首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seismic data reconstruction, as a preconditioning process, is critical to the performance of subsequent data and imaging processing tasks. Often, seismic data are sparsely and non-uniformly sampled due to limitations of economic costs and field conditions. However, most reconstruction processing algorithms are designed for the ideal case of uniformly sampled data. In this paper, we propose the non-equispaced fast discrete curvelet transform-based three-dimensional reconstruction method that can handle and interpolate non-uniformly sampled data effectively along two spatial coordinates. In the procedure, the three-dimensional seismic data sets are organized in a sequence of two-dimensional time slices along the source–receiver domain. By introducing the two-dimensional non-equispaced fast Fourier transform in the conventional fast discrete curvelet transform, we formulate an L1 sparsity regularized problem to invert for the uniformly sampled curvelet coefficients from the non-uniformly sampled data. In order to improve the inversion algorithm efficiency, we employ the linearized Bregman method to solve the L1-norm minimization problem. Once the uniform curvelet coefficients are obtained, uniformly sampled three-dimensional seismic data can be reconstructed via the conventional inverse curvelet transform. The reconstructed results using both synthetic and real data demonstrate that the proposed method can reconstruct not only non-uniformly sampled and aliased data with missing traces, but also the subset of observed data on a non-uniform grid to a specified uniform grid along two spatial coordinates. Also, the results show that the simple linearized Bregman method is superior to the complex spectral projected gradient for L1 norm method in terms of reconstruction accuracy.  相似文献   

2.
不规则采样地震数据的重建是地震数据分析处理的重要问题.本文给出了一种基于非均匀快速傅里叶变换的最小二乘反演地震数据重建的方法,在最小二乘反演插值方程中,引入正则化功率谱约束项,通过非均匀快速傅里叶变换和修改周期图的方式,自适应迭代修改约束项,使待插值数据的频谱越来越接近真实的频谱,采用预条件共轭梯度法迭代求解,保证了解的稳定性和收敛速度.理论模型和实际地震数据插值试验证明了本文方法能够去除空间假频,速度快、插值效果好,具有实用价值.  相似文献   

3.
Classical least‐squares techniques (Moore–Penrose pseudoinverse) are covariance based and are therefore unsuitable for the solution of very large‐scale linear systems in geophysical inversion due to the need of diagonalisation. In this paper, we present a methodology to perform the geophysical inversion of large‐scale linear systems via the discrete wavelet transform. The methodology consists of compressing the linear system matrix using the interesting properties of covariance‐free orthogonal transformations, to design an approximation of the Moore–Penrose pseudoinverse. We show the application of the discrete wavelet transform pseudoinverse to well‐conditioned and ill‐conditioned linear systems. We applied the methodology to a general‐purpose linear problem where the system matrix has been generated using geostatistical simulation techniques and also to a synthetic 2D gravimetric problem with two different geological set‐ups, in the noise‐free and noisy cases. In both cases, the discrete wavelet transform pseudoinverse can be applied to the original linear system and also to the linear systems of normal equations and minimum norm. The results are compared with those obtained via the Moore–Penrose and the discrete cosine transform pseudoinverses. The discrete wavelet transform and the discrete cosine transform pseudoinverses provide similar results and outperform the Moore–Penrose pseudoinverse, mainly in the presence of noise. In the case of well‐conditioned linear systems, this methodology is more efficient when applied to the least‐squares system and minimum norm system due to their higher condition number that allows for a more efficient compression of the system matrix. Also, in the case of ill‐conditioned systems with very high underdetermined character, the application of the discrete cosine transform to the minimum norm solution provides very good results. Both solutions might differ on their regularity, depending on the wavelet family that is adopted. These methods have a general character and can be applied to solve any linear inverse problem arising in technology, particularly in geophysics, and also to non‐linear inversion by linearisation of the forward operator.  相似文献   

