首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
非线性波浪波面追踪的一种新模式   总被引:1,自引:0,他引:1  
基于Laplace方程的Green积分表达式和波面BemouUi方程所建立的非线性波动数学模型,是一个时域上具有初始值的边值问题,而精确地追踪自由表面的波动位置,给出波面运动瞬时的波面高度和波面势函数,是建立时域内非线性波浪数值模式的基础。本文采用0-1混合型边界元剖分计算域边界并离散Laplace方程的Green积分表达式,采用有限元剖分自由水面并推导满足自由表面非线性边界条件的波面有限元方程,联立计算域内以节点波势函数和波面位置高度的时间增量为未知量的线性方程组,通过时步内的循环迭代,给出每个时步上的波面位置和波面势函数,从而建立了一种新的非线性波浪波面追踪模式。数值造波水槽内的波浪试验表明,其数值模拟结果具有良好的计算精度。  相似文献   

2.
The behavior of a highly deformable membrane to ocean waves was studied by coupling a nonlinear boundary element model of the fluid domain to a nonlinear finite element model of the membrane. The hydrodynamic loadings induced by water waves are computed assuming large body hydrodynamics and ideal fluid flow and then solving the transient diffraction/radiation problem. Either linear waves or finite amplitude waves can be assumed in the model and thus the nonlinear kinematic and dynamic free surface boundary conditions are solved iteratively. The nonlinear nature of the boundary condition requires a time domain solution. To implicitly include time in the governing field equation, Volterra's method was used. The approach is the same as the typical boundary element method for a fluid domain where the governing field equation is the starting point. The difference is that in Volterra's method the time derivative of the governing field equation becomes the starting point.The boundary element model was then coupled through an iterative process to a finite element model of membrane structures. The coupled model predicts the nonlinear interaction of nonlinear water waves with highly deformable bodies. To verify the coupled model a large scale test was conducted in the OH Hinsdale wave Research Laboratory at Oregon State University on a 3-ft-diameter fabric cylinder submerged in the wave tank. The model data verified the numerical prediction of the structure displacements and of the changes in the wave field.The boundary element model is an ideal modeling technique for modeling the fluid domain when the governing field equations is the Laplace equation. In this case the nonlinear boundary element model was coupled with a finite element model of membrane structures, but the model could have been coupled with other finite element models of more rigid structures, such as a pontoon floating breakwater.  相似文献   

3.
A finite-differnece method was used to calculate the nonlinear hydrodynamic pressures acting on the coastal embankment faces by seismic-wave actions. The nonlinearity of free surface flow, convective acceleration, viscosity and surface tension of fluid are included in the analysis. The kinematic and dynamic free surface boundary conditions are employed for calculating the horizontal fluid velocity, pressure at the free surface and the surface profile of the fluid. The time-dependent water surface is transformed to the horizontal plane, and the flow field is mapped onto a rectangular, making it convenient to model the complex sea bottom geometry and the wavy water surface by the finite-difference method. Fully nonlinear and weakly nonlinear dynamic free surface conditions are used and compared. The effects of surface tension of fluid are also discussed. The nonslip boundary condition is applied on the most part of the interface between fluid and solid face, except the region near the intersection between free surface and wall face. The numerical results are presented for various water depths and ground motion intensities, and their associate viscous effects on coastal embankment hydrodynamics are discussed.  相似文献   

4.
A study of nonlinear heave radiation of two-dimensional single and double hulls has been carried out in the time domain. The problem is analyzed by means of a fully nonlinear mathematical model, referred to as the mixed Eulerian–Lagrangian (MEL) model, which is based on an integral relation formulation coupled with time-integration of the nonlinear free-surface boundary conditions. The integral equation solver is based on a cubic-spline boundary-element scheme in which both potential and velocity continuity conditions can be enforced through the intersection points. The body undergoes periodic forced heave oscillation. By implementing effective wave-absorbing beaches at the two ends of the rectangular numerical tank, long-term steady-state force-histories could be achieved consistently in all computations.Results in terms of radiation forces for rectangular and triangular single- and twin-hull geometries are presented and discussed. Linear hydrodynamic forces in terms of added-mass and damping are validated for the rectangular hull. The Fourier-analyzed results reveal the extent of nonlinear (higher-order) components in the force-signals over different parameters which include the amplitudes of oscillation, hull-spacing for the twin-hulls and water depth.  相似文献   

5.
柏威  滕斌 《海洋工程》2001,19(3):43-50
采用二阶时域理论对非线性波浪在任意三维物体周围的绕射问题进行了研究,对自由表面边界条件进行Taylor级数展开,应用摄动展开可以建立相应的边值问题,而且此边值问题的计算域不随时间变化,运用基于B-样条的边界元方法求解每一时刻的波浪场,二阶自由表面边界条件在时间上进行数值积分,在自由表面加了一个人工阻尼层以避免波浪的反射,速度势分解为已知的入射势和未知的散射势,初始条件采用二阶Stokes波浪场,通过加入物体表面边界条件,得到散射势在时间和空间上的发展,本文对圆柱所受规则波的二阶波浪力和波浪爬高进行了计算,数值结果表明此理论计算准确,效率高,数值稳定。  相似文献   

