首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
为探究珠江口海域自养微微型浮游生物种群时空分布特征及其与环境之间的关系,于2013年5~11月,运用高液相色谱(HPLC)法和流式细胞术对珠江口海域表层水体中微微型浮游生物进行测定。流式细胞计数结果显示,珠江口海域自养微微型浮游生物由聚球藻(Synechococcus, Syn)和微微型真核生物(Picoeukaryotes,PEUK)组成。聚球藻始终占据总细胞丰度的主导地位。光合色素化学分类法(Chemotaxonomy,CHEMTAX)分析表明,自养微微型浮游生物群落结构具有明显的季节性变化,春季和夏季生物量以聚球藻为主,秋季生物量以青绿藻为主。CHEMTAX分析和流式细胞计数结果的相关性分析表明,在春季和夏季Syn细胞丰度与CHEMTAX生物量(即Syn贡献chla)之间呈现极显著正相关(P<0.01),PEUK细胞丰度与CHEMTAX生物量(即PEUK贡献chla)也存在显著正相关(P<0.05);然而,在秋季则无显著性相关关系(P>0.05)。冗余分析表明,温度和营养盐浓度是影响自养微微型浮游生物群落分布与组成的重要因素。另外,盐度、透明度、悬浮颗粒物对自养...  相似文献   

2.
菲律宾海三种微微型浮游生物颗粒丰度及其光散射作用   总被引:1,自引:0,他引:1  
2004年秋季在菲律宾海取得了微微型生物颗粒样品和光衰减剖面资料,然后对三种常见的微微型颗粒(原绿球藻,聚球藻和自养真核细胞)丰度及其光学性质做了初步分析和估算。研究结果表明,菲律宾海原绿球藻的丰度最高,其次为聚球藻,自养真核细胞的丰度最低。3种微微型颗粒的光散射系数同水体剖面的光衰减系数(cp)具有明显的相关关系。3种微微型颗粒的散射作用仅占总光衰减系数的5.1%,其中原绿球藻、自养真核细胞和聚球藻分别占2.6%,2.2%和0.3%。  相似文献   

3.
赵苑  赵丽  张武昌  刘诚刚  魏皓  肖天 《海洋与湖沼》2012,43(6):1030-1038
于2007年3—4月在黄海中部海域采用流式细胞术研究了春季水华过程中聚球藻、微微型真核浮游生物和异养细菌的生物量变化。聚球藻和微微真核型浮游生物的生物量与叶绿素a浓度变化基本呈现相反的趋势,在水华前期较高,水华期迅速下降,直至水华后期又有所升高。异养细菌在整个水华过程中变化较小,生物量在水华期最高,与水柱叶绿素a浓度呈极显著正相关(r=0.319,p<0.01)。水华期这三类微微型浮游生物对浮游植物总碳生物量的贡献很低。纤毛虫和鞭毛虫捕食可能是导致聚球藻和微微型真核浮游生物在水华期生物量降低的主要原因。  相似文献   

4.
胶州湾微微型浮游植物丰度及其与环境因子的相关性分析   总被引:1,自引:0,他引:1  
利用流式细胞仪对胶州湾微微型浮游植物4个季节的丰度分布进行了研究,并分析了微微型浮游植物与环境因子的相关性。结果表明,聚球藻的丰度在2.17×102—2.329×104个/ml之间,高值区主要分布在湾内西部和湾口海域;仅夏季、冬季丰度之间有显著性差异;夏季在垂直分布上差异显著,在B3、C4、D5连续站昼夜变化趋势基本一致,分别在13:00和3:00出现峰值。微微型真核浮游植物的丰度分布在1.028×103—8.651×104个/ml之间,主要活跃于湾内西部海域;四季丰度在垂直分布上差异不显著;春、夏季丰度明显高于秋、冬季;夏季连续站昼夜变化趋势与聚球藻基本一致。通过主成分分析表明,聚球藻和微微型真核浮游植物丰度在不同季节受不同环境因子的影响,在冬季与温度有关,温度升高,二者的丰度增高。在其它季节,二者丰度主要受营养盐等环境因子的影响。  相似文献   