4.
在野外数据采集过程中,空间非均匀采样下的地震道缺失现象经常出现,为了不影响后续资料处理,必须进行高精度数据重建.然而大多数常规方法只能对空间均匀采样下的地震缺失道进行重建,而对于非均匀采样的地震数据则无能为力.为此本文在以往多尺度多方向二维曲波变换的基础上,首先引入非均匀快速傅里叶变换,建立均匀曲波系数与空间非均匀采样下地震缺失道数据之间的规则化反演算子,在L1最小范数约束下,使用线性Bregman方法进行反演计算得到均匀曲波系数,最后再进行均匀快速离散曲波反变换,从而形成基于非均匀曲波变换的高精度地震数据重建方法.该方法不仅可以重建非均匀带假频的缺失数据,而且具有较强的抗噪声能力,同时也可以将非均匀网格数据归为到任意指定的均匀采样网格.理论与实际数据的处理表明了该方法重建效果远优于非均匀傅里叶变换方法,可以有效地指导复杂地区数据采集设计及重建.  相似文献   

5.
反假频非均匀地震数据重建方法研究   总被引:38,自引:14,他引:24       下载免费PDF全文
研究基于Fourier变换的数据重建方法,既能进行非均匀采样数据重建,又可以去除空间假频. 将不规则采样数据重建问题归结为信息重建的地球物理反演问题,采用最小二乘方法从观测的稀疏或不规则数据反演模型空间完全信息. 在求解信息重建反演问题时,引入DFT 加权范数规则化策略,采用预条件共轭梯度法(PCG)求解,保证解的稳定性和收敛速度. 处理线性同相轴假频问题时,根据采样定理,引入线性预测方法,采用Yule Walker方程由带限信号的无假频低频功率谱预测高频功率谱,达到反假频目的. 本文研究了均匀采样数据内插,非均匀采样数据重建,非均匀分布高频信息重建等方面问题,数值试验取得较好效果.  相似文献   

6.
This paper describes least‐squares reverse‐time migration. The method provides the exact adjoint operator pair for solving the linear inverse problem, thereby enhancing the convergence of gradient‐based iterative linear inversion methods. In this formulation, modified source wavelets are used to correct the source signature imprint in the predicted data. Moreover, a roughness constraint is applied to stabilise the inversion and reduce high‐wavenumber artefacts. It is also shown that least‐squares migration implicitly applies a deconvolution imaging condition. Three numerical experiments illustrate that this method is able to produce seismic reflectivity images with higher resolution, more accurate amplitudes, and fewer artefacts than conventional reverse‐time migration. The methodology is currently feasible in 2‐D and can naturally be extended to 3‐D when computational resources become more powerful.  相似文献   

7.
武利钧  冯锐 《地震学报》1989,11(2):170-180
由Radon变换出发给出了地震走时问题的——变换.定义模型坐标(x,z)与震源位置()和射线斜率()间的线性关系为x=+z.文中给出了-正反变换的理论公式,并分析了-变换与富氏变换的关系。理论表明,连续函数的-变换可得到走时反演问题的唯一解。 在地震学非完全层析成象中,欲提高图象质量必须压制假频和提高分辨.作者对重建图象的分辨进行了详细讨论,最后通过数值模拟讨论了观测系统和滤波处理的影响。   相似文献   

8.
We discuss the inverse medium problem associated with the reconstruction of the heterogeneous material profile of a semi-infinite (layered) soil medium, directly in the time domain, based on the complete waveform response of the medium to interrogating waves. To tackle the inversion process, we use a partial-differential-equation-constrained optimization approach, supplemented with a time-dependent regularization scheme. We introduce an absorbing boundary to truncate the semi-infinite extent of the physical domain, and propose two schemes to refine the reconstructed profiles: the first is based on iteratively re-positioning the truncation boundary until convergence, and the second is based on optimizing the observation period, so as to exclude records with information beyond the truncation boundary. We present numerical results that attest to the efficacy of the proposed schemes in reconstructing sharp profiles of semi-infinite soil domains using both noise-free and noisy data, while in the presence of absorbing boundaries.  相似文献   