6.
The coupled system of two side-by-side fixed and/or floating bodies interacting with a large amplitude nonlinear wave is studied using a direct time domain solution method. The numerical model is based on a three-dimensional mixed Eulerian–Lagrangian (MEL) method under certain simplifying approximations permitting Rankine panel scheme to be implemented over a time-invariant boundary surface to solve the boundary value problem for the unknown velocity potentials. A 4th order Adams–Bashforth–Moulton scheme is used for time marching of rigid-body motion histories of the individual bodies and evolution of the free-surface including the gap region in which large resonant fluid motions occur. A systematic study has been carried out to evaluate the performance of the developed time domain method in simulating the forces and motions as well as the fluid motion in the gap region for the two body system under various arrangements and in different wave-headings. At first, the computed numerical results have been validated and verified with computational and experimental results available in literature for standard geometries such as vertical truncated cylinders and rectangular boxes. Secondly, effectiveness of the damping lid model which is introduced to suppress wave resonance in the gap region is investigated including its influence on maximum sway forces on fixed and floating rectangular barges in side-by-side configurations. Thirdly, comparative studies on absolute and relative motion response for two cases (two rectangular barges, and a FLNG-FPSO + shuttle tanker) in side-by-side arrangement are detailed to bring out the importance of nonlinearities arising due to steep nonlinear incident waves. Finally, coupled motions of the two-body system of an FPSO and a shuttle tanker floating in side-by-side configuration in a steep nonlinear wave field are studied in which the two bodies are connected through hawsers, and also the FPSO is moored to the ground. Additionally there is a fender between the two bodies.  相似文献   

7.
苏高飞  勾莹  滕斌 《海洋工程》2023,41(3):1-13
为高效准确地对完全非线性波浪与二维固定结构物的相互作用进行模拟分析,建立了二维完全非线性时域耦合模型。耦合模型将计算域划分为靠近结构物的内域和远离结构物的外域,每个区域均采用满足完全非线性自由水面边界条件的波浪模型进行求解。在内域使用Laplace方程描述流体运动并采用高阶边界元法(BEM)对其进行求解;而在没有结构物的外域,波浪运动的控制方程为Irrotational Green-Naghdi(IGN)方程并采用有限元法(FEM)对其进行求解。内域和外域通过一段重叠区域进行耦合,从而实现模型间变量的传递。首先利用耦合模型分别对规则波的传播、直墙前立波的生成以及相关物理模型试验进行模拟,数值结果与精确解和试验结果的良好吻合验证了耦合模型耦合方式的合理性以及处理非线性问题的准确性;然后使用耦合模型模拟分析了波浪与固定结构物间的相互作用,并将结果与线性解析解以及完全非线性BEM模型的结果进行了对比分析,进一步证明了耦合模型的正确性与高效性。  相似文献   

8.
In this study Free vibration analysis of vertical rectangular Mindlin plates resting on Pasternak elastic foundation and fully or partially in contact with fluid on their one side is investigated for different combinations of boundary conditions. The plate is assumed to be one of vertical rectangular walls of a container in contact with fluid. In order to analyze the interaction of the Mindlin plate with the elastic foundation and fluid system, three displacement components of the plate are expressed in the Ritz method by adopting a set of static Timoshenko beam functions satisfying geometric boundary conditions in a Cartesian co-ordinate system. The method of separation of variables and the method of Fourier series expansion is used to model fluid and to obtain the exact expression of the motion of fluid in the form of integral equations. The fluid domain is finite in depth and width but infinite in the length direction. To demonstrate the accuracy of the present solution, convergence study is first carried out and then a few comparison studies are carried out with the available data in the literature. Finally, natural frequencies of rectangular plates are presented in tabular and graphical forms for different fluid levels, foundation parameters, aspect ratios, thickness to width ratios and boundary conditions.  相似文献   

9.
Unsteady nonlinear wave motions on the free surface in shallow water and over slopes of various geometries are numerically simulated using a finite difference method in rectangular grid system. Two-dimensional Navier–Stokes equations and the continuity equation are used for the computations. Irregular leg lengths and stars are employed near the boundaries of body and free surface to satisfy the boundary conditions. Also, the free surface which consists of markers or segments is determined every time step with the satisfaction of kinematic and dynamic free surface conditions. Moreover, marker-density method is also adopted to allow plunging jets impinging on the free surface. Either linear or Stokes wave theory is employed for the generation of waves on the inflow boundary. For the simulation of wave breaking phenomena, the computations are carried out with various wave periods and sea bottom slopes in surf zone. The results are compared with other existing computational and experimental results. Agreement between the experimental data and the computation results is good.  相似文献   

