首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Leaf wax components of terrestrial plants are an important source of biomass in the geological records of soils, lakes and marine sediments. Relevant to the emerging use of plant wax derived biomarkers as proxies for past vegetation composition this study provides key data for C3 plants of tropical and subtropical Africa. We present analytical results for 45 savanna species and 24 rain forest plants sampled in their natural habitats. Contents and distribution patterns of long chain n-alkanes (n-C25 to n-C35) and n-alkan-1-ols (n-C24 to n-C34) as well as bulk and molecular carbon isotopic data are presented. The variations of the analysed parameters among different growth forms (herb, shrub, liana and tree) are small within the vegetation zones, whereas characteristic differences occur between the signatures of rain forest and savanna plants. Therefore, we provide averaged histogram representations for rain forest and savanna C3 plants.The findings were compared to previously published data of typical C4 grass waxes of tropical and subtropical Africa. Generally, trends to longer n-alkane chains and less negative carbon isotopic values are evident from rain forest over C3 savanna to C4 vegetation. For n-alkanols of rain forest plants the maximum of the averaged distribution pattern is between those of C3 savanna plants and C4 grasses. The averaged presentations for tropical and subtropical vegetation and their characteristics may constitute useful biomarker proxies for studies analysing the expansion and contraction of African vegetation zones.  相似文献   

2.
研究目的】球囊霉素作为丛枝菌根真菌(AMF)分泌的一种难降解土壤蛋白,广泛分布于陆地生态系统中,是长期碳贮的重要组成。当前鲜有研究涉及其在滨海湿地中的分布。基于此,本文对中国环渤海主要滨海湿地表层沉积物中球囊霉素相关土壤蛋白(GRSP)的空间分布进行表征,探讨不同湿地生境下GRSP分布及其对沉积物风化的指示意义。【研究方法】本文选取辽河三角洲、北大港和黄河三角洲湿地作为研究区,对166个表层样(0~5 cm)和4个柱状样(0~35 cm)的GRSP、粒度以及常量元素进行测定,并计算化学蚀变系数(CIA)。【研究结果】研究区GRSP在空间上的动态变化受植被类型影响显著,范围在0.06~11.31 mg/g,均值为(2.35±0.16) mg/g;沉积物以粉砂质砂和砂为主,CIA值分布范围为44.79~69.59,部分区域达到中等化学风化;CIA与GRSP呈显著相关(R=~0.49,p<0.01),总体上CIA随GRSP的增加呈现先增加后减少的趋势。【结论】GRSP在滨海湿地沉积物中的分布受到生境差异性的影响,其与CIA的相关性表征AMF及其代谢产物在地质体风化过程中发挥了潜在的生态功能。创新点:揭示了球囊霉素相关土壤蛋白与地质过程的互馈作用;阐明了丛枝菌根真菌潜在的生态功能。  相似文献   

3.
A comprehensive analytical as well as numerical treatment of seismological, geological, geomorphological and geotechnical concepts has been implemented through microzonation projects in the northeast Indian provinces of Sikkim Himalaya and Guwahati city, representing cases of contrasting geological backgrounds — a hilly terrain and a predominantly alluvial basin respectively. The estimated maximum earthquakes in the underlying seismic source zones, demarcated in the broad northeast Indian region, implicates scenario earthquakes of M W 8.3 and 8.7 to the respective study regions for deterministic seismic hazard assessments. The microzonation approach as undertaken in the present analyses involves multi-criteria seismic hazard evaluation through thematic integration of contributing factors. The geomorphological themes for Sikkim Himalaya include surface geology, soil cover, slope, rock outcrop and landslide integrated to achieve geological hazard distribution. Seismological themes, namely surface consistent peak ground acceleration and predominant frequency were, thereafter, overlaid on and added with the geological hazard distribution to obtain the seismic hazard microzonation map of the Sikkim Himalaya. On the other hand, the microzonation study of Guwahati city accounts for eight themes — geological and geomorphological, basement or bedrock, landuse, landslide, factor of safety for soil stability, shear wave velocity, predominant frequency, and surface consistent peak ground acceleration. The five broad qualitative hazard classifications — ‘low’, ‘moderate’, ‘high’, ‘moderate high’ and ‘very high’ could be applied in both the cases, albeit with different implications to peak ground acceleration variations. These developed hazard maps offer better representation of the local specific seismic hazard variation in the terrain.  相似文献   