9.
In this paper, we present a methodology to perform geophysical inversion of large‐scale linear systems via a covariance‐free orthogonal transformation: the discrete cosine transform. The methodology consists of compressing the matrix of the linear system as a digital image and using the interesting properties of orthogonal transformations to define an approximation of the Moore–Penrose pseudo‐inverse. This methodology is also highly scalable since the model reduction achieved by these techniques increases with the number of parameters of the linear system involved due to the high correlation needed for these parameters to accomplish very detailed forward predictions and allows for a very fast computation of the inverse problem solution. We show the application of this methodology to a simple synthetic two‐dimensional gravimetric problem for different dimensionalities and different levels of white Gaussian noise and to a synthetic linear system whose system matrix has been generated via geostatistical simulation to produce a random field with a given spatial correlation. The numerical results show that the discrete cosine transform pseudo‐inverse outperforms the classical least‐squares techniques, mainly in the presence of noise, since the solutions that are obtained are more stable and fit the observed data with the lowest root‐mean‐square error. Besides, we show that model reduction is a very effective way of parameter regularisation when the conditioning of the reduced discrete cosine transform matrix is taken into account. We finally show its application to the inversion of a real gravity profile in the Atacama Desert (north Chile) obtaining very successful results in this non‐linear inverse problem. The methodology presented here has a general character and can be applied to solve any linear and non‐linear inverse problems (through linearisation) arising in technology and, particularly, in geophysics, independently of the geophysical model discretisation and dimensionality. Nevertheless, the results shown in this paper are better in the case of ill‐conditioned inverse problems for which the matrix compression is more efficient. In that sense, a natural extension of this methodology would be its application to the set of normal equations.  相似文献   

10.
In this paper we discuss a beyond‐alias multidimensional implementation of the multi‐step autoregressive reconstruction algorithm for data with missing spatial samples. The multi‐step autoregressive method is summarized as follows: vital low‐frequency information is first regularized adopting a Fourier based method (minimum weighted norm interpolation); the reconstructed data are then used to estimate prediction filters that are used to interpolate higher frequencies. This article discusses the implementation of the multi‐step autoregressive method to data with more than one spatial dimension. Synthetic and real data examples are used to examine the performance of the proposed method. Field data are used to illustrate the applicability of multidimensional multi‐step autoregressive operators for regularization of seismic data.  相似文献   

11.
位场向下延拓的波数域广义逆算法   总被引:4,自引:5,他引:4       下载免费PDF全文
位场向下延拓是位场数据处理和反演中的重要运算,但是它的不稳定性影响了它在许多处理和反演方法技术中的应用.本文通过把位场向下延拓视为向上延拓的反问题,得到向下延拓的褶积型线性积分方程,再利用Fourier变换矩阵的正交对称特性,并结合矩阵的奇异值分解和广义逆原理,提出了一种稳定的不需要进行求逆运算的位场向下延拓广义逆方法——波数域广义逆算法,解决了位场大深度向下延拓的不稳定性问题.把这种方法用于三维理论模型数据和实际磁场数据的向下延拓获得了理想的结果.  相似文献   

12.
Seismic wavefield reconstruction is posed as an inversion problem where, from inadequate and incomplete data, we attempt to recover the data we would have acquired with a denser distribution of sources and receivers. A minimum weighted norm interpolation method is proposed to interpolate prestack volumes before wave-equation amplitude versus angle imaging. Synthetic and real data were used to investigate the effectiveness of our wavefield reconstruction scheme when preconditioning seismic data for wave-equation amplitude versus angle imaging.  相似文献   

13.
基于非均匀Fourier变换的地震数据重建方法研究   总被引:3,自引:2,他引:1       下载免费PDF全文
不规则采样地震数据会对地震数据的多道处理造成严重影响,将非均匀Fourier变换和贝叶斯参数反演方法相结合,对不规则空间带限地震数据进行反演重建.对每一个频率依据最小视速度确定出重建数据的带宽,然后从不规则地震数据中估计出重建数据的空间Fourier系数.将不规则地震数据重建视为信息重建的地球物理反演问题,运用贝叶斯参数反演理论来估计Fourier系数.在反演求解时,使用共轭梯度算法,以保证求解的稳定性,加快解的收敛速度.理论模型和实际资料处理验证了本方法的有效性和实用性.  相似文献   

