首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
空间无碰撞激波的数值研究   总被引:2,自引:0,他引:2  
王水  陆全明 《天文学进展》1997,15(3):218-230
无碰撞激波是空间等离子体和宇宙等离子体中的重要物理现象。文中评述了数值研究空间无碰撞激波的两种方法-粒子模拟和混合模拟,给出了准垂直和准平行无碰撞激波的数值研究结果。还指出了一些尚未解决的研究问题。  相似文献   

2.
We study how the internal structure of dark halos is affected if cold dark matter particles are assumed to have a large cross section for elastic collisions. We identify a cluster halo in a large cosmological N-body simulation and resimulate its formation with progressively increasing resolution. We compare the structure found in the two cases in which dark matter is treated as collisionless or as a fluid. For the collisionless case, the overall ellipticity of the cluster, the central density cusp, and the amount of surviving substructure are all similar to those found in earlier high-resolution simulations. Collisional dark matter results in a cluster that is more nearly spherical at all radii, has a steeper central density cusp, and has less-but still substantial-surviving substructure. As in the collisionless case, these results for a "fluid" cluster halo are expected to carry over approximately to smaller mass systems. The observed rotation curves of dwarf galaxies then argue that self-interacting dark matter can only be viable if intermediate cross sections produce structure that does not lie between the extremes we have simulated.  相似文献   

3.
Magnetohydrodynamic waves in a high β, collisionless plasma with smooth variations in plasma parameters across the boundary is studied. The heating of collisionless plasma is analyzed in one dimension, including the effects of shear magnetic field and compressibility of plasma. Energy absorption rate and dispersion relation between central plasma, surrounded by tenuous plasma have also been derived.  相似文献   

4.
This paper discusses the development of two-stream instability in a collisionless plasma. The plasma is described by velocity moments of Vlasov equation where heat flow tensor has been neglected. A dispersion relation for arbitrary propagation is derived for a collisionless electron fluid. Special cases of propagation parallel and perpendicular to the field lines are discussed. Growth rate is computed for parameters representative of the shear layers of solar wind at one AU. It is found that the shear layers are likely to be overstable.  相似文献   

5.
The magnetic viscosity tensor is derived for a magnetized relativistic collisionless plasma with temperature gradients. By means of this tensor we deduce the nonlinear equations for drift–Alfvén waves in a relativistic electron-positron low plasma with density and temperature gradients. It is shown that our new equations have solutions in the form of dipolar vortices. The present results should be relevant to a number of astrophysical objects with strong electron-positron pair production, e.g. in pulsars as well as in accretion disks and jets.  相似文献   

6.
The solutions for the mass of single-line close binaries with Main-Sequence primaries are given in a tabular form as a result of the application of the mass-luminosity relation. Linear interpolation in a compact bi-variate table suffices to give the values of mass of the two components for a wide range of masses and to a very good approximation. The indeterminacy of the solutions depending on the formulation of the mass-luminosity relation for the primaries is discussed, as well as the condition of filling up their Roche lobes by the secondaries.  相似文献   

7.
We study spherically symmetrical equilibrium states of collisionless stellar systems confined to a spherical box. These equilibrium states correspond to the statistics introduced by Lynden-Bell in his theory of 'violent relaxation', and are described by a Fermi–Dirac distribution function. We compute the corresponding equilibrium diagram and show that a global entropy maximum exists for any accessible control parameter. This equilibrium state shows a pronounced separation between a degenerate core and a halo. We therefore check that degeneracy is able to stop the gravitational collapse (of a collisionless system), and we propose a simple model for the 'core–halo' structure. We also discuss the relevance of our study for real galaxies or other astrophysical systems such as massive neutrinos.  相似文献   

8.
Linear dispersion relations are solved numerically for collisionless self-gravitating systems. The results are compared to those of hydrodynamic approach. Both theories yield similar dispersion relations, with predictions of instability when the system is cold enough. In a collisionless system, however, the perturbation is found to die away without oscillations when the system is stable. A mixed system of hot-component particles and cold-component particles is also studied. The stability of such system is dominated by the temperature of the cold particles. Again, the oscillatory behaviour is not found in this case, regardless of the stability of the system.  相似文献   