4.
京津冀地区国土资源环境地质条件分析   总被引:5,自引:4,他引:1       下载免费PDF全文
统计分析了京津冀地区土地资源、地下水、湿地、矿产、地热和地质景观等资源条件分布,结果显示,平原区土壤质量总体良好,良好及以上等级土壤分布面积约占平原区面积的80.89%,适宜种植绿色农产品的面积为96363 km~2,富硒耕(园)地面积为1894 km~2;地下水可开采资源总量为188亿m~3/a,但呈现空间分布不均的特征;衡水湖等五大湿地分布面积约为614 km~2,近30年来减少了35.57%;金属矿产和非金属矿产资源丰富,例如铁矿资源储量98.4亿t,铜矿资源量111.50万t,石油地质储量249635.02万t;地热资源丰富,开发利用地热资源可替代3.43亿t标准煤;地质遗迹资源丰富,约有300余处可纳入环首都国家公园规划建设。同时,分析了活动断裂与地震、地面沉降、地裂缝、崩滑流和地面塌陷、地下水污染和湿地退化等主要环境地质问题现状;在此基础上,针对城镇发展和重要基础设施建设、湿地保护与修复、地下水资源开发利用、优质耕地资源保护和地质遗迹资开发利用等方面提出了地学建议,为区域规划建设提供地质安全保障和资源保障。  相似文献   

5.
巩书华  朱丽芬 《中国岩溶》2021,40(3):504-512
通过对张家界市DEM、地质构造、岩性特征以及地貌数据进行地理信息技术(GIS)叠加分析,探讨了地质地貌因素对张家界地区岩溶石漠化分布的影响。结果表明:该区岩溶石漠化在地貌上的发生率呈现丘陵>洼地>低山>中山>高山的特征;在坡度上以Ⅱ级坡度中石漠化发生率最大,且石漠化面积呈阳坡>半阴坡>阴坡>半阳坡分布特征,并随坡向由阴转阳,各等级岩溶石漠化面积所占比例逐渐增加;地层岩性方面以碳酸盐岩与碎屑岩互层类岩层更易发生岩溶石漠化;地质构造方面表现为石漠化空间展布与断裂构造展布方向一致,且断层对石漠化的影响在ⅠB断裂构造主要体现在对断裂两盘的岩性、地层的差异性和对水系发育展布的影响上。   相似文献   

6.
Using the Eddy Covariance (EC) technique, we analyzed temporal variation in net ecosystem CO2 exchange (NEE) and determined the effects of environmental factors on the balance between ecosystem photosynthesis and respiration in a reed (Phragmites australis) wetland in the Yellow River Delta, China. Our results indicated that diurnal and seasonal patterns of NEE and its components (ecosystem respiration (R eco), gross primary production (GPP)) varied markedly among months for the growing season (May to October). The cumulative CO2 emission was 1,657 g CO2 m?2, while 2,612 g CO2 m?2 was approximately accumulated as GPP, which resulted in the reed wetland being a net sink of 956 g CO2 m?2. The ratio of R eco to GPP in reed wetland was 0.68, which was close to other temperate wetlands. Soil temperature and soil moisture exerted the primary controls on R eco during the growing season. Daytime NEE values during the growing season were strongly correlated with photosynthetically active radiation. Aboveground biomass showed significant linear relationships with 24-h average NEE, daytime GPP, and R eco, respectively. Thus, we conclude that the coastal wetland acted as a carbon sink during the growing season despite the variations in environmental conditions, and long-term flux measurements over these ecosystems are undoubtedly necessary.  相似文献   

