首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Alkaline-basic dike from the Yllymakh Massif (Central Aldan) has been studied. Its partially crystallized matrix contains corroded phenocrysts of olivine and hypidiomorphic phenocrysts of clinopyroxene and pseudo-, epileucite. It was found that phenocrysts of clinopyroxene contain abundant primary inclusions, Ti-magnetite and apatite bear only single inclusions, whereas olivine is enriched in secondary inclusions, which are confined to the cleavage of host mineral (along second and third pinacoids) and its cracks. The homogenization temperatures of the primary inclusions in clinopyroxene and secondary inclusions in olivine are approximately equal and lie within 1260–1240°C. The compositions of melt inclusions in olivine and clinopyroxene are also similar and corresponded to the malignite-pseudoleucite phonolite-monzonite pulaskites, which are developed at the Yllymakh Massif. Unheated inclusions in apatite and Ti-magnetite compositionally approach monzonites and nepheline syenites—tinguaites, respectively. It was concluded that the alkaline basaltoid magma was presumably parental magma for the entire rock complex of the Yllymakh Massif. Its crystallization and differentiation presumably provided all observed rock variety from ultrabasics (early derivatives located at depth) and malignites (later derivatives) to leucite phonolites, monzonites, and alkaline pulaskites, which were obtained during subsequent stages of the melt evolution. The parental magma, and especially its derivatives, were enriched in BaO (0.8–0.1 wt %), Cl (0.1–0.3 wt %) and trace elements (primarily, LREE and MREE), which are several times higher than mantle values. At the same time, ion microprobe (SIMS) study showed that derivative melts were dry: contained only 0.01–1.13 wt % H2O. The trend of melts conserved in the minerals and the massif rocks corresponds to the evolution of alkalinebasaltoid magma with increase in Si, Al, alkalis and decrease in Mg, Ca, and Fe, i.e. the Bowen trend. The considered alkaline-basic dike was presumably formed from the derivative of leucite-phonolite melt, which during emplacement captured olivine xenocrysts from previously fractionated ultrabasic rocks. The parental magma was presumably derived by high-degree melting of garnet-spinel-facies depleted mantle at some influence of crustal material.  相似文献   

2.
In this paper we describe the mineralogy and geochemistry of basanites and melt inclusions in minerals from the Tergesh pipe, northern Minusinsk Depression. The rocks are composed of olivine and clinopyroxene phenocrysts and a groundmass of olivine, clinopyroxene, titanomagnetite, plagioclase, apatite, ilmenite, and glass. Melt inclusions were found only in the olivine and clinopyroxene phenocrysts. Primary melt inclusions in olivine contain glass, rh?nite, clinopyroxene, a sulfide globule, and low-density fluid. The phase composition of melt inclusions in clinopyroxene is glass + low-density fluid ± xenogenous magnetite. According to thermometric investigations, the olivine phenocrysts began crystallizing at T = 1280–1320°C and P > 3.5 kbar, whereas groundmass minerals were formed under near-surface conditions at T ≤ 1200°C. The oxygen fugacity gradually changed during basanite crystallization from oxidizing (NNO) to more reducing conditions (QFM). The investigation of glass compositions (heated and unheated inclusions in phenocrysts and groundmass) showed that the evolution of a basanite melt during its crystallization included mainly an increase in SiO2, Al2O3, and alkalis, while a decrease in femic components, and the melt composition moved gradually toward tephriphonolite and trachyandesite. Geochemical evidence suggests that the primary basanite melt was derived from a mantle source affected by differentiation. Original Russian Text ? T.Yu. Timina, V.V. Sharygin, A.V. Golovin, 2006, published in Geokhimiya, 2006, No. 8, pp. 814–833.  相似文献   