5.
为全面了解黄海典型海区微微型浮游植物的季节变化特征,于2009年7月至2010年6月在北黄海獐子岛海域和2010年1~12月在南黄海胶州湾进行逐月调查采样,利用流式细胞仪检测了表层海水中微微型浮游植物(picophytoplankton)的丰度,包括聚球藻(Synechococcus,SYN)和微微型真核浮游植物(picoeukaryotes,PEUK),并分析了其与环境因子的关系。獐子岛海域和胶州湾SYN和PEUK全年广泛分布,獐子岛海域SYN丰度范围在0.05×103~120.00×103cells/mL之间,丰度在秋季最高;胶州湾SYN丰度范围在0.02×103~61.80×103cells/mL之间,丰度在夏季最高。獐子岛海域PEUK丰度范围在0.01×103~18.76×103cells/mL之间,丰度在秋季最高;胶州湾PEUK丰度范围在0.25×103~95.57×103 cells/mL之间,丰度在春季最高。獐子岛海域微微型浮游植物丰度组成以SYN为主;而胶州湾以PEUK为主。PEUK是两海区微微型浮游植物生物量的主要贡献者。相关性分析结果表明,温度是影响两海区SYN丰度季节变化的最主要因素;影响PEUK季节分布的因素不完全一致,獐子岛海域PEUK丰度主要受温度调控;胶州湾PEUK丰度主要受温度和营养盐浓度影响。与已有研究比较,这两个海区的微微型浮游植物生物量对浮游植物生物量的贡献明显高于其他温带沿岸海域,预示微微型浮游植物在獐子岛海域和胶州湾生态系统中的重要作用,值得进一步深入研究。  相似文献   

6.
To understand picocyanobacterial distribution patterns in the northwestern Pacific Ocean, their abundances and genetic diversity were studied using flow cytometry and a barcoded amplicon pyrosequencing approach. At open ocean stations affected by the North Equatorial Current, Prochlorococcus was the predominant picocyanobacteria, and a high-light-adapted ecotype (HLII) made up most of the population. In contrast, at stations in shelf areas of the East China Sea (ECS) and South Sea, Synechococcus was the predominant picocyanobacteria and clade II was dominant. At other ECS stations affected by the Kuroshio Current, both Prochlorococcus and Synechococcus made up similar proportions of the picocyanobacterial community. These results indicate that picocyanobacterial diversity differs among oceanic regions, and that physicochemical properties related to dominant water masses, seem to be important in determining picocyanobacterial diversity.  相似文献   

7.
Using a flow cytometer (FCM) onboard the R/V Xuelong during the 24th Chinese Antarctic cruise, picoplankton community structure and biomass in the surface water were examined along the latitude and around the Antarctic Ocean. Salinity and temperature were automatically recorded and total Chla was determined. Along the cruise, the abundance of Synechococcus, Prochlorococcus, pico-eukaryotes and heterotrophic bacteria ranged in 0.001-1.855×108 ind./L, 0.000-2.778£108 ind./L, 0.002-1.060×108 ind./L and 0.132-27.073×108 ind./L, respectively. Major oceanic distribution of Synechococcus and Prochlorococcus appeared between latitudes 30°N and 30°S. Prochlorococcus was mainly influenced by water temperature, water mass combination and freshwater inflow. Meanwhile, Synechococcus distribution was significantly associated with landing freshwater inflow. Pico-eukaryotes and heterotrophic bacteria were distributed all over the oceans, but with a relatively low abundance in the high latitudes of the Antarctic Ocean. Principal Component Analysis showed that at same latitude of Atlantic Ocean and Indian Ocean, picoplankton distribution and constitution were totally different, geographical location and different water masses combination would be main reasons.  相似文献   