9.
L. P. Osipkov 《Astrophysics》2000,43(3):351-358
Equations obtained in Part I of this investigation are solved and describe the gross dynamics of axisymmetric, collisionless gravitating systems for small departures from the equilibrium position. The solution obtained describes a superposition of oscillations with two eigenfrequencies. Against the background of periodic contractions and expansions, the system’s flattening varies with a period half as long. Translated from Astrofizika, Vol. 43, No. 3, pp. 483-492, July–September, 2000.  相似文献   

10.
Electron acoustic solitary waves in a collisionless plasma consisting of a cold electron fluid and non-thermal hot electrons are investigated by a direct analysis of the field equations. The Sagdeev potential is obtained in terms of electron acoustic speed by simply solving an algebraic equation. It is found that the amplitude and width of the electron acoustic solitary waves as well as the parametric regime where the solitons can exist are very sensitive to the population of energetic non-thermal hot electrons. The soliton and double layer solutions are obtained as a small-amplitude approximation. The effect of non-thermal hot electrons is found to significantly change the properties of the electron acoustic solitary waves (EAWs). A comparison with the Viking Satellite observations in the day side auroral zone is also discussed.  相似文献   

11.
This paper discusses the possibility of constructing time-independent solutions to the collisionless Boltzmann equation which depend on quantities other than global isolating integrals such as energy and angular momentum. The key point is that, at least in principle, a self-consistent equilibrium can be constructed from any set of time-independent phase-space building blocks which, when combined, generate the mass distribution associated with an assumed time-independent potential. This approach provides a way to justify Schwarzschild's method for the numerical construction of self-consistent equilibria with arbitrary time-independent potentials, generalizing thereby an approach developed by Vandervoort for integrable potentials. As a simple illustration, Schwarzschild's method is reformulated to allow for a straightforward computation of equilibria which depend only on one or two global integrals and no other quantities, as is reasonable, for example, for modelling axisymmetric configurations characterized by a non-integrable potential.  相似文献   

12.
We have suggested in a previous article that the coarse-grained evolution of a collisionless stellar system could be viewed as a diffusion process in velocity space compensated by an appropriate friction. Using a quasi-linear theory, we calculate the diffusion coefficient associated with this evolution. This provides a new self-consistent relaxation equation for f , the locally averaged distribution function. This equation bears some resemblance to the conventional Fokker–Planck equation of collisional systems but the friction term is non-linear in f (accounting for degeneracy effects) and the relaxation time is much smaller (in agreement with the concept of 'violent relaxation'). Under the condition that the diffusion current vanishes identically at equilibrium, we recover Lynden-Bell's distribution function; but if we allow stars to escape from the system at a constant rate, we can derive a truncated model which coincides with Lynden-Bell's solution in the core but provides a depletion of high-energy stars in the halo. This distribution function has a finite mass and is the generalization of the Michie–King model to the case of (possibly degenerate) collisionless stellar systems.  相似文献   

13.
The theory of hydromagnetic-wave in the upper F2-region, in which electrons are in a transitional regime from collisional to collisionless conditions and ions are in a collisionless state, is examined. Derivation of the governing equations is based on the fact that the isotropic electrons are fluid-like, and the anisotropic ions follow kinetic equations modified by ion-electron collisions. Magneto-acoustic waves of a period of 0.2–10 sec are dissipated by ion Landau damping and electron thermal conduction and viscosity. Numerical solutions under ionospheric conditions show that the dissipation of hydromagnetic waves is insufficient to modify the large scale heating of the ionosphere.  相似文献   

14.
The system of 1-D ideal MHD equations is numerically solved using the WENO scheme. We then simulated the interplanetary collisionless shock wave and investigated the interaction between the perpendicular collisionless shock wave and two kinds of interplanetary structures, structures with opposite magnetic fields and high-density plasmoids. The results are compared with those of particle simulation: they are found to be very similar. For most phenomena concerned with collisionless shock waves, the ideal MHD simulation is accurate and feasible. Moreover, it has a high computational efficiency and is readily extended to the 2-D or 3-D case.  相似文献   