3.
Melt inclusions in clinopyroxenes of olivine foidite bombs from Serra di Constantinopoli pyroclastic flows of the Vulture volcano (Southern Italy) were studied in detail. The rocks contain abundant zoned phenocrysts and xenocrysts of clinopyroxene, scarce grains of olivine, leucite, haüyne, glass with microlites of plagioclase and K-feldspar. The composition of clinopyroxene in xenocrysts (Cpx I), cores (Cpx II), and in rims (Cpx III) of phenocrysts differs in the content of Mg, Fe, Ti, and Al. All clinopyroxenes contain two types of primary inclusion-pure silicate and of silicate-carbonate-salt composition. This fact suggests that the phenomena of silicate-carbonate immiscibility took place prior to crystallization of clinopyroxene. Homogenization of pure silicate inclusions proceeded at 1 225 – 1 190°C. The composition of conserved melts corresponded to that of olivine foidite in Cpx I, to tephrite-phonolite in Cpx II, and phonolite-nepheline trachyte in Cpx III. The amount of water in them was no more than 0.9 wt.%. Silicate-carbonate inclusions decrepitated on heating. Salt globules contained salts of alkali-sulphate, alkali-carbonate, and Ca-carbonate composition somewhat enriched in Ba and Sr. This composition is typical of carbonatite melts when decomposed into immiscible fractions. The formation of sodalite-haüyne rocks from Vulture is related to the presence of carbonate-salt melts in magma chamber. The melts conserved in clinopyroxenes were enriched in incompatible elements, especially in Cpx III. High ratios of La, Nb, and Ta in melts on crystallization of Cpx I and Cpx II suggest the influence of a carbonatite melt as carbonatites have extremely high La/Nb and Nb/Ta and this is confirmed by the appearance of carbonatite melts in magma chamber. Some anomalies in the concentrations and relatives values of Eu and especially Ga seems typical of Italian carbonatite related melts. The mantle source for initial melts was, most likely, rather uniform, undepleted and was characterized by a low degree of melting and probable presence of garnet in restite.  相似文献   

4.
There are many melt and fluid inclusions (mainly CO2-rich) in olivine and pyroxene phenocrysts in basalts from the Ross Island area. The melt inclusions can be classified as follows: (1) crystalline melt inclusions (type I), (2) fluid-melt inclusions (type II) and (3) glass inclusions (type III). The daughter minerals in type I include olivine, plagioclase, ilmenite, etc. Fluid-melt inclusions are a new type which represent the immiscibility of magma and fluid at a particular stage of evolution. Three types of fluid-melt inclusions were examined in this study: a) crystal + liquid + gas, b) inclusions coexisting with glass inclusions and fluid inclusions, and c) crystal + daughter mineral (dissolved salt) + gas. Both primary and secondary melt inclusions are recognizable in the samples. The secondary melt inclusions were formed during healing of fractures in the host minerals in the process of magma rise. The homogenization temperatures (both Leitz 1350 stage and quench method were used) of melt inclusions in basalts range from 1190 to 135°C at high pressure (about 7 kbars), indicating that the basalts may have come from the upper mantle. Melt-fluid immiscibility in basaltic magma shows that the CO2-rich fluids may be the main fluid phase in the upper mantle, which are of significance in understanding the evolution of magma and various processes in the deep levels of the earth. The homogenization temperatures of melt and aqueous fluid inclusions in granites and metamorphic rocks in this area vary from 980 to 1100°C and 279 to 350°C, respectively.  相似文献   

5.
Melt and fluid inclusions were studied in the minerals of Cenozoic olivine melanephelinites from the Chukchi Peninsula, Russia.The rock contain several generations of olivine phenocrysts varying in composition at mg=0.88~0.77.The phenocrysts bear fluid and melt inclusions recording various stages of melt crystallization in volcanic conduits and shallow magma chambers.Primary fluid inclusions are CO_2-dominated with a density of up to O.93 g/cm~3.All fluid inclusions are partially leaked,which is indicated by haloes of tiny fluid bubbles around large fluid inclusions in minerals.Melt inclusions contain various daughter crystals,which were completely resorbed in thermometric experiments at about 1230℃.Assuming that this temperature corresponds to the entrapment conditions of the CO_2 fluid inclusions,the minimum pressure of the beginning of magma degassing is estimated as 800MPa.Variations in the compositions of homogenized silicate melt inclusions indicate that olivine was the earliest crystalline phase followed by clinopyroxene,nepheline and orthoclase.This sequence is in agreement with the mineralogy of the rocks.The melts are strongly enriched in incompatible trace elements and volatiles(in addition to CO_2,high C1,F,and S contents were detected).There are some differences between the compositions of melts trapped in minerals from different samples.Variations in SiO_2,FeO,and incompatible element contents are probably related to melt generations at various levels in a homogeneous mantle reservoir.  相似文献   

