首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The meridional distribution of autotrophic picoplankton groups in the central north Pacific was studied during the late northern summer of 1990. Sampling was along a section at 175°N which extended from 45°N to 8°S. The section is far from coastal regions and included subarctic, central gyre, and equatorial areas. Five autotrophic picoplankton groups, autotrophic microflagellate, red-fluorescing picoplankton,Synechococcus, prochlorophyte, and orange-fluorescing picoplankton, were identified from samples taken at stations distributed along this section. These five groups showed distinctive differences in their meridional and vertical distributions. The autotrophic microflagellates and red-fluorescing picoplankton showed distributions that were similar to that of chlorophyll a, which was dominated by the <3 μm size fraction. However, the vertical distribution of these groups was different.Synechococcus was found mostly in surface waters (PAR<10%) and was particularly abundant in the Kuroshio Extension and south of the equatorial region where the nitracline was shallow (50–75 m). Prochlorophytes were abundant in the deep euphotic layer (PAR 1-0.1%) from the south of the Kuroshio Extension to the south of the equatorial area. Orange-fluorescing picoplankton, which may be one kind of cyanobacteria but is larger than typical Synechococcus, were mostly distributed in the oligotrophic surface waters of the central gyre. The carbon biomass estimates for these organisms showed that these five groups dominated in different areas. The vertical distribution of carbon biomass did not correspond to that of chlorophyll a in the central gyre and south of the equator because of the larger carbon/ chlorophyll a ratio of Synechococcus and orange-fluorescing picoplankton relative to that of the other picoplankton.  相似文献   

2.
Abundance distribution and cellular characteristics of picophytoplankton were studied in two distinct regions of the equatorial Pacific: the western warm pool (0°, 167°E), where oligotrophic conditions prevail, and the equatorial upwelling at 150°W characterized by high-nutrient low-chlorophyll (HNLC) conditions. The study was done in September–October 1994 during abnormally warm conditions. Populations of Prochlorococcus, orange fluorescing Synechococcus and picoeukaryotes were enumerated by flow cytometry. Pigment concentrations were studied by spectrofluorometry. In the warm pool, Prochlorococcus were clearly the dominant organisms in terms of cell abundance, estimated carbon biomass and measured pigment concentration. Integrated concentrations of Prochlorococcus, Synechococcus and picoeukaryotes were 1.5×1013, 1.3×1011 and 1.5×1011 cells m−2, respectively. Integrated estimated carbon biomass of picophytoplankton was 1 g m−2, and the respective contributions of each group to the biomass were 69, 3 and 28%. In the HNLC waters, Prochlorococcus cells were slightly less numerous than in the warm pool, whereas the other groups were several times more abundant (from 3 to 5 times). Abundance of Prochlorococcus, Synechococcus and picoeukaryotes were 1.2×1013, 6.2×1011 and 5.1×1011 cells m−2, respectively. The integrated biomass was 1.9 g C m−2. Prochlorococcus was again the dominant group in terms of abundance and biomass (chlorophyll, carbon); the respective contributions of each group to the carbon biomass were 58, 7 and 35%. In the warm pool the total chlorophyll biomass was 28 mg m−2, 57% of which was divinyl chlorophyll a. In the HNLC waters, the total chlorophyll biomass was 38 mg m−2, 44% of which was divinyl chlorophyll a. Estimates of Prochlorococcus, Synechococcus and picoeukaryotes cell size were made in both hydrological conditions.  相似文献   