8.
How pico- and nanophytoplankton responded to artificial iron infusions was investigated using flow cytometry during SEEDS II, the second mesoscale in situ iron enrichment experiment in the western subarctic North Pacific. Two iron infusions on days 0 and 7 caused a remarkable increase in cellular chlorophyll fluorescence and cell size of all the four phytoplankton groups investigated: Synechococcus, cryptophytes, picoeucaryotes and nanoeucaryotes other than cryptophytes. After the second infusion, the abundance of three phytoplankton groups, excluding Synechococcus, also started to increase. After surface dissolved iron concentration decreased to <0.2 nM on day 11, chlorophyll fluorescence of all the four groups returned to a level observed before the iron infusions, suggesting that pico- and nanophytoplankton were physiologically stressed by iron deficiency. Cell concentrations of pico- and nanoeucaryotes decreased to the pre-infusion level by day 23, while that of cryptophytes remained high until day 25. Flow cytometric diagnosis showed that cryptophytes were physiologically limited during this period and effective iron uptake from suspended particles, as reported for freshwater cryptophytes, was not observed. Thus their prosperity may have been due to alleviation from grazing. Cell concentration of Synechococcus started to increase at a net specific growth rate of 0.13 d−1 after day 12, reaching more than 6 times that of the pre-infusion level on day 24. This may have been due to the elevation of surface water temperature observed during the survey period, together with trophic cascading effects of increased copepod grazing.  相似文献   

9.
To examine the possibility that outer membrane proteins (OMP) of Synechococcus sp. remain in seawater, we investigated the stability of OMPs in vitro and in situ. Some fractions prepared from Synechococcus sp. CSIRO-94 were treated with trypsin and proteinase K. Four tightly bound OMPs were separated from Synechococcus. We designated the two major OMPs of 52 kDa and 48 kDa as Omp52Sy and Omp48Sy, respectively. Degradation of the OMP in natural seawater was monitored in microcosms to which intact Synechococcus cells and outer membrane (OM) were added. Omp52Sy and Omp48Sy were the most stable against trypsin and proteinase K among the OMPs when they were embedded in the OM. However, in the microcosm experiment using intact cells, Omp52Sy and Omp48Sy were detected in the particulate fraction only during the first 4 days, after which they could not longer be detected. Omp52Sy and Omp48Sy were the most stable proteins among the Synechococcus OMPs in vitro, but they might be degraded in situ. This indicates that stability of Synechococcus porin differs depending on complex formation with other membrane molecules, which might cause different preservation of microbial membrane proteins in the dissolved protein pool in the ocean. This study suggests that Gram negative bacterial OM with thin peptidoglycan forms a lipid bilayer that proptects OMP, but Synechococcus OM with thick peptidoglycan cannot form a lipid bilayer. The incomplete bilayer might not be able to protect from protease attack in the natural environment.  相似文献   

10.
Abundance of picoplanktonic chroococcoid marine cyanobacteria Synechococcus was monitored weekly over the year 1998 in shallow coastal waters of the northern Levantine Basin. The ambient physical, chemical and biological variables (temperature, salinity, Secchi disk depth, total suspended sediment, nitrate, phosphate, Chl a and phytoplankton) were also measured. Synechococcus was found to be more abundant during summer and early autumn and less during winter and early spring. At the surface and 15 m depth, cell concentrations were in the range 6.4 × 103–1.5 × 105 and 3.2 × 103–1.6 × 105 cells·ml−1, respectively. Based on the Pearson product–moment correlation analysis, a highly significant correlation between Synechococcus abundance and ambient temperature was observed (n = 40, r = 0.558, P < 0.01). As Synechococcus forms blooms that usually do not last more than a week, the short time‐scale survey achieved in this study was appropriate to reveal its abundance dynamics. Several factors such as rapid changes in nutrient concentration (especially nitrate), phytoplankton, light availability, temperature, salinity, freshwater input and vertical mixing played a relevant role on the abundance of Synechococcus over the year in the highly dynamic shallow coastal waters of the Levantine Basin.  相似文献   

