首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
【研究目的 】黄河流域内由于煤炭资源开发导致地下水污染严重,从整体角度对流域内重点煤炭开发区地下水进行归纳总结,为其可持续健康发展和地下水资源改善提供防治建议。【研究方法 】从黄河流域战略地位出发,对地下水污染成因和污染模式进行归纳总结。采用改进后的综合水质指数法对流域内九大煤炭基地的地下水进行水质评价。选用主成分分析法赋权指标,并引入改进的内梅罗污染指数法,按照WPI分级法进行评价。【研究结果 】通过对黄河流域各重点断面水质评价,得到目前流域内煤炭基地水质结果中Ⅲ、Ⅳ类占比较多,水质较差。分析成因当前流域内存在高矿化度矿井水、酸性矿井水和含特殊组分矿井水污染,同时阐述污染地下水形成的浅层和深层两种污染模式。【结论 】对3种矿井水采用相应防治方法,并提出膏体充填技术和微生物修复技术2种防治技术建议,通过应用实际矿山为例,印证污染防治技术能够改善由煤炭开采引发的流域内地下水污染严重的问题,以期研究结果能够对成功推动中国绿色矿山的快速发展具有参考意义。  相似文献   

2.
王锦鹏  毋娇 《地下水》2023,(4):112-113+178
人工湿地是人为因素形成的湿地,由水体、基质、水生植被和微生物四个基本组成要素构成的,是一种生态治理污水的方法。皂河人工湿地是西安市为改善皂河入渭口水质而建设的人工湿地。经分析,皂河人工湿地对皂河污水中的主要指标均有明显去除效果,但是,对污水处理厂处理后的中水除氮、磷外,其他指标处理效果不明显。针对人工湿地净水植物随着年份增加,根系逐步板结、生长愈发缓慢、净水能力下降的问题,可以采取调整湿地整体功能、更新净水植物及创新管理运行方式等措施,更好发挥人工湿地的净化作用。  相似文献   

3.
湿地是流域水循环和水量平衡的重要调节器,在维护流域水量平衡、减轻洪旱灾害和应对气候变化等方面发挥极其重要的作用。流域湿地水文调蓄功能是湿地生态水文学研究的重要内容,科学认识和理解流域湿地水文调蓄功能对流域湿地恢复保护、水资源综合管控与应对气候变化具有极其重要的意义。本文阐述了流域湿地水文调蓄功能的概念与内涵,剖析了流域湿地水文调蓄功能时空变异性、阈值性和多维性三大特征及其影响因素(包括湿地土壤特性、植被特征和初始水文条件等内在因素和流域特征、降雨特征、气候变化和人类活动等外在因素),探讨了流域湿地不变情景下和变化情景下水文调蓄功能评估方法,并介绍了流域湿地水文调蓄功能定量评估模型与应用情况。最后,从学科发展和实践需求的视角提出了流域湿地水文调蓄功能未来亟需加强研究的重点方向。  相似文献   

4.
湿地水空间效应   总被引:1,自引:0,他引:1  
邓伟 《地球科学进展》2007,22(7):725-729
地球水资源短缺问题日益严重,直接影响自然与经济社会可持续发展.陆地健康水循环和水资源的再生是基于合理的水调节空间.湿地是不可替代的水调节空间,因湿地特殊的水理性质和特有的生物地球化学作用,使湿地具有显著的调蓄地表径流和水体净化功能.人类活动大量破坏湿地,使湿地水空间效应明显下降,极大地削弱了湿地水调节功能.就流域生态、生产、生活用水的协调与保证而言,其合理的湿地配置是解决这一问题的重要基础之一.  相似文献   

5.
【研究目的】新安江流域是华东地区重要的生态安全屏障,其治理具有长期性、艰巨性、复杂性和反复性。科学评价流域水环境质量状况,识别重点污染区域和主要污染因子,可为流域生态环境整治提供重要依据。【研究方法】以新安江流域88个监测点水质数据为基础,采用主成分分析法对水质评价指标体系进行优化,再运用熵权法计算各指标权重及各个监测点的水质综合指数,并结合GIS空间分析功能绘制了水质综合指数图。【研究结果】88个监测点的水质综合指数范围为0.02~1.313,流域地表水环境质量总体较好,以Ⅲ类水为主,且浙江段水质好于安徽段。重点污染区域分布在休宁—歙县—徽州区一带,形成了潜口镇、岩寺镇—三村镇两个污染中心。TN、TP和NH3-N为流域主要污染指标,其中TN为全局型污染物,TP和NH3-N为区域型污染物。【结论】主成分分析和熵权法结合的水质评价模型避免了评价指标的重复性以及权重赋值的主观性,能够有效评估复杂的水环境指标体系,具有较好的可行性和实用性。  相似文献   