3.
为全面了解黄海典型海区微微型浮游植物的季节变化特征,于2009年7月至2010年6月在北黄海獐子岛海域和2010年1~12月在南黄海胶州湾进行逐月调查采样,利用流式细胞仪检测了表层海水中微微型浮游植物(picophytoplankton)的丰度,包括聚球藻(Synechococcus,SYN)和微微型真核浮游植物(picoeukaryotes,PEUK),并分析了其与环境因子的关系。獐子岛海域和胶州湾SYN和PEUK全年广泛分布,獐子岛海域SYN丰度范围在0.05×103~120.00×103cells/mL之间,丰度在秋季最高;胶州湾SYN丰度范围在0.02×103~61.80×103cells/mL之间,丰度在夏季最高。獐子岛海域PEUK丰度范围在0.01×103~18.76×103cells/mL之间,丰度在秋季最高;胶州湾PEUK丰度范围在0.25×103~95.57×103 cells/mL之间,丰度在春季最高。獐子岛海域微微型浮游植物丰度组成以SYN为主;而胶州湾以PEUK为主。PEUK是两海区微微型浮游植物生物量的主要贡献者。相关性分析结果表明,温度是影响两海区SYN丰度季节变化的最主要因素;影响PEUK季节分布的因素不完全一致,獐子岛海域PEUK丰度主要受温度调控;胶州湾PEUK丰度主要受温度和营养盐浓度影响。与已有研究比较,这两个海区的微微型浮游植物生物量对浮游植物生物量的贡献明显高于其他温带沿岸海域,预示微微型浮游植物在獐子岛海域和胶州湾生态系统中的重要作用,值得进一步深入研究。  相似文献   

4.
Atmospheric and oceanic pCO2 were measured continuously along an Atlantic Meridional transect (50°N–50°S) in September–October 1995 and 1996 (U.K. to the Falklands Islands) and in April–May 1996 (Falklands Islands to the UK). The Atlantic ocean was a net sink for atmospheric CO2 for all 3 transects. The largest sinks were located at high latitudes, in regions of high wind speed, where strong CO2 undersaturations, associated with high biological activity, were observed. In these regions the partial pressure difference between the ocean and the atmosphere reached −110 μatm. A CO2 source occurred in the equatorial region between 0° and 10°S, where ΔpCO2 of up to 40 μatm was found. Another source was in the northern subtropical gyre where its extension varied according to the season. Along the whole transect the October cruises exhibited similar pCO2 distributions suggesting a dominance of the seasonal variability and small year to year changes.  相似文献   

5.
Seasonal variations in the picoplankton community were investigated from June 2002 to March 2004 within the photic zone of Sagami Bay, Japan. The study area was mostly dominated by coastal waters during the warm period (mixed layer water temperature ≥ 18°C). During the cold period (mixed layer water temperature ≤ 18°C), the water mass was characterized by low temperature and high saline waters indicative of the North Pacific Subtropical Mode Water (NPSTMW). Occasionally, a third type of water mass characterized by high temperature and low saline properties was observed, which could be evidence of the intrusion of warm Kuroshio waters. Synechococcus was the dominant picophytoplankton (5−28 × 1011 cells m−2) followed by Prochlorococcus (1−5 × 1011 cells m−2) and picoeukaryotes during the warm period. Heterotrophic bacteria dominated the picoplankton community throughout the year, especially in the warm period. During the Kuroshio Current advection, cyanobacterial abundance was high whereas that of picoeukaryotes and heterotrophic bacteria was low. During the cold period, homogeneously distributed, lower picophytoplankton cell densities were observed. The dominance of Synechococcus in the warm period reflects the importance of high temperature, low salinity and high Photosynthetically Active Radiation (PAR) on its distribution. Cyanobacterial and heterotrophic bacterial abundance showed a positive correlation with temperature. Prochlorococcus and picoeukaryotes showed a positive correlation with nutrients. Picoeukaryotes were the major contributors to the picophytoplankton carbon biomass. The annual picophytoplankton contribution to the photosynthetic biomass was 32 ± 4%. These observations suggest that the environmental conditions, combined with the seasonal variability in the source of the water mass, determines the community structure of picoplankton, which contributes substantially to the phytoplankton biomass and can play a very important role in the food web dynamics of Sagami Bay.  相似文献   