6.
Olivinites of the Krestovskaya Intrusion consist of predominant amount of olivine, and minor Ti-magnetite, perovskite, and clinopyroxene (from single grain to a few vol %). Primary crystallized melt inclusions were found and studied in olivine, perovskite, and diopside of the olivinites. Daughter phases in olivine-hosted melt inclusions are monticellite, perovskite, kalsilite, phlogopite, magnetite, apatite, and garnet andradite. Perovskite-hosted melt inclusions contain such daughter phases as kalsilite, pectolite, clinopyroxene, biotite, magnetite, and apatite, while daughter phases in clinopyroxene-hosted melt inclusions are represented by kalsilite, phlogopite, magnetite, and apatite. According to melt inclusion heating experiments, olivine crystallized from above 1230°C to 1180°C. It was followed by perovskite crystallizing at ≥1200°C and clinopyroxene, at 1170°C. According to analysis of quenched glass of the melt inclusions, the chemical composition of melts hosted in the minerals corresponds to the larnite-normative alkali ultramafic (kamafugite) magma significantly enriched in incompatible elements. The high incompatible element concentrations, its distribution, and geochemical indicator ratios evidenced that the magma was derived by the partial melting of garnet-bearing undepleted mantle.  相似文献   

7.
The paper presents data on primary carbonate–silicate melt inclusions hosted in diopside phenocrysts from kalsilite melilitite of Cupaello volcano in Central Italy. The melt inclusions are partly crystalline and contain kalsilite, phlogopite, pectolite, combeite, calcite, Ba–Sr carbonate, baryte, halite, apatite, residual glass, and a gas phase. Daughter pectolite and combeite identified in the inclusions are the first finds of these minerals in kamafugite rocks from central Italy. Our detailed data on the melt inclusions in minerals indicate that the diopside phenocrysts crystallized at 1170–1190°C from a homogeneous melilitite magma enriched in volatile components (CO2, 0.5–0.6 wt % H2O, and 0.1–0.2 wt % F). In the process of crystallization at the small variation in P-T parameters two-phase silicate-carbonate liquid immiscibility occurred at lower temperatures (below 1080–1150°C), when spatially separated melilitite silicate and Sr-Ba-rich alkalicarbonate melts already existed. The silicate–carbonate immiscibility was definitely responsible for the formation of the carbonatite tuff at the volcano. The melilitite melt was rich in incompatible elements, first of all, LILE and LREE. This specific enrichment of the melt in these elements and the previously established high isotopic ratios are common to all Italian kamafugites and seem to be related to the specific ITEM mantle source, which underwent metasomatism and enrichment in incompatible elements.  相似文献   