7.
A wide range of wetland types occur on the Swan Coastal Plain of Western Australia. They vary from basins, and flats, to slopes and channels, and vary in size, shape, water characteristics, sediment types, stratigraphy, vegetation, origin, and maintenance processes. The wetlands range from large linear lakes to small round or irregular seasonally damp wetland basins to seasonally flooded flats, to seasonally flooded or permanently flowing channels. Salinity ranges from fresh to saline to hyposaline; and recharge mechanisms from perching of surface-water to wetting and inundation by groundwater, as determined by regional features such as geology, geomorphology, soils, climate and hydrology, and local physical/chemical processes. The Swan Coastal Plain presents a bewildering array, diversity, and complexity of wetlands, but patterns and ordering can be recognised if the wetlands are aggregated into natural groups. The wetlands, in fact, have been aggregated into natural groupings termed ‘consanguineous suites’, resulting in some 30 different formally named wetland suites related to geomorphic setting varying, for instance, from interdune depressions on a beach-ridge plain (the Becher Suite), to karst-formed linear lakes in limestone-ridge country (the Yanchep Suite), to irregular to round, semi-interconnected basins on a quartz sand subdued dune system (the Jandakot Suite), to linear and round basins formed along the hydrological contact between limestone and quartz sand (the Bibra Suite), among others. The variety of wetland types on the Swan Coastal Plain represents geodiversity that needs to be addressed in geoheritage assessments of the State of Western Australia. Further, as repositories of Holocene to Pleistocene sedimentary sequences, the wetlands present significant reservoirs of information on wetland history, climate changes, and hydrochemical history, and are templates on wetland maintenance and functioning, diagnostic for their geologic/geomorphic setting useful for management of wetlands in Western Australia, nationally, and globally. From a global perspective, the diversity and array of consanguineous suites of the Swan Coastal Plain is unique. An understated aspect of the approach in identifying consanguineous suites of wetlands of the Swan Coastal Plain is that in their geological, geomorphological, and hydrological/hydrochemical setting they provide profound insights into gradual and uninterrupted wetland development, sedimentary filling and ecological functioning because, for a given east–west transect, they are located in the same climate setting but in different geologic/geomorphic and hydrochemical settings. They appear to be unrepresented globally, and therefore, in terms of geoheritage, are internationally significant.  相似文献   

8.
流域湿地水质净化功能研究进展   总被引:13,自引:0,他引:13       下载免费PDF全文
湿地具有去除水中营养物质或污染物质的特殊结构和功能属性,在维护流域生态平衡和水环境稳定方面发挥巨大作用。提出了流域湿地是将流域中湿地看作一个整体,研究其水质净化功能。对国内外湿地净水功能的特殊属性、湿地系统各组分对污染物质的去除作用及湿地对污染物质的去除过程研究作了不同程度的探讨。在流域的尺度上,进行了流域湿地水质净化功能的环境因子、影响流域湿地水质净化功能的重要湿地类型和流域湿地整体水质净化功能的研究,总结了流域湿地水质净化功能。对流域湿地水质净化功能未来的研究进行了讨论与展望。  相似文献   

9.
Despite recent advances in wetland studies, ancient wetland deposits are still not well documented, and their facies characteristics are poorly registered. Sedimentary facies and sequence stratigraphic analysis of the Miocene Yecua Formation (Chaco foreland basin, Central Andes, Bolivia) and their comparison to Pantanal-like modern wetlands provide an insight into their variability, suggesting a facies model for large inland wetlands that developed in a tropical–subtropical climate. Sedimentological features show that clastic, chemical and biological processes in these environments lead to distinguishable lithofacies variations. Six architectural elements are described: (i) muddy sublittoral (FA1); (ii) mixed siliciclastic–carbonate shoreface (FA2); (iii) sand-flat (FA3) and (iv) mud-flat (FA4) deposits; (iv) floodplain (FA5); and (vi) simple channel deposits (FA6). The succession is composed of shallowing-upward parasequences with different facies characteristics caused by climatically-driven changes of the water level over three orders of magnitude and cyclicity. These cyclic changes reflect a climatic control on the sedimentation. A palaeoclimatic interpretation suggests a generally warm, humid climate with marked rainfall regime changes. The aim of this article is to use this dataset to improve the understanding of depositional elements, lithologies and stratigraphy in tropical–subtropical large inland wetlands. The proposed criteria will help in recognizing inland wetland deposits in other sedimentary basins.  相似文献   