6.
采用再力花和菖蒲构建湿地床,以考察其对污染河水的净化效果。6个月的连续试验表明:在水力负荷为0.24 m3/(m2.d)、植物种植密度大于158株/m2的条件下,2种植物存活率均大于93%,说明植物能适应低污染负荷、高种植密度的无土培养环境;再力花和菖蒲湿地床月均去除率分别为:总氮(TN),48.22%~78.53%和43.23%~72.42%;总磷(TP),77.62%~85.67%和58.07%~80.77%。再力花湿地床对TN、TP的净化效果好于菖蒲湿地床;2种植物吸收N、P含量分别占去除总量的比例:N为44.14%、37.75%,P为73.43%、62.05%。湿地床技术可有效去除来水中的TN、TP,通过植物吸收作用累积N、P含量较高,不同种类的植物构建湿地床对污染河水中N、P去除效果存在显著差异,且硝化反硝化和植物吸收是去除N的主要途径,而植物吸收是去除P的有效手段。  相似文献   

7.
以日照市山海天地区为典型调查区域,从调查本身的可操作性以及数据的可得性等角度出发,野外采集土壤、地表水、地下水样品,利用3s技术、地质统计学等先进技术方法进行试验分析和评价,探讨其水土资源质量现状,揭示该区湿地功能面临的主要威胁。结果表明:该区段水质状况堪忧,地表水典型污染物质超标严重,地下水水质综合评价较差。从研究区土壤中的Pb、Zn、As、Hg、Cd、Cr等典型污染物质的综合评价来看,该区域土壤环境质量总体优良;从土壤中典型污染物质的Kriging空间插值分析来看,除cd空间分布规律不甚明显外,其余均表现出一定的空间结构特征。  相似文献   

8.
哈尔滨市地下水污染特征与水质净化作用研究   总被引:1,自引:0,他引:1       下载免费PDF全文
松花江哈尔滨江段水质污染较重,是否可能通过入渗补给影响哈尔滨市区地下水的水质?为此,分别对松花江哈尔滨江段和哈尔滨市地下含水层的污染特征与各自的净化能力进行了分析研究.结果表明,两者的净化能力均很强,并可不断地得以自然恢复。净化作用主要表现为稀释、吸附、过滤等.保持这种自然净化能力,对保护哈尔滨市地下含水层的优良水质有十分重要的作用。  相似文献   

9.
刘效群  王晓龙 《地下水》2010,32(6):88-88,112
扎龙自然保护区"十五"期间水环境质量较差,本文对6项水质污染指标、浮游藻类和底栖动物进行了评价,分析了湿地面积减少,生态功能退化,生物多样性遭到破坏的原因,为湿地保护区的水环境评价提供了理论依据。  相似文献   

10.
从深圳市的现实研究需求出发,在对地表水体主要水质指标因子分析的基础上,研究了深圳市境内五个集雨面积大于100 km2的河流近10年的水质时空变化特征。然后结合5个流域的土地利用详查数据,应用统计分析和空间分析方法论证了流域内土地利用类型与河流水质关键指标之间的相关关系。研究结果表明,从1996-2004年深圳市5个主要河流的有机物污染程度有不断增加的趋势,不同时间段内5个流域的耕地、园地和建设用地的数量对相应河流水质的有机物污染有明显的正效影响作用。因此为了制定和实施合理的水环境保护对策,需要对流域内土地利用结构进行优化调整,以期构建流域尺度上水土资源协调发展的可行预案。  相似文献   