8.
Compositional relations among natural glasses in basalts recovered by Legs 45 and 46 (DSDP) provide powerful constraints on their differentiation histories. Residual glass compositions in the moderately evolved aphyric and abundantly phyric basalts within each site demonstrate that none of the units is mutually related to any other or to a common parent by simple fractional crystallization. At Site 396, where clinopyroxene phenocrysts are absent, progressively more evolved liquids (lower Mg/ (Mg+Fe) and higher TiO2) are characterized by lower calcium-aluminum ratios, which can only be generated by clinopyroxene fractionation. This paradox is amplified by some melt inclusions in olivine phenocrysts that have higher CaO/Al2O3 and lower TiO2 than any residual glasses. The occurrences of these distinctive compositions are correlated with the highly magnesian character of the host olivines (Fo90–89), and the melts are interpreted as trapped primitive liquids, parental to the more fractionated derivatives.Melt inclusions intermediate in composition between the residual glasses and the most primitive olivine melt inclusions are present in the cores of some plagioclase phenocrysts that have had a history of resorption. On the basis of a petrographic and microprobe analysis of the zoning relations in these phenocrysts, the inclusions are inferred to be melts entrapped at the time of extensive corrosion of the host crystals.Interpreted in conjunction with other mineral and geochemical data, the compositional trends in the glasses indicate that magma mixing has played a major role in the genesis of the Leg 45 and 46 basalts. The reality of mixing is demonstrated by extensive disequilibrium textures in the plagioclase phenocrysts and the presence in evolved lavas of refractory plagioclase and olivine phenocrysts bearing primitive melt inclusions. The chemical imprint of clinopyroxene fractionation despite the absence of clinopyroxene phenocrysts is believed to be accomplished by plating of gabbro on to the upper walls of the subvolcanic magma chamber as it evolves between mixing events. Repeated influxes of primitive magma batches will move the resultant hybrids alway from clinopyroxene saturation and generate olivine-plagioclase cotectic magmas. This model provides a physical buffering mechanism that accounts for the volumetric dominance of moderately evolved basalts among ocean floor tholeiites. Major and trace element models based on the combination of mixing and fractional crystallization also explain heretofore enigmatic geochemical characteristics of MORB.Lunar and Planetary Institute Contribution no. 326After August 1, 1978: Department of Geological Sciences, Southern Methodist University, Dallas, TX 75275, USAThe Lunar and Planetary Institute is operated by the Universities Space Research Association under Contract No. NSR 09-051-001 with the National Aeronautics and Space Administration  相似文献   

9.
玄武岩斑晶中熔体包裹体成分特征可以推断玄武岩源区物质组成,反映岩浆形成演化过程。利用LA—ICPMS对四合屯义县组玄武岩橄榄石、单斜辉石斑晶中单个熔体包裹体的元素组成进行了分析测试。研究结果表明,橄榄石、单斜辉石斑晶中的熔体包裹体在主、微量元素含量上表现出了比全岩更大的变化范围,但微量元素分配特征总体和全岩一致。单斜辉石斑晶中包裹体的CaO含量、CaO/Al2O3比值和Cr2O3含量随着单斜辉石Mg#值的降低而降低,反映了单斜辉石结晶分离的影响,Al2O3与Sr之间的显著相关关系则记录了斜长石结晶分离作用的影响,MgO—Ni和MgO—CaO/Al2O3的变化则反映了橄榄石的分离结晶作用。包裹体元素组成变化总体受橄榄石、单斜辉石和斜长石的结晶分离作用控制。结合前人研究成果,认为四合屯玄武岩在微量元素和同位素组成上的壳源组分特征可能部分地继承自原岩(即橄榄岩+榴辉岩部分熔融体反应形成的(橄榄)辉石岩),而不是岩浆上升过程中受地壳岩石混染的结果。高Mg#值单斜辉石斑晶中少量高Mg馆、高Si含量,低CaO、TiO2、Al2O3和微量元素含量的熔体包裹体反映玄武岩浆上升过程中受到了S1质岩石的混染,这与义县组玄武岩下伏地层为长城系大红裕组石英岩、石英砂岩的地质特征一致。因此,高Fo橄榄石斑晶中的熔体包裹体比采用向全岩中简单添加橄榄石方式计算出的原始熔体可能更能真实反映原始熔体组成。  相似文献   