10.
Detailed geomorphological mapping carried out in 5 sample areas in the North of Lisbon Region allowed us to collect a set of geological and geomorphological data and to correlate them with the spatial occurrence of landslide. A total of 597 slope movements were identified in a total area of 61.7 km2, which represents about 10 landslides per km2.The main landslide conditioning factors are: lithology and geological structure, slope angle and slope morphology, land use, presence of old landslides, and human activity.The highest landslide density occurs in Cretaceous marls and marly limestones, but the largest movements are in Jurassic clays, marls and limestones.The landslide density is higher on slopes with gradients above 20 °, but the largest unstable area is found on slopes of 10 ° to 15 °, thus reflecting the presence of the biggest slope movements. There is a correlation between landslides and topographical concavities, a fact that can be interpreted as reflecting the significance of the hydrological regime in slope instability.Concerning land use, the highest density of landslides is found on slopes covered with shrub and undergrowth vegetation.About 26% of the total number of landslides are reactivation events. The presence of old landslides is particularly important in the occurrence of translational slides and complex and composite slope movements.20% of the landslide events were conditioned by anthropomorphic activity. Human's intervention manifests itself in ill-consolidated fills, cuts in potentially unstable slopes and, in a few cases, in the changing of river channels.Most slope movements in the study area exhibit a clear climatic signal. The analysis of rainfall distribution in periods of recognised slope instability allows the distinction of three situations: 1) moderate intensity rainfall episodes, responsible for minor slope movements on the bank of rivers and shallow translational slides, particularly in artificial trenches; 2) high intensity rainfall episodes, originating flash floods and most landslides triggered by bank erosion; 3) long-lasting rainfall periods, responsible for the rise of the groundwater table and triggering of landslides with deeper slip surfaces.  相似文献   

11.
The Congo River basin drains the second largest area of tropical rainforest in the world, including a large proportion of pristine wetlands. We present the bacteriohopanepolyol (BHP) inventory of a suite of tropical soils and, from comparison with published data, propose some initial ideas on BHP distribution controls. Strong taxonomic controls on BHP production are evident in wetland sediments. Dominant within the suite were 35-aminobacteriohopane-31,32,33,34-tetrol (aminotetrol) and 35-aminobacteriohopane-30,31,32,33,34-pentol (aminopentol), indicating aerobic methanotrophy. A narrow range and low mean relative abundance of 30-(5′-adenosyl)hopane (adenosylhopane) and related compounds, collectively termed “soil marker” BHPs, were observed in Congo soils (mean 17%, range 7.9–36% of total BHPs, n = 22) compared with literature data from temperate surface soils and Arctic surface soils (mean 36%, range 0–66% of total BHPs, n = 28) suggesting a greater rate of conversion of these BHP precursors to other structures.  相似文献   

12.
Distributions of mangroves in coastal wetlands are influenced by abiotic conditions and the net effect of biotic interactions, including competition, facilitation, and consumer pressure. In coastal wetlands, early successional shrubs, herbs, and grasses may facilitate recruitment of mangroves through multiple mechanisms, including amelioration of environmental conditions, propagule trapping, and structural support. In Mosquito Lagoon, FL, we observed an aggregated distribution of Rhizophora mangle propagules along vegetated shorelines with Batis maritima and Sarcocornia perennis and hypothesized that this distribution was a result of propagule trapping by the vegetation. We designed a field experiment to evaluate retention of R. mangle propagules on vegetated and unvegetated shorelines in Mosquito Lagoon. Significant differences were found in the retention time of mangrove propagules at each shoreline type, with vegetated shorelines retaining propagules significantly longer than unvegetated shorelines. Results from this study help to define facilitative mechanisms which may be important in successional processes of coastal wetlands and have direct restoration applications. Successful recovery of mangroves at restoration sites may be facilitated by establishment of B. maritima and S. perennis, when natural propagule sources are available, or through planting mangrove seedlings into existing stands of these halophytes when restoration areas are propagule-limited.  相似文献   