11.
胶州湾滨海湿地的景观格局变化及环境效应   总被引:3,自引:0,他引:3  
在湿地景观类型分类基础上,利用RS及GIS技术提取了1986、1995和2010年胶州湾滨海湿地的Landsat卫星假彩色合成影像的空间属性数据,利用斑块动态度、斑块密度指数、景观多样性指数、斑块破碎化指数研究了胶州湾滨海湿地的景观格局变化及累积环境效应。结果表明,1986~2010年胶州湾滨海湿地总面积减少,河流与河口湿地面积稍有增大,潮间带滩涂和潮上带湿地面积和斑块数减小;养殖池面积增大、斑块数增多,盐田面积减小、斑块数基本未变,增加了湿地公园这种新的人工湿地景观类型。期间,湿地的景观斑块密度指数、多样性指数和景观斑块破碎化指数增大了。上述湿地面积和景观格局变化是由围垦、城市化、港口和道路建设、河流径流量和输沙量减少、海岸侵蚀、海水入侵、全球变暖、海面上升等因素引起的,并导致湿地生物多样化水平下降、有害植物入侵、环境净化功能降低、污染和赤潮灾害加重、植被退化演替、渔业资源衰退和湿地生态系统服务价值降低等累积环境效应。为减轻这些不利的累积环境效应,应采取建设湿地自然保护区、控制养殖池和盐田规模、发展工业循环经济和生态农业等措施保护胶州湾滨海湿地。  相似文献   

12.
Climate change is identified as a major threat to wetlands. Altered hydrology and rising temperature can change the biogeochemistry and function of a wetland to the degree that some important services might be turned into disservices. This means that they will, for example, no longer provide a water purification service and adversely they may start to decompose and release nutrients to the surface water. Moreover, a higher rate of decomposition than primary production (photosynthesis) may lead to a shift of their function from being a sink of carbon to a source. This review paper assesses the potential response of natural wetlands (peatlands) and constructed wetlands to climate change in terms of gas emission and nutrients release. In addition, the impact of key climatic factors such as temperature and water availability on wetlands has been reviewed. The authors identified the methodological gaps and weaknesses in the literature and then introduced a new framework for conducting a comprehensive mesocosm experiment to address the existing gaps in literature to support future climate change research on wetland ecosystems. In the future, higher temperatures resulting in drought might shift the role of both constructed wetland and peatland from a sink to a source of carbon. However, higher temperatures accompanied by more precipitation can promote photosynthesis to a degree that might exceed the respiration and maintain the carbon sink role of the wetland. There might be a critical water level at which the wetland can preserve most of its services. In order to find that level, a study of the key factors of climate change and their interactions using an appropriate experimental method is necessary. Some contradictory results of past experiments can be associated with different methodologies, designs, time periods, climates, and natural variability. Hence a long-term simulation of climate change for wetlands according to the proposed framework is recommended. This framework provides relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supports coordination between researchers. This can help to find a sustainable management strategy for wetlands to be resilient to climate change.  相似文献   

13.
Climate change is identified as a major threat to wetlands. Altered hydrology and rising temperature can change the biogeochemistry and function of a wetland to the degree that some important services might be turned into disservices. This means that they will, for example, no longer provide a water purification service and adversely they may start to decompose and release nutrients to the surface water. Moreover, a higher rate of decomposition than primary production (photosynthesis) may lead to a shift of their function from being a sink of carbon to a source. This review paper assesses the potential response of natural wetlands (peatlands) and constructed wetlands to climate change in terms of gas emission and nutrients release. In addition, the impact of key climatic factors such as temperature and water availability on wetlands has been reviewed. The authors identified the methodological gaps and weaknesses in the literature and then introduced a new framework for conducting a comprehensive mesocosm experiment to address the existing gaps in literature to support future climate change research on wetland ecosystems. In the future, higher temperatures resulting in drought might shift the role of both constructed wetland and peatland from a sink to a source of carbon. However, higher temperatures accompanied by more precipitation can promote photosynthesis to a degree that might exceed the respiration and maintain the carbon sink role of the wetland. There might be a critical water level at which the wetland can preserve most of its services. In order to find that level, a study of the key factors of climate change and their interactions using an appropriate experimental method is necessary. Some contradictory results of past experiments can be associated with different methodologies, designs, time periods, climates, and natural variability. Hence a long-term simulation of climate change for wetlands according to the proposed framework is recommended. This framework provides relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supports coordination between researchers. This can help to find a sustainable management strategy for wetlands to be resilient to climate change.  相似文献   