10.
Melt inclusions and fluid inclusions in the Fangcheng basalt were investigated to understand the magma evolution and fluid/melt-peridotite interaction. Primary silicate melt inclusions were trapped in clinopyroxene and orthopyroxene phenocrysts in the Fangcheng basalt. Three types of melt inclusions (silicate, carbonate, and sulfide) coexisting with fluid inclusions occur in clinopyroxene xenocrysts and clinopyroxene in clinopyroxenite xenoliths. In situ laser-ablation ICP-MS analyses of major and trace element compositions on individual melt inclusions suggest that the silicate melt inclusions in clinopyroxene and orthopyroxene phenocrysts were trapped from the same basaltic magma. The decoupling of major and trace elements in the melt inclusions indicates that the magma evolution was controlled by melt crystallization and contamination from entrapped ultramafic xenoliths. Trace element patterns of melt inclusions are similar to those of the average crust of North China Craton and Yangtze Craton, suggesting a considerable crustal contribution to the magma source. Calculated parental melt of the Fangcheng basalt has features of low MgO (5.96 wt%), high Al2O3 (16.81 wt%), Sr (1,670 ppm), Y (>35 ppm), and high Sr/Y (>40), implying that subducted crustal material was involved in the genesis of the Fangcheng basalt. The coexisting fluid and melt inclusions in clinopyroxene xenocrysts and in clinopyroxene of xenoliths record a rare melt-peridotite reaction, that is olivine + carbonatitic melt1 (rich in Ca) = clinopyroxene + melt2 ± CO2. The produced melt2 is enriched in LREE and CO2 and may fertilize the mantle significantly, which we consider to be the cause for the rapid replacement of lithospheric mantle during the Mesozoic in the region.  相似文献   

11.
The study of melt microinclusions in olivine megacrysts from meimechites and alkali picrites of the Maimecha–Kotui alkali ultramafic and carbonatite province (Polar Siberia) revealed that the melt compositions corrected for loss of olivine due to post-entrapment crystallization of olivine on inclusion walls (differentiates of primary meimechite magma) match well to the composition of nephelinites and olivine melilitites belonging to carbonatite magmatic series. Modeling of fractional crystallization of meimechite magmas results in the high-alkali melt compositions corresponding to the silicate–carbonate liquid immiscibility field. The appearance of volatile-rich melts at the base of magma-generating plume systems at early stages of partial melting can be explained by extraction of incompatible elements including volatiles, by near-solidus melts at low degrees of partial melting, and meimechites are an example of such magmas. Subsequent accumulation of CO2 in the residual melt results in generation of carbonate magma.  相似文献   

12.
大兴安岭地幔橄榄岩中熔体的多样性及其成因   总被引:1,自引:1,他引:0  
本文报道了大兴安岭第四纪火山岩中的地幔橄榄岩中橄榄石、单斜辉石和斜方辉石颗粒内部熔体产状(囊体、包裹体和反应边)和成分(低硅熔体和高硅熔体)的多样性,初步讨论了不同熔体的成因。低硅熔体囊体是在地幔深部玄武岩浆与橄榄岩中单斜辉石发生交代反应的产物,斜方辉石反应边的高硅熔体是橄榄岩被捕获上升过程中玄武岩浆与斜方辉石反应的产物,高硅熔体包裹体是地幔中存在的交代熔体。  相似文献   

13.
In this paper we report the results of the analysis of rare earth (REE), large-ion lithophile (LILE), and high field strength (HFSE) elements in minerals from the alkaline lamprophyre dikes of the Kola region and the Kaiserstuhl province by the local method of laser ablation inductively coupled plasma mass spectrometry. The contents of Y, Li, Rb, Ba, Th, U, Ta, Nb, Sr, Hf, Zr, Pb, Be, Sc, V, Cr, Ni, Co, Cu, Zn, Ga, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu were measured in olivine, melilite, clinopyroxene, amphibole, phlogopite, nepheline, apatite, perovskite, and the host fine-grained groundmass. The obtained data on trace element partitioning among the mineral phases of the alkaline ultrabasic rocks of the dike series indicate that the main mineral hosts for the HFSEs and REEs in alkaline picrites, olivine melanephelinites, and melilitites are perovskite and apatite comprising more than 90% of these elements. Among major rock-forming minerals, melilite, clinopyroxene, and highly magnesian amphibole make a significant contribution to the balance of REEs during the evolution of melanephelinite melts. The partition coefficients of Ni, Co, Cu, Zn, Sc, V, Cr, Ga, Y, Li, Rb, Ba, Th, U, Ta, Nb, Sr, Hf, Zr, Pb, Be, and all of the REEs were calculated for olivine, clinopyroxene, amphibole, phlogopite, nepheline, perovskite, and apatite on the basis of mineral/groundmass ratios. Variations in the composition of complex zoned clinopyroxene phenocrysts reflect the conditions of polybaric crystallization of melanephelinite melt, which began when the magmas arrived at the base of the lower crust and continued during the whole period of their ascent to the surface. The formation of green cores in clinopyroxene is an indicator of mixing between primary melanephelinite melts and phonolite magmas under upper mantle conditions. The estimation of the composition of primary melts for the rocks of the alkaline ultrabasic series of the Kola province indicated a single primary magma for the whole series. This magma produced pyroxene cumulates and complementary melilitolites, foidolites, and nepheline syenites.  相似文献   