11.
In our attempt to characterize the interaction of trophic coupling between Synechococcus and pigmented nanoflagellates (PNFs), successive size-fraction experiments were performed at a coastal station on the northeast coast of Taiwan from June, 2005 to January, 2006. By estimating the growth rate and grazing rate of Synechococcus in the presence of nanoflagellates of different sizes, we truncated the food web by removing organisms with different body sizes (<2 μm, <5 μm, <10 μm, and <20 μm). The growth rates of Synechococcus ranged from −0.016 to 0.051 h−1 during the experimental period, suggesting that temperature was a primary mechanism controlling Synechococcus growth. In addition to size and relative biomass of pigmented nanoflagellates and Synechococcus, it is suggested that community structures played an important role in trophic link. Furthermore, we conclude that the trophic cascading effect in the northeast coast of Taiwan includes: 1) high grazing rates at night in the warm season; 2) the Synechococcus biomass generally exceeds the grazing threshold (6 × 104 cells mL−1); and 3) the biomass ratio of <5 μm PNFs to >5 μm PNFs should be 1:1 to 2:1.  相似文献   

12.
-Marine chroococcoid phycoerythrin - containing Synechococcus spp. recently have been implicated as a substantial component of the photosynthetic picoplankton in the ocean. Although the importance of Synechococcus as food sources for heterotrophic nanoplankton are now recognized, the information about its cycling of biomass and diel patterns is limited and the methodology used varies according to different authors. A selective metabolic inhibitor method was used to allow simultanous estimation of both growth rates and grazing disappearance rates of Synechococcus. Results obtained in the English Channel show growth rates ranging from 0. 25 to 0. 72 d-1 with an average value of 0. 51 d -1and grazing disappearance rates ranged from 0. 21 to 0. 64 d-1 (mean = 0. 44 d-1). Offshore in the Celtic Sea of the Northeast Atlantic Ocean, both rates were lower than in the channel. The similarity between average growth and grazing rates suggests a rapid recycling of Synechococcus biomass. In diel pattern, Synechococc  相似文献   

13.
Shimada  A.  Nishijima  M.  Maruyama  T. 《Journal of Oceanography》1995,51(3):289-300
Seasonal appearance ofProchlorococcus was studied by flow cytometry in Suruga Bay, Japan in 1992–1993.Prochlorococcus cells were in high concentrations (>1×104 cells ml–1) from July to October 1992 and September 1993, when the water temperature was over 20°C. The 16S rRNA of the isolated cells showed 98.5% sequence homology with that ofP. marinus (Sargasso strain), indicating that they are the same species. The former has a high divinyl-chlorophyll (DV-Chl.)a/b ratio similar to the Mediterranean strain and different from the Sargasso strain. Maximum concentration ofProchlorococcus at the surface water was 2.5×104 cells ml–1 in August 1992 and their DV-Chl.a accounted for 4.0% of the total chlorophylla. A decrease in cell density to less than 5×103 cells ml–1 was observed from December to May with an exceptional rise in January 1993. WhileProchlorococcus showed a maximum concentration of 3.6×104 cells ml–1 at 10 m depth in September 1992, phycoerythrin (PE)-richSynechococcus spp. were dominant with their maximum concentration of 2.2×105 cells ml–1 in the same water body. On the other hand, phycocyanin (PC)-richSynechococcus spp. and the larger phytoplankters showed maximum concentrations in the surface waters in May and June. BothProchlorococcus and PE-richSynechococcus showed their lowest concentrations in April. A significant positive correlation was obtained between cell concentrations of the PE-richSynechococcus andProchlorococcus.  相似文献   