14.
Climate change is identified as a major threat to wetlands. Altered hydrology and rising temperature can change the biogeochemistry and function of a wetland to the degree that some important services might be turned into disservices. This means that they will, for example, no longer provide a water purification service and adversely they may start to decompose and release nutrients to the surface water. Moreover, a higher rate of decomposition than primary production (photosynthesis) may lead to a shift of their function from being a sink of carbon to a source. This review paper assesses the potential response of natural wetlands (peatlands) and constructed wetlands to climate change in terms of gas emission and nutrients release. In addition, the impact of key climatic factors such as temperature and water availability on wetlands has been reviewed. The authors identified the methodological gaps and weaknesses in the literature and then introduced a new framework for conducting a comprehensive mesocosm experiment to address the existing gaps in literature to support future climate change research on wetland ecosystems. In the future, higher temperatures resulting in drought might shift the role of both constructed wetland and peatland from a sink to a source of carbon. However, higher temperatures accompanied by more precipitation can promote photosynthesis to a degree that might exceed the respiration and maintain the carbon sink role of the wetland. There might be a critical water level at which the wetland can preserve most of its services. In order to find that level, a study of the key factors of climate change and their interactions using an appropriate experimental method is necessary. Some contradictory results of past experiments can be associated with different methodologies, designs, time periods, climates, and natural variability. Hence a long-term simulation of climate change for wetlands according to the proposed framework is recommended. This framework provides relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supports coordination between researchers. This can help to find a sustainable management strategy for wetlands to be resilient to climate change.  相似文献   

15.
Climate change is identified as a major threat to wetlands. Altered hydrology and rising temperature can change the biogeochemistry and function of a wetland to the degree that some important services might be turned into disservices. This means that they will, for example, no longer provide a water purification service and adversely they may start to decompose and release nutrients to the surface water. Moreover, a higher rate of decomposition than primary production (photosynthesis) may lead to a shift of their function from being a sink of carbon to a source. This review paper assesses the potential response of natural wetlands (peatlands) and constructed wetlands to climate change in terms of gas emission and nutrients release. In addition, the impact of key climatic factors such as temperature and water availability on wetlands has been reviewed. The authors identified the methodological gaps and weaknesses in the literature and then introduced a new framework for conducting a comprehensive mesocosm experiment to address the existing gaps in literature to support future climate change research on wetland ecosystems. In the future, higher temperatures resulting in drought might shift the role of both constructed wetland and peatland from a sink to a source of carbon. However, higher temperatures accompanied by more precipitation can promote photosynthesis to a degree that might exceed the respiration and maintain the carbon sink role of the wetland. There might be a critical water level at which the wetland can preserve most of its services. In order to find that level, a study of the key factors of climate change and their interactions using an appropriate experimental method is necessary. Some contradictory results of past experiments can be associated with different methodologies, designs, time periods, climates, and natural variability. Hence a long-term simulation of climate change for wetlands according to the proposed framework is recommended. This framework provides relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supports coordination between researchers. This can help to find a sustainable management strategy for wetlands to be resilient to climate change.  相似文献   

16.
Climate change is identified as a major threat to wetlands. Altered hydrology and rising temperature can change the biogeochemistry and function of a wetland to the degree that some important services might be turned into disservices. This means that they will, for example, no longer provide a water purification service and adversely they may start to decompose and release nutrients to the surface water. Moreover, a higher rate of decomposition than primary production (photosynthesis) may lead to a shift of their function from being a sink of carbon to a source. This review paper assesses the potential response of natural wetlands (peatlands) and constructed wetlands to climate change in terms of gas emission and nutrients release. In addition, the impact of key climatic factors such as temperature and water availability on wetlands has been reviewed. The authors identified the methodological gaps and weaknesses in the literature and then introduced a new framework for conducting a comprehensive mesocosm experiment to address the existing gaps in literature to support future climate change research on wetland ecosystems. In the future, higher temperatures resulting in drought might shift the role of both constructed wetland and peatland from a sink to a source of carbon. However, higher temperatures accompanied by more precipitation can promote photosynthesis to a degree that might exceed the respiration and maintain the carbon sink role of the wetland. There might be a critical water level at which the wetland can preserve most of its services. In order to find that level, a study of the key factors of climate change and their interactions using an appropriate experimental method is necessary. Some contradictory results of past experiments can be associated with different methodologies, designs, time periods, climates, and natural variability. Hence a long-term simulation of climate change for wetlands according to the proposed framework is recommended. This framework provides relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supports coordination between researchers. This can help to find a sustainable management strategy for wetlands to be resilient to climate change.  相似文献   

