paper warm cloud microphysical parameters including cloud droplet number concentration (Nc), liquid water content (ql) and effective radius (re) from 75 flights around the Beijing area during 2005 and 2006 are summarized. Average Nc (cm− 3) for Cu, Sc, Ac, As and Ns are 376 ± 290, 257 ± 226, 147 ± 112, 60 ± 35 and 60 ± 84, respectively. Many records of high Nc above 1000 cm− 3 are observed. The large standard deviations indicate a large variation of Nc and ql in this region. The maxima of ql reach 1.4 g m− 3 in Cu and 1.0 g m− 3 in Sc, respectively. Different parameterizations of effective radius are examined with the in-situ data in this area. There are different ways to obtain the prefactor representing the relationship between effective radius and mean volume radius. Significant systematic errors are found to be at the large sizes when the prefactor is expressed with relative dispersion under the Gamma Distribution. Fixed prefactor of 1, which was widely used, even produces much larger error. A prefactor of 1.22 is found to be better than the former two methods by fitting with the observed data. The effective radius is further parameterized as functions of mean volume radius, liquid water content and cloud droplet number concentration. We suggest that the effective radius can be parameterized as re,p ≈ 1.20rv + 0.22–1.28/rv2, which is a practical and more accurate scheme without too much computation complexity.  相似文献   

19.
This study describes the chemical composition of dry deposition collected at a highway traffic site in central Taiwan during daytime and nighttime periods by using a dry deposition plate (DDP) and water surface sampler (WSS). In addition, the characterization for mass and water-soluble species of total suspended particulate (TSP), both PM2.5 and PM10, was studied at the study site from August 22 to November 30, 2006. Dry deposition fluxes of ambient air particulates and inorganic species (Na+, NH4+, K+, Mg2+, Ca2+, Cl, NO3 and SO42−) were analyzed by Ion Chromatography (DIONEX-100).Results of the particulate dry deposition fluxes and mass concentrations are higher in the water surface sampler with respect to the dry deposition plate used in this study. Statistical results also showed the average dry deposition flux of the ionic species (Na+, NH4+, K+, Cl, NO3 and SO42−) obtained by the DDP and WSS displayed significant differences. Also, the average concentrations of Mg2+ and, Ca2+ were statistically the same at this study site.  相似文献   

20.
Concentrations of nitrate, ammonium and phosphate have been monitored from June to October 1989 in rain water collected at the Magdalen Islands (Gulf of St. Lawrence, Québec, Canada). Nitrate was the main dissolved organic nitrogen (DIN) compound with concentrations ranging from 2.2 to 95 μM. Ammonium was occasionally dominant and varied between 0.7 and 41 μM. Phosphate concentrations were low and extremely variable with values ranging from 0.2 μM to 2 μM. All three inorganic nutrients were positively correlated and the relationships best described by a non-linear regression model. NH4+:NO3 atomic ratios fell within the range of those previously measured, i.e. the northeast part of North America, and suggest a continental origin for both DIN and phosphate. Measured pH values failed to show high levels of acidity (pH=4.8 ±0.4).For the lagoonal system of the Magdalen Islands, atmospheric deposition is the major source of nitrate during the summer period we surveyed. In such an ecosystem the atmospheric inputs of DIN are greater than those from the sediment and may at times contribute up to 70% of the phytoplankton primary production requirements. In contrast, phosphate of rain origin was only of marginal importance relative to sediment inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号