14.
Mid-ocean ridge basalts (MORBs) from East Pacific Rise (EPR) 13°N are analysed for major and trace elements, both of which show a continuous evolving trend. Positive MgO–Al2O3 and negative MgO–Sc relationships manifest the cotectic crystallization of plagioclase and olivine, which exist with the presence of plagioclase and olivine phenocrysts and the absence of clinopyroxene phenocrysts. However, the fractionation of clinopyroxene is proven by the positive correlation of MgO and CaO. Thus, MORB samples are believed to show a “clinopyroxene paradox”. The highest magnesium-bearing MORB sample E13-3B (MgO=9.52%) is modelled for isobaric crystallization with COMAGMAT at different pressures. Observed CaO/Al2O3 ratios can be derived from E13-3B only by fractional crystallization at pressure >4 ±1 kbar, which necessitates clinopyroxene crystallization and is not consistent with cotectic crystallization of olivine plus plagioclase in the magma chamber (at pressure ~1 kbar). The initial compositions of the melt inclusions, which could represent potential parental magmas, are reconstructed by correcting for post-entrapment crystallization (PEC). The simulated crystallization of initial melt inclusions also produce observed CaO/Al2O3 ratios only at >4±1 kbar, in which clinopyroxene takes part in crystallization. It is suggested that MORB magmas have experienced clinopyroxene fractionation in the lower crust, in and below the Moho transition zone. The MORB magmas have experienced transition from clinopyroxene+plagioclase+olivine crystallization at >4±1 kbar to mainly olivine+plagioclase crystallization at <1 kbar, which contributes to the explanation of the “clinopyroxene paradox”.  相似文献   

15.
Melt inclusions were investigated in olivine phenocrysts from the New Caledonia boninites depleted in CaO and TiO2 and enriched in SiO2 and MgO. The rocks are composed of olivine and pyroxene phenocrysts in a glassy groundmass. The olivine phenocrysts contain melt inclusions consisting of glass, a fluid vesicle, and daughter olivine and orthopyroxene crystals. The daughter minerals are completely resorbed in the melt at 1200?C1300°C, whereas the complete dissolution of the fluid phase was not attained in our heating experiments. The compositions of reheated and naturally quenched melt inclusions, as well as groundmass glasses were determined by electron microprobe analysis and secondary ion mass spectrometry. Partly homogenized melts (with gas) contain 12?C16 wt % MgO. The glasses of inclusions and groundmass are significantly different in H2O content: up to 2 wt % in the glasses of reheated inclusions, up to 4 wt % in naturally quenched inclusions, and 6?C8 wt % in groundmass glasses. A detailed investigation revealed a peculiar zoning in olivine: its Mg/(Mg + Fe) ratio increased in a zone directly adjacent to the glass of inclusions. This effect is probably related to partial water (hydrogen) loss and Fe oxidation after inclusion entrapment. The numerical modeling of such a process showed that the water loss was no higher than a few tenths of percent and could not be responsible for the considerable difference between the compositions of inclusions and groundmass glasses. It is suggested that the latter were enriched in H2O after the complete solidification of the rock owing to interaction with seawater. Based on the obtained data, the compositions of primary boninite magmas were estimated, and it was supposed that variations in melt composition were related not only to olivine and pyroxene fractionation from a single primary melt but also to different degrees and (or) depths of magma derivation.  相似文献   