13.
Within the definition given by UNESCO of World Cultural and Natural Heritage, geoheritage finds its significance both as the geological or geomorphological elements of nature worthy of conservation and as habitat of threatened species of outstanding universal value from the point of view of science or conservation. Definitions, methods, and applications for the conservation and valorization of geoheritage have been proposed for various types of environments, but their application in underwater areas is seldom, if even, reported. In this study, we propose a set of definitions and methods for the evaluation of scientific and additional values in underwater environment, and we apply them in two Mediterranean areas: Sigri (Greece, Lesvos Island) and Bergeggi (Italy, Liguria region). Results show the applicability of the schemes proposed in different geological and geomorphological settings and provide tools for the evaluation of abiotic underwater heritage in the two areas.  相似文献   

14.
This paper presents a preliminary study of time evolution and spatial accumulation of progressive failure for ancient landslide deposits in Xinhua slope. According to the geological response after impoundment, the Xinhua slope has shown the spatial accumulation of deformation, such as ground cracks in the rear edge, toe collapse, local shallow slides in intense rainfall, and progressive creep displacement. Approximately 2 years of monitoring was performed for the Xinhua slope with the assistance of the global navigation satellite system (GNSS), unmanned aerial vehicles (UAVs), and field investigations. The deformation process of a reservoir landslide is considered to be a comprehensive and complicated combination of geological influence from various adverse factors. Field investigations and monitoring indicate that the major serious influence after completion of dam construction comes from the initial large-scale impoundment, the fluctuation of water level, and the existence of a flood season. The creep/slip deformation of slope deposits is a result of integration with adverse hydraulic conditions, e.g., strong rainfall, intense currents and transient seepage flow inside the slope deposits, and activation by water level fluctuation, which can be verified from the twofold evident deformation in the flood season. For the reservoir with daily regulation ability, the occurrence of evident deformations in July highlights that the regulation plan for water level in the flood season is important for controlling the deformation of slope deposits, where the fluctuation of the water level is no more than 10 m in the operation period.  相似文献   

15.
Geostatistical and statistical analyses were combined to examine the spatial distribution of soil water content under four vegetation types during the dry season, in the peak-cluster depression in the karst region in northwest Guangxi, southwest China. The soil water content significantly increased from farmland to plantation, secondary forest, and primary forest; whereas the variation coefficients, the sill (C 0+C), and total spatial variance increased, although the range decreased. The spatial distribution of soil water content in the different vegetation types had a high spatial autocorrelation. Different models produced a best fit for the semivariograms of the four vegetation types. Elevation and slope position were the primary factors influencing the spatial distribution of soil water content, with other key factors differing between the four vegetation types. Moreover, even though different specific factors influenced soil water content in the four vegetation types, the correlations and degrees of associations between the soil water content and these various factors differed. Therefore, the corresponding strategies for rational usage and management of water resources should be different for the four vegetation types in this region.  相似文献   