14.
Fourier reconstruction with sparse inversion   总被引:2,自引:0,他引:2  
The problem of seismic data reconstruction is posed as an inverse problem where the objective is to obtain the Fourier coefficients that synthesize the signal. Once the coefficients have been found, they are used to reconstruct the data on a uniformly spaced grid. A non‐quadratic model weight function is included to stabilize the inversion and to provide the additional information required to interpolate through gaps. In the reconstruction of a non‐uniformly sampled trace, an image and a marine 3D VSP shot‐record, the method shows improved reconstruction in large gaps and is less sensitive to the spatial bandwidth used in the inversion compared to Fourier reconstruction without the non‐quadratic model weight function.  相似文献   

15.
Seismic data contain random noise interference and are affected by irregular subsampling. Presently, most of the data reconstruction methods are carried out separately from noise suppression. Moreover, most data reconstruction methods are not ideal for noisy data. In this paper, we choose the multiscale and multidirectional 2D curvelet transform to perform simultaneous data reconstruction and noise suppression of 3D seismic data. We introduce the POCS algorithm, the exponentially decreasing square root threshold, and soft threshold operator to interpolate the data at each time slice. A weighing strategy was introduced to reduce the reconstructed data noise. A 3D simultaneous data reconstruction and noise suppression method based on the curvelet transform was proposed. When compared with data reconstruction followed by denoizing and the Fourier transform, the proposed method is more robust and effective. The proposed method has important implications for data acquisition in complex areas and reconstructing missing traces.  相似文献   

16.
Electrical resistivity tomography is a non-linear and ill-posed geophysical inverse problem that is usually solved through gradient-descent methods. This strategy is computationally fast and easy to implement but impedes accurate uncertainty appraisals. We present a probabilistic approach to two-dimensional electrical resistivity tomography in which a Markov chain Monte Carlo algorithm is used to numerically evaluate the posterior probability density function that fully quantifies the uncertainty affecting the recovered solution. The main drawback of Markov chain Monte Carlo approaches is related to the considerable number of sampled models needed to achieve accurate posterior assessments in high-dimensional parameter spaces. Therefore, to reduce the computational burden of the inversion process, we employ the differential evolution Markov chain, a hybrid method between non-linear optimization and Markov chain Monte Carlo sampling, which exploits multiple and interactive chains to speed up the probabilistic sampling. Moreover, the discrete cosine transform reparameterization is employed to reduce the dimensionality of the parameter space removing the high-frequency components of the resistivity model which are not sensitive to data. In this framework, the unknown parameters become the series of coefficients associated with the retained discrete cosine transform basis functions. First, synthetic data inversions are used to validate the proposed method and to demonstrate the benefits provided by the discrete cosine transform compression. To this end, we compare the outcomes of the implemented approach with those provided by a differential evolution Markov chain algorithm running in the full, un-reduced model space. Then, we apply the method to invert field data acquired along a river embankment. The results yielded by the implemented approach are also benchmarked against a standard local inversion algorithm. The proposed Bayesian inversion provides posterior mean models in agreement with the predictions achieved by the gradient-based inversion, but it also provides model uncertainties, which can be used for penetration depth and resolution limit identification.  相似文献   

17.
Least squares migration uses the assumption that, if we have an operator that can create data from a reflectivity function, the optimal image will predict the actual recorded data with minimum square error. For this assumption to be true, it is also required that: (a) the prediction operator must be error-free, (b) model elements not seen by the operator should be constrained by other means and (c) data weakly predicted by the operator should make limited contribution to the solution. Under these conditions, least squares migration has the advantage over simple migration of being able to remove interference between different model components. Least squares migration does that by de-convolving or inverting the so-called Hessian operator. The Hessian is the cascade of forward modelling and migration; for each image point, it computes the effects of interference from other image points (point-spread function) given the actual recording geometry and the subsurface velocity model. Because the Hessian contains illumination information (along its diagonal), and information about the model cross-correlation produced by non-orthogonality of basis functions, its inversion produces illumination compensation and increases resolution. In addition, sampling deficiencies in the recording geometry map to the Hessian (both diagonal and non-diagonal elements), so least squares migration has the potential to remove sampling artefacts as well. These (illumination compensation, resolution and mitigating recording deficiencies) are the three main goals of least squares migration, although the first one can be achieved by cheaper techniques. To invert the Hessian, least squares migration relies on the residual errors during iterations. Iterative algorithms, like conjugate gradient and others, use the residuals to calculate the direction and amplitudes (gradient and step size) of the necessary corrections to the reflectivity function or model. Failure of conditions (a), (b) or (c) leads the inversion to calculate incorrect model updates, which translate to noise in the final image. In this paper, we will discuss these conditions for Kirchhoff migration and reverse time migration.  相似文献   