17.
Climate change is identified as a major threat to wetlands. Altered hydrology and rising temperature can change the biogeochemistry and function of a wetland to the degree that some important services might be turned into disservices. This means that they will, for example, no longer provide a water purification service and adversely they may start to decompose and release nutrients to the surface water. Moreover, a higher rate of decomposition than primary production (photosynthesis) may lead to a shift of their function from being a sink of carbon to a source. This review paper assesses the potential response of natural wetlands (peatlands) and constructed wetlands to climate change in terms of gas emission and nutrients release. In addition, the impact of key climatic factors such as temperature and water availability on wetlands has been reviewed. The authors identified the methodological gaps and weaknesses in the literature and then introduced a new framework for conducting a comprehensive mesocosm experiment to address the existing gaps in literature to support future climate change research on wetland ecosystems. In the future, higher temperatures resulting in drought might shift the role of both constructed wetland and peatland from a sink to a source of carbon. However, higher temperatures accompanied by more precipitation can promote photosynthesis to a degree that might exceed the respiration and maintain the carbon sink role of the wetland. There might be a critical water level at which the wetland can preserve most of its services. In order to find that level, a study of the key factors of climate change and their interactions using an appropriate experimental method is necessary. Some contradictory results of past experiments can be associated with different methodologies, designs, time periods, climates, and natural variability. Hence a long-term simulation of climate change for wetlands according to the proposed framework is recommended. This framework provides relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supports coordination between researchers. This can help to find a sustainable management strategy for wetlands to be resilient to climate change.  相似文献   

18.
Climate change is identified as a major threat to wetlands. Altered hydrology and rising temperature can change the biogeochemistry and function of a wetland to the degree that some important services might be turned into disservices. This means that they will, for example, no longer provide a water purification service and adversely they may start to decompose and release nutrients to the surface water. Moreover, a higher rate of decomposition than primary production (photosynthesis) may lead to a shift of their function from being a sink of carbon to a source. This review paper assesses the potential response of natural wetlands (peatlands) and constructed wetlands to climate change in terms of gas emission and nutrients release. In addition, the impact of key climatic factors such as temperature and water availability on wetlands has been reviewed. The authors identified the methodological gaps and weaknesses in the literature and then introduced a new framework for conducting a comprehensive mesocosm experiment to address the existing gaps in literature to support future climate change research on wetland ecosystems. In the future, higher temperatures resulting in drought might shift the role of both constructed wetland and peatland from a sink to a source of carbon. However, higher temperatures accompanied by more precipitation can promote photosynthesis to a degree that might exceed the respiration and maintain the carbon sink role of the wetland. There might be a critical water level at which the wetland can preserve most of its services. In order to find that level, a study of the key factors of climate change and their interactions using an appropriate experimental method is necessary. Some contradictory results of past experiments can be associated with different methodologies, designs, time periods, climates, and natural variability. Hence a long-term simulation of climate change for wetlands according to the proposed framework is recommended. This framework provides relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supports coordination between researchers. This can help to find a sustainable management strategy for wetlands to be resilient to climate change.  相似文献   

19.
Climate change is identified as a major threat to wetlands. Altered hydrology and rising temperature can change the biogeochemistry and function of a wetland to the degree that some important services might be turned into disservices. This means that they will, for example, no longer provide a water purification service and adversely they may start to decompose and release nutrients to the surface water. Moreover, a higher rate of decomposition than primary production (photosynthesis) may lead to a shift of their function from being a sink of carbon to a source. This review paper assesses the potential response of natural wetlands (peatlands) and constructed wetlands to climate change in terms of gas emission and nutrients release. In addition, the impact of key climatic factors such as temperature and water availability on wetlands has been reviewed. The authors identified the methodological gaps and weaknesses in the literature and then introduced a new framework for conducting a comprehensive mesocosm experiment to address the existing gaps in literature to support future climate change research on wetland ecosystems. In the future, higher temperatures resulting in drought might shift the role of both constructed wetland and peatland from a sink to a source of carbon. However, higher temperatures accompanied by more precipitation can promote photosynthesis to a degree that might exceed the respiration and maintain the carbon sink role of the wetland. There might be a critical water level at which the wetland can preserve most of its services. In order to find that level, a study of the key factors of climate change and their interactions using an appropriate experimental method is necessary. Some contradictory results of past experiments can be associated with different methodologies, designs, time periods, climates, and natural variability. Hence a long-term simulation of climate change for wetlands according to the proposed framework is recommended. This framework provides relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supports coordination between researchers. This can help to find a sustainable management strategy for wetlands to be resilient to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号