16.
Historically, drier types of wetlands have been difficult to characterize and are not well researched. Nonetheless, they are considered to reflect the precipitation history with little, if any, regard for possible relation to groundwater. Two seasonal coastal wetland types (wet prairie, sedge meadow) were investigated during three growing seasons at three sites in the Lake Michigan Basin, Wisconsin, USA. The six seasonal wetlands were characterized using standard soil and vegetation techniques and groundwater measurements from the shallow and deep systems. They all met wetland hydrology criteria (e.g., water within 30 cm of land surface for 5% of the growing season) during the early portion of the growing season despite the lack of appreciable regional groundwater discharge into the wetland root zones. Although root-zone duration analyses did not fit a lognormal distribution previously noted in groundwater-dominated wetlands, they were able to discriminate between the plant communities and showed that wet prairie communities had shorter durations of continuous soil saturation than sedge meadow communities. These results demonstrate that the relative rates of groundwater outflows can be important for wetland hydrology and resulting wetland type. Thus, regional stresses to the shallow groundwater system such as pumping or low Great Lake levels can be expected to affect even drier wetland types.  相似文献   

17.
The geoindicators of land degradation such as erosion, vegetation change and wetland loss were identified in the Kashmir Himalayan region using a geospatial model. Geomatics techniques were used to generate information on landuse/landcover, NDVI, slope and the lithological formations that form inputs to map the erosion risk. The results of erosion analysis revealed that 48.27?% of the area is under very high erosion risk. The Middle Himalayan watersheds were found to be under high erosion risk compared to the Greater Himalayan watersheds. Pohru and Doodhganga watersheds of the Middle Himalayas were found to be under very high erosion risk. These two watersheds were studied in detail from 1992 to 2001 for vegetation change and wetland loss. In Pohru watershed, significant change was found in the dense forest with 10?% decrease. Wular lake, an important wetland in the Pohru watershed, has shrunk by 2.7?km2 during the last decade. The vegetation change analysis of the Doodhganga watershed revealed that there has been 9.13?% decrease in the forest, 7?% increase in built up and the largest wetland in the Doodhganga, Hokarsar, has reduced by 1.98?km2 from 1992 to 2001. Field studies showed that anthropogenic activities and chemically deficit soil (Karewa) along Pir Panjal ranges are the main factors responsible for high land degradation in the area. The assessment of these geoindicators provided valuable information for identifying causes and consequences of the land degradation and thus outlining potential hazard areas and designing remedial measures.  相似文献   

18.
In the Maya Lowlands of Mexico, Belize, and Guatemala two main types of wetlands have played important roles in human history: bajos or intermittently wet environments of the upland, interior Yucatán and perennial wetlands of the coastal plains. Many of the most important Maya sites encircle the bajos, though our growing evidence for human–wetland interactions is still sparse. The deposits of these wetlands record two main eras of slope instability and wetland aggradation: the Pleistocene–Holocene transition as rainfall increased and forests eclipsed savannas and the Maya Preclassic to Classic as deforestation, land-use intensity, and drying increased. The ancient Maya adapted with terraces around these bajo margins but retracted in the Late Preclassic in some areas. The perennial wetlands of the coastal plains have different histories, and the first conceptual model of human–wetland interaction described intensive wetland agriculture in the Preclassic through Classic based on raised fields and canals. But a second model arose that interpreted the wetland stratigraphy and canals as more indicative of natural aggradation by accelerated erosion and gypsum precipitation that buried Archaic and Preclassic fields and there was little Classic era use. We present new data on a third and fourth model in this study. The third is a hybrid of the models one and two, including the Archaic to Preclassic aggradation of the second model, and the first model's Classic period fields and canals as piecemeal attempts by the Maya to adapt to these and other environmental changes. The fourth conceptual model describes a very Late/Terminal Classic, preplanned project on a floodplain. These wetland fields were short-lived, aggraded rapidly but with some reoccupation in the Postclassic. All of these new models display the burgeoning evidence for intricate Maya interactions with wetlands, and the diversity of evidence from the relatively few studies underscores the infancy of our understanding of Maya interaction with tropical wetlands.  相似文献   