18.
Full waveform inversion is a powerful tool for quantitative seismic imaging from wide‐azimuth seismic data. The method is based on the minimization of the misfit between observed and simulated data. This amounts to the solution of a large‐scale nonlinear minimization problem. The inverse Hessian operator plays a crucial role in this reconstruction process. Accounting accurately for the effect of this operator within the minimization scheme should correct for illumination deficits, restore the amplitude of the subsurface parameters, and help to remove artefacts generated by energetic multiple reflections. Conventional minimization methods (nonlinear conjugate gradient, quasi‐Newton methods) only roughly approximate the effect of this operator. In this study, we are interested in the truncated Newton minimization method. These methods are based on the computation of the model update through a matrix‐free conjugate gradient solution of the Newton linear system. We present a feasible implementation of this method for the full waveform inversion problem, based on a second‐order adjoint state formulation for the computation of Hessian‐vector products. We compare this method with conventional methods within the context of 2D acoustic frequency full waveform inversion for the reconstruction of P‐wave velocity models. Two test cases are investigated. The first is the synthetic BP 2004 model, representative of the Gulf of Mexico geology with high velocity contrasts associated with the presence of salt structures. The second is a 2D real data‐set from the Valhall oil field in North sea. Although, from a computational cost point of view, the truncated Newton method appears to be more expensive than conventional optimization algorithms, the results emphasize its increased robustness. A better reconstruction of the P‐wave velocity model is provided when energetic multiple reflections make it difficult to interpret the seismic data. A better trade‐off between regularization and resolution is obtained when noise contamination of the data requires one to regularize the solution of the inverse problem.  相似文献   

19.
We discuss recent progress in the full-waveform-based imaging of probed soils, with geotechnical site characterization applications in mind. The primary goal is the reconstruction of the material profile of near-surface, arbitrarily heterogeneous formations, in terms of the formation's spatially distributed elastic properties, using elastic waves as the probing agent.We describe first the formulation and numerical resolution of the underlying time-dependent inverse medium problem; we report briefly on numerical experiments using synthetic data and artificial target soil profiles. These demonstrate robust reconstruction. We then report extensively on the details of a field experiment, whose records we subsequently used to drive the inversion algorithms in order to characterize the site where the field experiment took place. Lastly, we compare the inverted site profile with profiles obtained using the Spectral-Analysis-of-Surface-Waves (SASW) method, in an attempt to compare our methodology against a widely used concurrent inversion approach. We also compare the inverted profile at select locations with the results of independently performed CPT tests.Overall, whether exercised by synthetic or by physical data, the full waveform inversion method we discuss herein appears quite promising for the robust subsurface imaging of near-surface deposits in support of geotechnical site characterization investigations.  相似文献   

20.
基于频域衰减的时域全波形反演   总被引:1,自引:1,他引:0       下载免费PDF全文
郭雪豹  刘洪  石颖 《地球物理学报》2016,59(10):3777-3787
时域全波形反演由于采用了全频段信息,因此在迭代过程中不同波长的信息不能由低到高的逐步重建,极易陷入局部极小值.本文通过分频段的方式,对地震数据做正反傅里叶变换,利用频域指数衰减的方法逐级分离出地震数据中的高频成分,在时域上实现由低频向高频的波形反演,从而降低了反演的非线性,使不同波长的信息得到稳步恢复.同时,在高频成分衰减的过程中,后至波的能量也被削弱,由此也降低了深层反射在初始反演过程中的干扰.整个反演仅增加对数据做正反傅里叶变换过程,相较于混合域反演,无需提取全部波场的相应频率成分.在计算效率方面,利用GPU进行加速,并采用CUDA自带函数库中cufft来提高计算效率.通过对Marmousi模型测试,验证了所述方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号