16.
Based on the investigation of melt inclusions using electron and ion microprobe analysis, we estimated the composition, evolution, and formation conditions of magmas producing the the comendites of the Sant bimodal volcanic association (Central Mongolia). The mechanisms of the formation of melts were determined. The primary melt and coexisting crystalline inclusions in quartz from three samples of comendites collected from different parts of the volcanic section were studied. Among the crystalline inclusions, sanidine, zircon, and the REE diortosilicate–chevkinite were identified. The phenocrysts of the comendites were determined to crystallize at temperatures of 880–960°C. The homogeneous glasses of melt inclusions have both trachydacite and rhyolite compositions. They are characterized by high concentrations of Zr, Nb, Rb, Y, Th and REE. Significant differences were determined in concentrations of Li and volatile component (H2O and F) in the glasses: some of the melts are enriched in these components, whereas other are depleted in them.Analysis of the composition of the glasses of the homogenized melt inclusions in quartz of comendites from the Sant bimodal association allowed us to recognize magmatic processes responsible for formation of the comendite melts. The dominant role among them belongs to crystallization differentiation of the magma, accompanied by a process of liquid immiscibility with participation of fluoride melts.  相似文献   

17.
Rare-earth element distribution in the rocks and minerals of the olivinite-clinopyroxenitemelilitolite-melteigite-ijolite-nepheline syenite series was analyzed to study the evolution trends of the alkaline-ultrabasic series of the Kola province. The contents of REE and some other trace elements were determined in olivine, melilite, clinopyroxene, nepheline, apatite, perovskite, titanite, and magnetite. It was established that distribution of most elements in the rocks of the Kovdor, Afrikanda, Vuoriyarvi, and other massifs differ from that in the Khibiny ultrabasic-alkaline series, being controlled by perovskite crystallization. Primary olivine-melanephelinite melts of the minor ultrabasic-alkaline massifs are characterized by the early crystallization of perovskite, the main REE-Nb-Ta-Th-U depository. Precipitation of perovskite simultaneously with olivine and clinopyroxene results in the depletion of residual magma in rare-earth elements and formation of low-REE- and HFSE ijolite and nepheline syenite derivatives. In contrast, the formation of the Khibiny ultrabasic-alkaline series was complicated by mixing of olivine melanephelinite magma with small batches of phonolitic melt. This led to a change in crystallization order of REE-bearing titanates and Ti-silicates and accumulation of the most incompatible elements in the late batches of the melt. As a result, the Khibiny ijolites have the highest REE contents, which are accommodated by high-REE apatite and titanite.  相似文献   

18.
Mid-ocean ridge basalts (MORBs) from East Pacific Rise (EPR) 13°N are analysed for major and trace elements, both of which show a continuous evolving trend. Positive MgO-Al2O3 and negative MgO-Sc relationships manifest the cotectic crystallization of plagioclase and olivine, which exist with the presence of plagioclase and olivine phenocrysts and the absence of clinopyroxene phenocrysts. However, the fractionation of clinopyroxene is proven by the positive correlation of MgO and CaO. Thus, MORB samples are believed to show a "clinopyroxene paradox". The highest magnesium.bearing MORB sample E13-3B (MGO=9.52%) is modelled for isobaric crystallization with COMAGMAT at different pressures. Observed CaO/Al2O3 ratios can be derived from E13-3B only by fractional crystallization at pressure >4±1 kbar, which necessitates clinopyroxene crystallization and is not consistent with cotectic crystallization of olivine plus plagioclase in the magma chamber (at pressure~1 kbar). The initial compositions of the melt inclusions, which could represent potential parental magmas, are reconstructed by correcting for post-entrapment crystallization (PEC). The simulated crystallization of initial melt inclusions also produce observed CaO/Al2O3 ratios only at >4±1 kbar, in which clinopyroxene takes part in crystallization. It is suggested that MORB magmas have experienced clinopyroxene fractionation in the lower crust, in and below the Moho transition zone. The MORB magmas have experienced transition from clinopyroxene+plagioclase+olivine crystallization at >4±1 kbar to mainly olivine+plagioclase crystallization at <1 kbar, which contributes to the explanation of the "clinopyroxene paradox".  相似文献   

