首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 726 毫秒
1.
大地电磁测深(MT)的观测数据易受到由近地表小尺度非均匀体或地形起伏引起的电流型畸变干扰,消除或压制这种干扰对获取可靠的深部电性结构至关重要.当区域结构为二维时,电流型畸变可采用张量分解等方法予以消除或压制.当区域结构为三维时,畸变问题更加复杂和严重,传统张量分解方法往往效果不佳或无效,严重地制约了MT三维反演技术的实用性.对此,本文提出一种考虑电流型畸变的MT三维反演算法,将完整的电流型畸变参数引入到目标函数,并采用非线性共轭梯度法与电阻率参数同时反演,从而达到压制畸变的目的.该算法有两个关键点:一是通过分析实测数据所遭受畸变的分布特征,在目标函数中对其进行有效约束;二是在迭代过程中,通过自适应地调整双正则化因子保障算法的稳定和效率.理论模型测试结果显示,常规三维反演算法不能合理解释数据中的畸变成分,而只能通过引入虚假异常体强制地拟合受畸变数据,从而造成电阻率模型严重失真.与之相比,本文算法能够在反演中自动求解各测点所受到的畸变,获得更接近真实的电阻率模型.  相似文献   

2.
On the basis of the dispersion relations of MT field, the necessity and applied prospects of the joint inversions using a pair of MT response functions which are correlative with the dispersion relations, are infered. A filter coefficient algorithm is made, with which the corresponding impedance phase data can be estimated using a set of apparent resistivities. The tests for the observed MT data show that when comparing the impedance phase estimated using the dispersion relation with the ob served phase, it can be checked whether the dispersion relation between observed apparent resistivity and phase data is satisfied or not, and that the use of the phase data corrected using the dispersion relation in the joint inversion is advantageous to obtain more confident results. It is shown that joint inversions are more advantageous than single parameter inversions, and that in the most case the joint inversion using the apparent resistivities of impedance real and imaginary parts is more advantageous than the jointinversion using the normal apparent resistivity and impedance phase. The existence of the dipersion relations between the ratio apparent resistivity and corresponding impedance phase of the orthogonal electric and magnetic field horizontal Components in the frequency EM sounding with horizontal electric dipole(FEMS) are discussed, the better effect of the joint inversion using the pair of EM response functions is obtained. The problems on the one-dimensional joint inversion for the MT and FEMS apparent resistivities, for which the observed frequency bands partly overlape each other, are studied. It is shown that this joint inversion is applicable and effective:the joint inversions of the practical data for two kinds of EM methods at two sites give the results well corresponding to the drilling data. The simulated MT inversions for the data of two kinds of EM methods are made, and more confident results also are obtained.  相似文献   

3.
Geothermal reservoirs are usually located at a depth range of 2 to 5 km, so to efficiently utilize such resources an advanced prospecting method is needed to detect these deep geologic structures. This study aimed to three-dimensionally characterize geothermal reservoirs by a combination of Magnetotelluric (MT) survey, inversion analysis of apparent resistivity, and interpolation of the resistivity data obtained. The western side of Mt. Aso crater, southwest Japan, was chosen as the case study area. Three hot springs exist there and a fault is assumed to go in the direction connecting them. A MT survey was carried out at 26 sites and the data processed by a remote reference method to reduce artificial noises. Based on skewness and Mohr circle analyses of the impedance tensor, the local geologic structure at each site could be approximated as horizontally layered and therefore, a one-dimensional inversion analysis was applied to the MT raw data. The resultant resistivity column data were then interpolated by the three-dimensional optimization principle method. The resistivity distributions obtained clarified continuous conductors with especially low resistivity (less than 10 Ω·m) at the hot springs along the fault. Because the resistivity decreases largely with an abundance of clay minerals, the conductors could be considered to correspond with the cap rocks. Thus, two geothermal reservoirs, whose shapes were estimated to be pillar, were detected under the cap rocks in an elevation range of − 1000 to − 3000 m. By comparing the resistivity distributions with the temperature distributions based on fluid-flow calculations at a steady state using FEM, the validity of the location and dimension of the estimated reservoirs were confirmed.  相似文献   