14.
Samples collected from 10 depths at 25 stations in September–October 1996 and 12 depths at 28 stations in April–May 1997 on an Atlantic Meridional Transect between the British Isles and the Falkland Islands were analysed by flow cytometry to determine the numbers and biomass of four categories of picoplankton: Prochlorococcus spp, Synechococcus spp, picoeukaryotic phytoplankton and heterotrophic bacteria. The composition of the picoplankton communities confirmed earlier findings (Zubkov, Sleigh, Tarran, Burkill & Leakey, 1998) about distinctive regions along the transect and indicated that the stations should be grouped into five provinces: northern temperate, northern Atlantic gyre, equatorial, southern Atlantic gyre and southern temperate, with an intrusion of upwelling water off the coast of Mauritania between the northern Atlantic gyre and equatorial waters. Prochlorococcus was the most numerous phototrophic organism in waters of both northern and southern gyres and in the equatorial region, at concentrations in excess of 0.1×106ml−1; it also dominated plant biomass in the gyres, but the biomass of the larger picoeukaryotic algae equalled that of Prochlorococcus in the equatorial region; higher standing stocks of both Prochlorococcus and picoeukaryotes were present in spring than in autumn in waters of both gyres. In temperate waters at both ends of the transect the numbers and biomass of picoeukaryotes and, more locally, of Synechococcus increased, and the Synechococcus, particularly, were more numerous in spring than in autumn. There was a pronounced southward shift of the main populations of both Synechococcus and Prochlorococcus in April–May in comparison to those of September–October, associated with seasonal changes in solar radiation, the abundance of Prochlorococcus dropping sharply near the 17°C contour, while Synechococcus was still present at temperatures below 10°C. Picoeukaryotes were more tolerant of low temperatures and lower light levels, often being more abundant in samples from greater depths, where they contributed to the deep chlorophyll maximum. Heterotrophic bacterial numbers and biomass tended to be highest in those samples where phototrophic biomass was greatest, with peaks in temperate and equatorial waters, which were shifted southwards in April–May compared with September–October.  相似文献   

15.
ThreeSynechococcus strains were isolated from seawater near the Ieodo Ocean Research Station (IORS), and their 16S rDNA genes and the internal transcribed spacer (ITS) between the 16S and 23S rRNA genes were sequenced to investigate their phylogenetic relationships. Phylogenetic trees based on the 16S rDNA and ITS sequences showed that they clustered in the main MC-ASynechococcus group (subcluster 5.1), but formed branches differentiating them from the described clades. As the IORS is located in an area affected by diverse water masses, highSynechococcus diversity is expected in the area. Therefore, the IORS might be a good site to study the diversity, physiology, and distribution of theSynechococcus group. Key words —Synechococcus, Phylogeney, 16S rRNA, ITS gene, Ieodo  相似文献   

16.
This study used the dilution method to examine growth and grazing rates of heterotrophic bacteria and an autotrophic picoplankton, Synechococcus spp., from 1 to 11 July 2007 in the East China Sea. The main influence of oceanographic conditions in this aquatic system was the introduction of fresh, high-nutrient water from Changjiang River and the extremely nutrient-poor, high-salinity waters of Kuroshio Water. In these experiments, deviation from linearity in the relationship between dilution factor and net growth rate was significant in a large number of cases. Growth rates for heterotrophic bacteria ranged from 0.024 to 0.24, and for Synechococcus spp. from 0.03 to 0.21 h−1. Grazing rates ranged from 0.02 to 0.19 and 0.01 to 0.13 h−1, respectively. The spatial variations of Synechococcus spp. production to the primary production ratio (SP/PP) were low (<5%) in high Chl a environments and increased exponentially in low Chl a environments, indicating that Synechococcus spp. contributes to a large extent to the photosynthetic biomass in the open sea, especially in the more oligotrophic Kuroshio Water. Furthermore, the results of our dilution experiments suggest that nanoflagellates largely depend on heterotrophic bacteria as an important energy source. On average, heterotrophic bacteria contributes to 76 and 59% of carbon consumed by nanoflagellates within the plume (salinity <31) and outside of it (salinity >31).  相似文献   

17.
Thermodynamic stability constants have been estimated for the complexation of iron(III) with catecholate-type siderophores isolated from the marine bacterium Alteromonas luteoviolacea and from the marine cyanobacterium Synechococcus sp. PCC 7002. Stability constants were determined utilizing the “chelate scale” of Taylor et al. (1994). The scale is based upon a linear relationship between the reduction potentials and the pH-independent thermodynamic stability constants for known iron(III) complexes. Log K values for the alterobactin B ferric iron complex are 43.6 ± 1.5 at pH 8.2 and 37.6 ± 1.2 at pH 6, consistent with a shift from bis-catecholate to monosalicylate/monocatecholate iron coordination with decreasing pH. Synechococcus isolates PCC 7002 Nos. 1 and 3 formed iron(III) complexes with stability constants of approximately 38.1 ± 1.2 and 42.3 ± 1.5, respectively. The binding strengths of the iron(III) complexes examined in this study are quite high, suggesting that catecholate siderophores may play a role in the solubilization and biological uptake of iron in the marine environment.  相似文献   