10.
A time-domain simulation method based on potential flow model has been developed to investigate the berthing problem between two floating bodies in wave. The boundary value problem is formulated with respect to an earth-fixed coordinate system because the relative positions of the two vessels continuously change during the berthing operation. The classical finite element method is used to solve the Laplace equation in the fluid domain with moving boundary. The linearized free-surface boundary conditions are integrated in time by applying 4th-order Adams–Bashforth–Moulton method. A simple re-mesh algorithm with local and global mesh systems is introduced to update mesh by considering large horizontal movement of the berthing vessel. The developed numerical method is used to investigate the berthing problem between a FPSO and shuttle tanker in waves. The focus is on the wave-induced motion response during the berthing process. The characteristics of the motion responses in berthing operation are examined with various wave frequencies, berthing speeds and wave headings.  相似文献   

11.
Three-dimensional fully nonlinear waves generated by moving disturbances with steady forward speed without motions are solved using a mixed Eulerian–Lagrangian method in terms of an indirect boundary integral method and a Runge–Kutta time marching approach which integrates the fully nonlinear free surface boundary conditions with respect to time.A moving computational window is used in the computations by truncating the fluid domain (the free surface) into a computational domain. The computational window maintains the computational domain and tracks the free surface profile by a node-shifting scheme applied within it. An implicit implement of far field condition is enforced automatically at the truncation boundary of the computational window.Numerical computations are applied to free surface waves generated by Wigley and Series 60 hulls for the steady problem. The present numerical results are presented and compared with existing linear theory, experimental measurements, and other numerical nonlinear computations. The comparisons show satisfactory agreements for these hydrodynamic problems.  相似文献   

12.
A time-dependent finite element method (FEM) is developed to analyze the transient hydroelastie responses of very large floating structures (VLFS) subjected to dynamic loads. The hydrodynamic problem is formulated based on the linear theory of fluid and the structural response is analyzed based on the thin plate theory. The FEM truncates the unbounded fluid domain by introducing an artificial boundary surface, thus defining a finite computational domain. At this boundary surface an impedance boundary conditions are applied so that no wave reflections occur. In the proposed scheme, all of the procedures are processed directly in time domain, which is efficient for nonlinear analyses of structure floating on unbounded fluid. Numerical results indicate acceptable accuracy of the proposed method.  相似文献   

13.
The paper develops and analyzes two fully nonlinear boundary conditions that incorporate the motion of the shoreline in nonlinear time domain nearshore models. A moving shoreline essentially means the computational domain is changing with the solution of the flow. The problem is solved in two steps. The first is to establish an equation that determines the motion of the shoreline based on the local momentum balance. The second is to develop and implement into a shoreline model the capability of accommodating a changing computational domain. The two models represent two different ways of addressing this step: one is to track the position of the shoreline in a fixed grid by establishing a special shoreline point which generally is not a fixed grid point. The second is by a coordinate transformation that maps the changing domain onto a fixed domain and solves the basic equations in the mapped domain. The two shoreline conditions are tested against three known solution for nonlinear shoreline motion. Two are the 1-D solutions to the nonlinear shallow water (NSW) equations by Carrier and Greenspan [J. Fluid Mech. 4 (1958) 97], one representing the response to a transient change in the offshore water level, the other the motion due to a periodic standing wave, both on slopes steep enough to allow full reflection. The third is the 2-D horizontal (2DH) computational solution by Zelt [Coast. Eng. 15 (1991) 205] for the run-up of a solitary wave on a cusped beach. In all cases, both models are shown to behave well and give high accuracy results for suitably chosen grid and time spacings.  相似文献   

14.
Internal waves driven by external excitation constitute important phenomena that are often encountered in environmental fluid mechanics. In this study, a pseudospectral σ-transformation model is used to simulate parametric excitation of stratified liquid in a two-layer rectangular tank. The σ-transformation maps the physical domain including the liquid free surface, the interface between the liquid layers, and the bed, onto a pair of fixed rectangular computational domains corresponding to the two layers. The governing equation and boundary conditions are discretised using Chebyshev collocation formulae. The numerical model is verified for two analytical sloshing problems: horizontal excitation of constant density liquid in a rectangular tank, and vertical excitation of stratified liquid in a rectangular tank. A detailed analysis is provided of liquid motions in a shallow water tank due to excitations in the horizontal and the vertical directions. Also, the effect of pycnocline on the wave motions and patterns is studied. It is found that wave regimes and patterns are considerably influenced by the pycnocline, especially when the excitation frequency is large. The present study demonstrates that a pseudospectral σ-transformation is capable to model non-linear sloshing waves in a two-layer rectangular tank.  相似文献   