4.
大地电磁野外实测数据月前大多为二维剖面数据.如何反演这些二维剖面数据获得较为接近实际地电情况的结果,是多数大地电磁工作者关心的问题.我们通过对理论模型的三维响应进行分析和对合成数据及实测资料的反演结果进行对比研究,讨论了利用三维反演的方法来获得大地电磁二维剖面附近三维电阻率结构的可行性.结果表明:可用三维反演的方法来解...  相似文献   

5.
Three-dimensional (3D) magnetotelluric (MT) surveys have been performed in Jeju, the largest volcanic island in Korea to figure out any possible structures or potential anomaly for remnant deep geothermal resources. Various approaches have been applied to interpret MT data observed in Jeju. MT dataset shows generally simple stratigraphy of four layers, though contains the severe static and the sea-effects. In our previous works, the induction vectors and 3D inversion results have commonly indicated the existence of a conductive anomaly in central parts of the island, beneath Mt. Halla. The 3D inversion dealt the static shifts as inversion parameters. The Jeju MT dataset, however, still contains the effect of conductive sea water surrounding the island.The sea-effect on MT impedance can be represented as a distortion tensor and excluded from the Jeju MT dataset by an iterative sea-effect correction. In this study, 3D inversion incorporating static shift parameterization was conducted using MT dataset corrected using 1D resistivity model obtained from the iterative scheme. Reasonably reconstructed images are obtained through the 3D inversion and using the MT dataset with sea-effect correction. The inversion result still shows the conductive anomaly in a similar depth. RMS misfits converged to a lower value than that of inversion using MT data before the sea-effect correction. From the fact, it is highly possible that the conductive anomaly is not an artifact but a real underground structure. Further investigation about the anomaly including exploration drilling is needed to see if it is from a fracture containing conductive sea water or related to the old volcanic activities.  相似文献   

6.
To understand the crustal electric structure of the Puga geothermal field located in the Ladakh Himalayas, wide band (1000 Hz–0.001 Hz) magnetotelluric (MT) study have been carried out in the Puga area. Thirty-five MT sites were occupied with site spacing varying from 0.4 to 1 km. The measurements were carried out along three profiles oriented in east–west direction. After the preliminary analysis, the MT data were subjected to decomposition techniques. The one-dimensional inversion of the effective impedance data and the two-dimensional inversion of the TE (transverse electric) and TM (transverse magnetic) data confirm the presence of low resistive (5–25 Ω m) near surface region of 200–300 m thick in the anomalous geothermal part of the area related to the shallow geothermal reservoir. Additionally, the present study delineated an anomalous conductive zone (resistivity less than 10 Ω m) at a depth of about 2 km which is possibly related to the geothermal source in the area. A highly resistive basement layer separates the surface low resistive region and anomalous conductive part. The estimated minimum temperature at the top of conductive part is about 250 °C. The significance of the deeper conductive zone and its relation to the geothermal anomaly in the area is discussed.  相似文献   

7.
本文从大地电磁扬的色散关系出发,阐述了进行大地电磁资料一维联合反演的物理意义。论证了对于以色散关系相联系的一对大地电磁响应函数,特别是阻抗实部和虚部视电阻率进行联合反演的必要性和可能的应用前景。对比研究了大地电磁阻抗各单参量及其联合反演的效果。结果表明,在加快反演迭代速度,限定反演解的非唯一性、保证反演迭代的稳定进行等方面,联合反演比单参量反演具有明显的优越性;在大多数情况下,阻抗实部视电阻率和阻抗虚部视电阻率联合反演的效果要比通常所采用的常规视电阻率和阻抗相位的联合反演效果好。实际大地电磁资料的试验表明,各种不同平均阻抗的利用和综合反演解释将有助于获得更为可靠的结果。  相似文献   

8.
The resistivity structure of the Tenerife geothermal system has been determined by the 3-D inversion of data from different magnetotelluric surveys. In this paper, the ocean and topography effects on the magnetotelluric data were investigated by constructing a 3-D conceptual geoelectrical model of the island. The study showed that these effects should be taken into account in order to obtain a reliable subsurface model of the island. Data from 148 sites were used during three-dimensional inversion. The most interesting feature in the final geoelectrical model of the geothermal system is a low resistivity structure (<10 Ωm) above the resistive core of the system. The low resistivity structure has been interpreted as a hydrothermal clay alteration cap typically generated in the conventional geothermal systems. The resistivity model has been correlated with a recent seismic velocity model, showing that a low resistivity structure surrounds an area with high P wave velocity and medium–high resistivity. This medium–high resistivity area can be associated with a slowly solidified magma and, therefore, with a hotter part of the geothermal system.  相似文献   