18.
Phytoplankton community structure was elucidated during summer and winter in the KwaZulu-Natal Bight using pigment and CHEMTAX analyses. The surface pattern in January 2010 indicated that diatoms, haptophytes and prasinophytes tended to be the most prominent groups inshore and in the southern sector of the bight, whereas Prochlorococcus and Synechococcus were more dominant in the north and towards the offshore region. At the deep chlorophyll maximum (DCM), diatoms were dominant in the inner bight and in the south, with prasinophytes being the prominent flagellates, but this changed to Prochlorococcus and pelagophytes being the important groups in the northern sector and outer part of the bight. A different pattern was observed at the surface in July 2010, where diatoms, haptophytes, prasinophytes and cryptophytes in varying proportions comprised most of the community in the inner half of the bight, whereas Synechococcus and haptophytes were the main groups in the outer sector. A similar pattern occurred at the DCM, except that Synechococcus was less prominent and pelagophytes were distributed across the bight in both the inshore and offshore zones. Observations and relationships between phytoplankton groups and environmental parameters indicated that the groups were most closely related to temperature, accounting for 24–64% of the deviance. The influence of nutrients on phytoplankton was less clear but nitrate and silicate seemed to account for some of the patchy distribution patterns.  相似文献   

19.
The meridional distribution of autotrophic picoplankton groups in the central north Pacific was studied during the late northern summer of 1990. Sampling was along a section at 175°N which extended from 45°N to 8°S. The section is far from coastal regions and included subarctic, central gyre, and equatorial areas. Five autotrophic picoplankton groups, autotrophic microflagellate, red-fluorescing picoplankton,Synechococcus, prochlorophyte, and orange-fluorescing picoplankton, were identified from samples taken at stations distributed along this section. These five groups showed distinctive differences in their meridional and vertical distributions. The autotrophic microflagellates and red-fluorescing picoplankton showed distributions that were similar to that of chlorophyll a, which was dominated by the <3 μm size fraction. However, the vertical distribution of these groups was different.Synechococcus was found mostly in surface waters (PAR<10%) and was particularly abundant in the Kuroshio Extension and south of the equatorial region where the nitracline was shallow (50–75 m). Prochlorophytes were abundant in the deep euphotic layer (PAR 1-0.1%) from the south of the Kuroshio Extension to the south of the equatorial area. Orange-fluorescing picoplankton, which may be one kind of cyanobacteria but is larger than typical Synechococcus, were mostly distributed in the oligotrophic surface waters of the central gyre. The carbon biomass estimates for these organisms showed that these five groups dominated in different areas. The vertical distribution of carbon biomass did not correspond to that of chlorophyll a in the central gyre and south of the equator because of the larger carbon/ chlorophyll a ratio of Synechococcus and orange-fluorescing picoplankton relative to that of the other picoplankton.  相似文献   

20.
Photosynthetic pigment system of picophytoplankton of cyanophytes was examined with five strains isolated from the Kuroshio water at the depth of 70 m. Examination was made for the absorption spectra of intact cells of each strain. Analysis of pigment composition was also made withSynechococcus NIBB 1059 and 1071, which were isolated from surface waters of the Gulf Stream and Kuroshio area, respectively. Results indicated that (1) all strains contain phycoerythrin with a very high concentration, and (2) the phycoerythrin in these strains contains two chromophores, phycoerythrobilin and phycourobilin, and (3) a large abundance of phycoerythrin and phycourobilin in the phycoerythrin enablesSynechococcus picophytoplankton to absorb effectively the light in the blue-green region at the subsurface depth. These characteristics suggest that cyanophytes in the subsurface water can collectt the blue-green light and perform actively photosynthesis even at the bottom of euphotic layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号