15.
We compare the conclusions reached using the coarse-graining technique employed by Henriksen for a one degree of freedom (per particle) collisionless system to those presented in a paper by Binney based on an exact one degree of freedom model. We find agreement in detail, but in addition we show that the isolated 1D system is self-similar and therefore unrelaxed. Fine graining of this system recovers much less prominent wave-like structure than in a spherically symmetric isotropic 3D system. The rate of central flattening is also reduced in the 1D system. We take this to be evidence that relaxation of collisionless systems proceeds ultimately by way of short wavelength Landau damping. N -body systems, both real and simulated, can be trapped in an incompletely relaxed state because of a break in the cascade of energy to small scales. This may be due to the rapid dissipation of the small-scale oscillations in an isolated system to the existence of conserved quantities such as angular momentum, or to the failure in simulations to resolve sub-Jeans length scales. Such a partially relaxed state appears to be the Navarro, Frenk and White (NFW) state and is to be expected especially in young systems. The NFW core is shown to be isolated. In non-isolated systems, continuing coarse-grained relaxation should be towards a density core in solid body rotation.  相似文献   

16.
17.
Electron-acoustic waves are studied with orbital angular momentum (OAM) in an unmagnetized collisionless uniform plasma, whose constituents are the Boltzmann hot electrons, inertial cold electrons and stationary ions. For this purpose, we employ the fluid equations to obtain a paraxial equation in terms of cold electron density perturbations, which admits both the Gaussian and Laguerre–Gaussian (LG) beam solutions. Furthermore, an approximate solution for the electrostatic potential problem is found, which also allows us to express the components of the electric field in terms of LG potential perturbations. Calculating the energy flux of the electron-acoustic waves, an OAM density for these waves is obtained. Numerically, it is found that the parameters, such as, azimuthal angle, radial and angular mode numbers, and the beam waist strongly modify the LG potential profiles associated with electron-acoustic waves. The present results should be helpful to study the trapping and transportation of plasma particles and energy as well as to understand the electron-acoustic mode excitations produced by the Raman backscattering of laser beams in a uniform plasma.  相似文献   

18.
The dynamical friction experienced by a body moving in a gaseous medium is different from the friction in the case of a collisionless stellar system. Here we consider the orbital evolution of a gravitational perturber inside a gaseous sphere using three-dimensional simulations, ignoring however self-gravity. The results are analysed in terms of a 'local' formula with the associated Coulomb logarithm taken as a free parameter. For forced circular orbits, the asymptotic value of the component of the drag force in the direction of the velocity is a slowly varying function of the Mach number in the range 1.0–1.6. The dynamical friction time-scale for free decay orbits is typically only half as long as in the case of a collisionless background, which is in agreement with E. C. Ostriker's recent analytic result. The orbital decay rate is rather insensitive to the past history of the perturber. It is shown that, similarly to the case of stellar systems, orbits are not subject to any significant circularization. However, the dynamical friction time-scales are found to increase with increasing orbital eccentricity for the Plummer model, whilst no strong dependence on the initial eccentricity is found for the isothermal sphere.  相似文献   

19.
Antonov’s classical problem of stability of a collisionless sphere with a purely radial motion of stars is considered as a limit of the problem in which stars move in nearly radial orbits. We provide the proper limiting equations that take into account the singularity in the density distribution at the sphere center and give their solutions. We show that there is instability for even and odd spherical harmonics, with all unstable modes being not slow. The growth rates of aperiodic even modes increase indefinitely when approaching purely radial models. The physics of the radial orbit instability is discussed.  相似文献   

20.
By a natural nonextensive generalization of the conservation of energy in the q-kinetic theory, we study the nonextensivity and the power-law distributions for the many-body systems with the self-gravitating long-range interactions. It is shown that the power-law distributions describe the long-range nature of the interactions and the non-local correlations within the self-gravitating system with the inhomogeneous velocity dispersion. A relation is established between the nonextensive parameter q≠1 and the measurable quantities of the self-gravitating system: the velocity dispersion and the mass density. Correspondingly, the nonextensive parameter q can be uniquely determined from the microscopic dynamical equation and thus the physical interpretation of q different from unity can be clearly presented. We derive a nonlinear differential equation for the radial density dependence of the self-gravitating system with the inhomogeneous velocity dispersion, which can correctly describe the density distribution for the dark matter in the above physical situation. We also apply this q-kinetic approach to analyze the nonextensivity of self-gravitating collisionless systems and self-gravitating gaseous dynamical systems, giving the power-law distributions the clear physical meaning.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号