9.
Magnetotelluric (MT) and ground magnetic surveys were conducted on the Mahallat geothermal field situated in Markazi province, central Iran, as a primary part of the explorations and developments of a geothermal energy investigation program in the region. Mahallat region has the greatest geothermal fields in Iran. MT survey was performed in November 2011 on an 8 km profile crossing the hot springs with a total of 17 stations. The 2D inversion of the determinant MT data was performed using a 2D inversion routine based on the Occam approach. The 2D resistivity model obtained from the determinant data shows a low resistivity zone at 800-2000 m depth and a higher resistivity zone above the low resistivity zone, interpreted as geothermal reservoir and cap rock, respectively. It also revealed two major concealed faults which are acting as preferential paths for the circulation of hydrothermal fluids. To obtain more geophysical evidence, a ground magnetic survey with 5000 stations was also performed over an area of 200 km2 around the MT profile. Magnetic measurements show a main positive anomaly of about +1000 nT over the study area, which could be interpreted as an intrusive body with the high magnetic susceptibility (i.e. mafic and ultramafic rocks) into the sedimentary host rocks. We interpret the body as the heat source of the geothermal system. Structural index and depth estimation of the anomaly indicate that the intrusive body is similar to a cylinder extending from about one kilometer depth down to greater depths. The results of MT and magnetic investigations indicate a geothermal reservoir which proves the preliminary geological observations to a great extent.  相似文献   

10.
大地电磁全张量响应的一维各向异性反演   总被引:1,自引:0,他引:1       下载免费PDF全文
目前大地电磁(MT)测深资料反演主要基于各向同性介质,但随着MT实际应用的需要,各向异性研究已逐渐引起关注.我们采用广泛应用的广义逆法对一维MT水平层状各向异性介质模型反演进行了探索性研究,并实现了MT全张量响应(即所有的阻抗张量的视电阻率和相位)的一维各向异性反演.理论模型试验表明,无论理论观测值中是否含有噪声,这种方法都能够较好地恢复真实模型,验证了其正确性和有效性.将此方法用于MT实测资料时,能够同时拟合4对视电阻率和阻抗相位曲线,说明本方法可以用于实测资料的处理解释,具有一定的实用价值.  相似文献   

11.
On the basis of the dispersion relation of magnetotelluric response functions (MTRF), a filter coefficient algorithm has been made, with which the corresponding impedance phase data can be estimated using a set of apparent resistivity data. The tests of theoretical models and observed magnetotelluric (MT) data show that this algorithm is effective. Comparing the impedance phase estimated using dispersion relation with the observed phase, it can be checked whether the dispersion relation between the observed apparent resistivities and phase data was satisfied. The use of phase data corrected using the dispersion relation in the joint inversion for MT impedance is advantageous to obtain more reliable inversion results. The problems on the one-dimensional joint inversion for the (MT) apparent resistivity and the apparent resistivity of the frequency electromagnetic sounding (FEMS) with horizontal electric dipole, whose observed frequency bands are linked up each other, are studied. The observed data of two kinds of electromagnetic (EM) methods at two sites are used to inverse, the comparison with the drilling data show the results are more reliable. To supply the phase data of FEMS using the dispersion relation, for the apparent resistivity-phase data and impedance real part-imaginary part apparent resistivities of two kinds of EM methods the imitated MT joint inversions are made, and more similar results also are obtained. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 91–96, 1993. The projects sponsored by the Chinese Joint Seismological Science Foundation.  相似文献   