15.
In this study, a two-dimensional floating pier consists of single rectangular impermeable pontoon with side supporting pile-columns is studied. The purpose of this study is to present a theoretical solution for the linearized problem of incident waves exerting on a floating pier with pile-restrained. All boundary conditions are linearized in the problem, which is incorporated into a scattering problem and radiation problem with unit displacement. The method of separation of variables is used to solve for velocity potentials. For the radiation problem with unit heave and pitch amplitude, the boundary value problem with non-homogeneous boundary condition beneath the structure is solved by using a solution scheme. By calculating the wave force from velocity potential and solving the equation of motion of the floating structure simultaneously a close form theoretical solution for the problem is developed. The finite element method was also applied to calculate the dynamic responses on the supporting piles subjected to the pontoon motions and incident waves.  相似文献   

16.
精确模拟非线性波沿斜面传播过程非常困难,为此论文从势函数的边界积分方程出发,建立了一种时域内二维波浪模拟的数值模型,主要用来模拟完全非线性波浪的传播变形过程。论文的数值模型使用高阶二维边界元方法,采用可调节时间步长的基于二阶显式泰勒展开的混合欧拉-拉格郎日时间步进来求解带自由表面的线性或完全非线性波浪传播问题。在计算区域一端造出线性或非线性的周期性波浪,另一端采用消除反射波的人工粘性吸收边界。通过与现有理论比较证明了论文数值方法所得结果是准确可靠的。  相似文献   

17.
The radiation and diffraction problem of a two-dimensional rectangular body with an opening floating on a semi-infinite fluid domain of finite water depth is analysed based on the linearized velocity potential theory through an analytical solution procedure. The expressions for potentials are obtained by the method of variation separation, in which the unknown coefficients are determined by the boundary condition and matching requirement on the interface. The effects of the position of the hole and the gap between the body and side wall on hydrodynamic characteristics are investigated. Some resonance is observed like piston motion in a moon pool and sloshing in a closed tank because of the existence of restricted fluid domains.  相似文献   

18.
A fast time-domain method is developed in this paper for the real-time prediction of the six degree of freedom motions of a vessel traveling in an irregular seaway in infinitely deep water. The fully coupled unsteady ship motion problem is solved by time-stepping the linearized boundary conditions on both the free surface and body surface. A velocity-based boundary integral method is then used to solve the Laplace equation at every time step for the fluid kinematics, while a scalar integral equation is solved for the total fluid pressure. The boundary integral equations are applied to both the physical fluid domain outside the body and a fictitious fluid region inside the body, enabling use of the fast Fourier transform method to evaluate the free surface integrals. The computational efficiency of the scheme is further improved through use of the method of images to eliminate source singularities on the free surface while retaining vortex/dipole singularities that decay more rapidly in space. The resulting numerical algorithm runs 2–3 times faster than real time on a standard desktop computer. Numerical predictions are compared to prior published results for the transient motions of a hemisphere and laboratory measurements of the motions of a free running vessel in oblique waves with good agreement.  相似文献   

19.
Sloshing, or liquid free surface oscillation, in containers has many important applications in a variety of engineering fields. The modal method can be used to solve linear sloshing problems and is the most efficient reduced order method that has been used during the previous decade. In the present article, the modal method is used to solve a nonlinear sloshing problem. The method is based on a potential flow solution that implements a two-phase analysis on sloshing in a rectangular container. According to this method, the solution to the mass conservation equation, with a nonpenetration condition at the tank walls, results in velocity potential expansion; this is similar to the mode shapes used in modal method. The kinematic and dynamic boundary conditions create a set of two-space-dimensional differential equations with respect to time. The numerical solution of this set of differential equations, in the time domain, predicts the time response of interfacial oscillations. Modal method solutions for the time response of container sloshing due to lateral harmonic oscillations show a good agreement with experimental and numerical results reported in the literature.  相似文献   

20.
The finite element method(FEM) is employed to analyze the resonant oscillations of the liquid confined within multiple or an array of floating bodies with fully nonlinear boundary conditions on the free surface and the body surface in two dimensions.The velocity potentials at each time step are obtained through the FEM with 8-node quadratic shape functions.The finite element linear system is solved by the conjugate gradient(CG) method with a symmetric successive overelaxlation(SSOR) preconditioner.The waves at the open boundary are absorbed by the combination of the damping zone method and the Sommerfeld-Orlanski equation.Numerical examples are given by an array of floating wedgeshaped cylinders and rectangular cylinders.Results are provided for heave motions including wave elevations,profiles and hydrodynamic forces.Comparisons are made in several cases with the results obtained from the second order solution in the time domain.It is found that the wave amplitude in the middle region of the array is larger than those in other places,and the hydrodynamic force on a cylinder increases with the cylinder closing to the middle of the array.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号