19.
Kerimasi calciocarbonatite consists principally of calcite together with lesser apatite, magnetite, and monticellite. Calcite hosts fluid and S-bearing Na–K–Ca-carbonate inclusions. Carbonatite melt and fluid inclusions occur in apatite and magnetite, and silicate melt inclusions in magnetite. This study presents statistically significant compositional data for quenched S- and P-bearing, Ca-alkali-rich carbonatite melt inclusions in magnetite and apatite. Magnetite-hosted silicate melts are peralkaline with normative sodium-metasilicate. On the basis of our microthermometric results on apatite-hosted melt inclusions and forsterite–monticellite phase relationships, temperatures of the early stage of magma evolution are estimated to be 900–1,000°C. At this time three immiscible liquid phases coexisted: (1) a Ca-rich, P-, S- and alkali-bearing carbonatite melt, (2) a Mg- and Fe-rich, peralkaline silicate melt, and (3) a C–O–H–S-alkali fluid. During the development of coexisting carbonatite and silicate melts, the Si/Al and Mg/Fe ratio of the silicate melt decreased with contemporaneous increase in alkalis due to olivine fractionation, whereas the alkali content of the carbonatite melt increased with concomitant decrease in CaO resulting from calcite fractionation. Overall the peralkalinity of the bulk composition of the immiscible melts increased, resulting in a decrease in the size of the miscibility gap in the pseudoquaternary system studied. Inclusion data indicate the formation of a carbonatite magma that is extremely enriched in alkalis with a composition similar to that of Oldoinyo Lengai natrocarbonatite. In contrast to the bulk compositions of calciocarbonatite rocks, the melt inclusions investigated contain significant amount of alkalis (Na2O + K2O) that is at least 5–10 wt%. The compositions of carbonatite melt inclusions are considered as being better representatives of parental magma composition than those of any bulk rock.  相似文献   

20.
川西甲基卡二云母花岗岩和伟晶岩内发育大量原生熔体包裹体和富晶体流体包裹体。为了查明甲基卡成矿熔体、流体性质与演化特征,运用激光拉曼光谱和扫描电镜鉴定了甲基卡花岗伟晶岩型锂矿床中二云母花岗岩及伟晶岩脉不同结构带内的原生熔体、流体包裹体的固相物质。分析结果表明,甲基卡二云母花岗岩石英内熔体包裹体的矿物组合为磷灰石+白云母、白云母+钠长石、白云母+石墨;伟晶岩绿柱石内富晶体流体包裹体的矿物组合主要为刚玉、富铝铁硅酸盐+刚玉+锂辉石、锂辉石+石英+锂绿泥石;伟晶岩锂辉石内富晶体流体包裹体的矿物组合主要为磷灰石、锡石、磁铁矿、石英+钠长石+锂绿泥石、萤石、富钙镁硅酸盐+富铁铝硅酸盐+富铁硅酸盐+石英;花岗岩浆熔体与伟晶岩浆熔体(流体)具有一定的差异,成矿熔体、流体成分总体呈现出碱质元素(Na、Si、Al)、挥发分(F、P、CO_2)含量增高及基性元素(Fe、Mg、Ca)降低的特征;包裹体中子矿物与主矿物的化学成分具有一定的差别,揭示出伟晶岩熔体(流体)存在局部岩浆分异作用,具不混溶性及非均匀性。因此认为,伟晶岩熔浆(流体)为岩浆分异与岩浆不混溶共同作用的产物,挥发分含量的增高(F、P、CO_2)使伟晶岩能够与稀有金属组成各类络合物或化合物,这对于稀有金属成矿起到了至关重要的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号