19.
Large areas of natural coastal wetlands have suffered severely from human-driven damages or conversions (e.g., land reclamations), but coastal carbon flux responses in reclaimed wetlands are largely unknown. The lack of knowledge of the environmental control mechanisms of carbon fluxes also limits the carbon budget management of reclaimed wetlands. The net ecosystem exchange (NEE) in a coastal wetland at Dongtan of Chongming Island in the Yangtze estuary was monitored throughout 2012 using the eddy covariance technique more than 14 years after this wetland was reclaimed using dykes to stop tidal flooding. The driving biophysical variables of NEE were also examined. The results showed that NEE displayed marked diurnal and seasonal variations. The monthly mean NEE showed that this ecosystem functioned as a CO2 sink during 9 months of the year, with a maximum value in September (?101.2 g C m?2) and a minimum value in November (?8.2 g C m?2). The annual CO2 balance of the reclaimed coastal wetland was ?558.4 g C m?2 year?1. The ratio of ecosystem respiration (ER) to gross primary production (GPP) was 0.57, which suggests that 57 % of the organic carbon assimilated by wetland plants was consumed by plant respiration and soil heterotrophic respiration. Stepwise multiple linear regressions suggested that temperature and photosynthetically active radiation (PAR) were the two dominant micrometeorological variables driving seasonal variations in NEE, while soil moisture (M s) and soil salinity (PSs) played minor roles. For the entire year, PAR and daytime NEE were significantly correlated, as well as temperature and nighttime NEE. These nonlinear relationships varied seasonally: the maximum ecosystem photosynthetic rate (A max), apparent quantum yield (?), and Q 10 reached their peak values during summer (17.09 μmol CO2?m?2 s?1), autumn (0.13 μmol CO2?μmol?1 photon), and spring (2.16), respectively. Exceptionally high M s or PSs values indirectly restricted ecosystem CO2 fixation capacity by reducing the PAR sensitivity of the NEE. The leaf area index (LAI) and live aboveground biomass (AGBL) were significantly correlated with NEE during the growing season. Although the annual net CO2 fixation rate of the coastal reclaimed wetland was distinctly lower than the unreclaimed coastal wetland in the same region, it was quite high relative to many inland freshwater wetlands and estuarine/coastal wetlands located at latitudes higher than this site. Thus, it is concluded that although the net CO2 fixation capacity of the coastal wetland was reduced by land reclamation, it can still perform as an important CO2 sink.  相似文献   

20.
Palynological techniques are useful in reconstructing past environments, especially when other sources of information are lacking. We have embarked on a palynological study of the wetlands in Southern Iraq in an attempt to determine the nature and extent of past plant communities and other conditions prior to the drying of the wetland in the 1990s. Ten 1-m depth cores were collected from selected locations in marshes and shallow open water wetlands in Mesopotamian wetlands of Southern Iraq. Pollen diagrams from three short cores from the Hawizeh wetlands serve as a reference because this site has not been drained. The palynomorphs in these cores were Gramineae, Chenopodiaceae, Typha, Isonandra lanceolata, Bursarea, Artocarpus, Ireantea, Arenga, Crinum, Palmae, Navia, Tofieldia, Ipomorea, Xyris, and Morus. Fungal spores including Polyporisporites, Pluricellaesporites palyadosporites, Fusiformisporites, Spegazzinites indicus, Diporisporites, Plochmopellinites, Lycoperdon, Miliolinites, Dryadosporites constrictus, and Trichothyrites padapakarensis were noteworthy. Charcoal was scattered through the cores and indicate activities associated with human settlements. Many other forms of cuticles, filaments, insects, algae, and foraminifera test linings were also recorded. A second set of pollen samples were analyzed from 160 soil samples from eight cores collected from the wetland area which was dried during the 1990s. These data show a mixture of pollen and spores that could be used to evaluate past vegetation, climatic, and ecological changes. Preliminary results indicated that chenopodiaceous have increased while germinate types have declined which probably reflected desertification and a trend towards a more aeolian landscape during the 1990s. It is hoped that these studies will be useful in establishing conditions of the wetlands prior to destruction and will assist in setting restoration goals in the future. Case studies of one deep borehole (153 m) near Amara city for evaluating late Quaternary history and dig of 3 m depth to evaluate ancient desertification by wetland dryness were taken for correlation and connection with this recent sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号