12.
The controlled source extremely low frequency (CSELF) electromagnetic method is characterized by extremely long and powerful sources and a huge measurement range. Its electromagnetic field can therefore be affected by the ionosphere and displacement current. Research on 3D forward modeling and inversion of CSELF electromagnetic data is currently in its infancy. This paper makes exploratory attempts to firstly calculate the 1D extremely low frequency electromagnetic field under ionosphere-air-earth coupling circumstances, and secondly analyze the propagation characteristics of the background electromagnetic field. The 3D staggered-grid finite difference scheme for solving for the secondary electric field is adopted and incorporated with the 1D modeling algorithm to complete 3D forward modeling. Considering that surveys can be carried out in the near field and transition zone for lower frequencies, the 3D Limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) inversion of CSELF electromagnetic data is presented (in which the sources, or primary fields, are included), with the aim of directly inverting the impedance data, regardless of where it is acquired. Derivation of the objective functional gradient is the core component in the inversion. Synthetic tests indicate that the well-chosen approximation to the Hessian can significantly speed up the inversion. The model responses corresponding to the coexistence of conductive and resistive blocks show that the off-diagonal components of tensor impedance are much more sensitive to the resistivity variation than the diagonal components. In comparison with conventional scalar inversion, tensor inversion is superior in the recoveries of electric anomalies and background resistivity.  相似文献   

13.
Norikura Volcano has not been active during the last 10,000 years in spite of the activity of the surrounding volcanic mountains. To study past volcanic activities, geological studies were carried out extensively. However, quite a few geophysical investigations were conducted to contribute to volcanology. Our objective is to detect the present subsurface structure of Norikura Volcano and to define volcanic stratifications. In the vicinity of Norikura Volcano, geothermal fields are still active. Subsurface volcanic rocks in this area have been exposed to geothermal activity and altered. To comprehend volcanic stratifications of Norikura and geothermal activity, we conducted audio frequency magneto-telluric (AMT) surveys around Norikura Volcano. AMT survey is useful in clearly defining the resistivity structure related to volcanic regions. The AMT data were acquired over a frequency range 10 Hz–10 kHz. Decomposition analysis was applied to the tensor impedance data. Subsequently, apparent resistivity and phase data were inverted using a two-dimensional magneto-telluric (MT) inversion and a model of Norikura was derived. The final model manifests that the surface resistors are in agreement with andesite lava or dacite lava. As for the deeper structure, a horizontal conductor is situated above resistive basements. The alteration of the conductor was weak, while basement rocks were strongly altered and/or heated through the thermal activity. The existence of these layers seems to indicate the degree of thermal activity of Norikura Volcano.  相似文献   

14.
The Magnetotelluric Phase Tensor: A Critical Review   总被引:1,自引:0,他引:1  
  相似文献   

15.
大地电磁非线性共轭梯度拟三维反演   总被引:19,自引:17,他引:19       下载免费PDF全文
提出了非线性共轭梯度法大地电磁拟三维反演.该方法选取共轭梯度反演算法为拟三维反演的核心.在计算灵敏度(Jacobian)矩阵时,吸取近似灵敏度矩阵思想,采用一维灵敏度矩阵来代替三维灵敏度矩阵,并对非测点的灵敏度元素提出一种近似方法.在第一次反演之后,采用拟牛顿法更新灵敏度矩阵.拟三维反演法在很大程度上节省了计算时间,并且理论模型和实际资料的反演试算结果表明大地电磁拟三维反演法具有一定的实用价值.  相似文献   

16.
In many coastal areas of North America and Scandinavia, post-glacial clay sediments have emerged above sea level due to iso-static uplift. These clays are often destabilised by fresh water leaching and transformed to so-called quick clays as at the investigated area at Smørgrav, Norway. Slight mechanical disturbances of these materials may trigger landslides. Since the leaching increases the electrical resistivity of quick clay as compared to normal marine clay, the application of electromagnetic (EM) methods is of particular interest in the study of quick clay structures.For the first time, single and joint inversions of direct-current resistivity (DCR), radiomagnetotelluric (RMT) and controlled-source audiomagnetotelluric (CSAMT) data were applied to delineate a zone of quick clay. The resulting 2-D models of electrical resistivity correlate excellently with previously published data from a ground conductivity metre and resistivity logs from two resistivity cone penetration tests (RCPT) into marine clay and quick clay. The RCPT log into the central part of the quick clay identifies the electrical resistivity of the quick clay structure to lie between 10 and 80 Ω m. In combination with the 2-D inversion models, it becomes possible to delineate the vertical and horizontal extent of the quick clay zone. As compared to the inversions of single data sets, the joint inversion model exhibits sharper resistivity contrasts and its resistivity values are more characteristic of the expected geology. In our preferred joint inversion model, there is a clear demarcation between dry soil, marine clay, quick clay and bedrock, which consists of alum shale and limestone.  相似文献   

17.
The magnetotelluric (MT) method has been applied to the determination of the deep resistivity structure of the northeastern margin of the Parnaiba Basin. Transient electromagnetic (TEM) and MT data were collected in early 1999 along a 95 km long N–S line, extending from the coast across the projected subcrop position of a discontinuous fault found to the west of the study area that is believed to be a possible basin‐bounding fault. The MT data were processed to yield the TE‐ and TM‐mode responses and then corrected for static shift using central‐loop and single‐loop TEM data, respectively. Regularized 2D MT inversion was subsequently undertaken using a structured initial model with the near‐surface constrained by TEM inversion results. As a consistency check, we performed another set of 2D inversions using different smooth initial models. The various optimal 2D inversion models show clearly the presence of a major basement trough, over 2 km deep, located about 70 km from the coast. We interpret it as possibly marking the main basin margin and suggest that it may have implications for groundwater resource development in the area.  相似文献   

18.
Magnetotelluric (MT) surveys were conducted in Pohang, Korea, for low-temperature geothermal exploration in 2002 and 2003. Pohang is located in the southeastern part of the Korean Peninsula and close to the East Sea. In the interpretation of MT data from a coastal environment, sea effects must be correctly included because seawater is a strong conductor. We first constructed a five-layered earth model with a realistic coastline and bathymetry to investigate sea effects on MT data measured in Pohang. This model clearly shows that the Pohang data are significantly influenced by sea water at frequencies blow 1 Hz at the whole measurement sites. Next, we utilized a three-dimensional inversion algorithm based on the Gauss–Newton approach to produce a reliable resistivity model. Seawater is excluded from the inversion domain to fix the resistivity, while included in the modeling domain to simulate sea effects on MT responses. Blocks for the sub-seafloor are included in unknown parameters since they are sufficiently close to the survey area to affect MT responses in Pohang. Static shifts are also considered in inversion for more accurate interpretation. The rms data misfit is smoothly reduced from 11.2 to 1.87 after 7 iterations. The resulting resistivity model shows a pattern of low–high–low resistivity with depth. The model is compatible with resistivity logs obtained from four boreholes in the survey area, and can explain major geological features in Pohang.  相似文献   

19.
We propose a system for the analysis of magnetotelluric (MT) data, which makes use of the invariant characteristics of the impedance tensor such as the maximum and minimum induction curves and the phase tensor. We examine the coefficients of the appearance and normalization of principal values of the impedance tensor. By the case study for Koryakiya, it is shown that the three-dimensional (3D) mathematical modeling and the Wiese-Parkinson vectors allow one to correct the results of one-dimensional (1D) and two-dimensional (2D) inversion of MT curves. Comparison between model and observed data based on the 1D inversion of MTS curves provides a pictorial view of the distortions of MT curves and their sensitivity to the parameters of a geological cross section.  相似文献   

20.
Magnetotelluric (MT) soundings and gravity methods were employed to study the deep freshwater aquifer in the area north of Abo Zenema city on the eastern side of the Gulf of Suez, Egypt. Seven MT sites and 48 gravity stations were surveyed along northeast–southwest profiles as close as possible to a line perpendicular to the coast of the Gulf of Suez. The MT survey was conducted using high and low frequencies to investigate shallow and deep areas, respectively. One-dimensional inversion was conducted using a heuristic inversion scheme of the Bostick algorithm. The MT data were also inverted with a 2-D smooth model inversion routine using the nonlinear conjugate gradient method to infer variation in vertical and lateral resistivity inside the Earth. A 100-Ohm-m homogeneous half-space initial model was used to invert the TE mode data only. Then, the inverted model obtained from the TE mode data was used as an initial model for inversion of the TM mode data. The inverted model thus obtained from the TM mode data inversion was used as an initial model for the inversion of the joint TE and TM responses. Two-dimensional (2-D) forward modeling of the gravity data was conducted using the 2-D polygon method of Talwani’s algorithm for an arbitrarily shaped body and was based on the subsurface information from the MT survey and the available information about the geological structure of the study area. This method enabled us to obtain the basement structure of the coastal aquifer in the study area. The results from the analysis and the interpretation of MT and gravity data were used to detect and delineate the groundwater coastal aquifer in the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号