6.
Climatological variability of picophytoplankton populations that consisted of >64% of total chlorophyll a concentrations was investigated in the equatorial Pacific. Flow cytometric analysis was conducted along the equator between 145°E and 160°W during three cruises in November–December 1999, January 2001, and January–February 2002. Those cruises were covering the La Niña (1999, 2001) and the pre-El Niño (2002) periods. According to the sea surface temperature (SST) and nitrate concentrations in the surface water, three regions were distinguished spatially, viz., the warm-water region with >28 °C SST and nitrate depletion (<0.1 μmol kg−1), the upwelling region with <28 °C SST and high nitrate (>4 μmol kg−1) water, and the in-between frontal zone with low nitrate (0.1–4 μmol kg−1). Picophytoplankton identified as the groups of Prochlorococcus, Synechococcus and picoeukaryotes showed a distinct spatial heterogeneity in abundance corresponding to the watermass distribution. Prochlorococcus was most abundant in the warm-water region, especially in the nitrate-depleted water with >150×103 cells ml−1, Synechococcus in the frontal zone with >15×103 cells ml−1, and picoeukaryotes in the upwelling region with >8×103 cells ml−1. The warm-water region extended eastward with eastward shift of the frontal zone and the upwelling region during the pre-El Niño period. On the contrary, these regions distributed westward during the La Niña period. These climatological fluctuations of the watermass significantly influenced the distribution of picophytoplankton populations. The most abundant area of Prochlorococcus and Synechococcus extended eastward and picoeukaryotes developed westward during the pre-El Niño period. The spatial heterogeneity of each picophytoplankton group is discussed here in association with spatial variations in nitrate supply, ambient ammonium concentration, and light field.  相似文献   

7.
赵苑  赵丽  张武昌  刘诚刚  魏皓  肖天 《海洋与湖沼》2012,43(6):1030-1038
于2007年3—4月在黄海中部海域采用流式细胞术研究了春季水华过程中聚球藻、微微型真核浮游生物和异养细菌的生物量变化。聚球藻和微微真核型浮游生物的生物量与叶绿素a浓度变化基本呈现相反的趋势,在水华前期较高,水华期迅速下降,直至水华后期又有所升高。异养细菌在整个水华过程中变化较小,生物量在水华期最高,与水柱叶绿素a浓度呈极显著正相关(r=0.319,p<0.01)。水华期这三类微微型浮游生物对浮游植物总碳生物量的贡献很低。纤毛虫和鞭毛虫捕食可能是导致聚球藻和微微型真核浮游生物在水华期生物量降低的主要原因。  相似文献   

8.
Shimada  A.  Nishijima  M.  Maruyama  T. 《Journal of Oceanography》1995,51(3):289-300
Seasonal appearance ofProchlorococcus was studied by flow cytometry in Suruga Bay, Japan in 1992–1993.Prochlorococcus cells were in high concentrations (>1×104 cells ml–1) from July to October 1992 and September 1993, when the water temperature was over 20°C. The 16S rRNA of the isolated cells showed 98.5% sequence homology with that ofP. marinus (Sargasso strain), indicating that they are the same species. The former has a high divinyl-chlorophyll (DV-Chl.)a/b ratio similar to the Mediterranean strain and different from the Sargasso strain. Maximum concentration ofProchlorococcus at the surface water was 2.5×104 cells ml–1 in August 1992 and their DV-Chl.a accounted for 4.0% of the total chlorophylla. A decrease in cell density to less than 5×103 cells ml–1 was observed from December to May with an exceptional rise in January 1993. WhileProchlorococcus showed a maximum concentration of 3.6×104 cells ml–1 at 10 m depth in September 1992, phycoerythrin (PE)-richSynechococcus spp. were dominant with their maximum concentration of 2.2×105 cells ml–1 in the same water body. On the other hand, phycocyanin (PC)-richSynechococcus spp. and the larger phytoplankters showed maximum concentrations in the surface waters in May and June. BothProchlorococcus and PE-richSynechococcus showed their lowest concentrations in April. A significant positive correlation was obtained between cell concentrations of the PE-richSynechococcus andProchlorococcus.  相似文献   

9.
《Oceanologica Acta》2003,26(3):255-268
Data collected during cruises of the Former Soviet Union (in 1963–1989) and the British Atlantic meridional transect program (in 1995–1999) were used to analyse macroscale patterns in phyto- and zooplankton biomass, size structure, species diversity, chlorophyll a, and plankton bioluminescence in the macroscale anticyclonic gyre of the South Atlantic Ocean. The spatial pattern of bioluminescence intensity was in good agreement with that of remotely sensed (CZCS) chlorophyll a, phosphate, salinity, and copepod species diversity index distributions especially in terms of geographic inclinations of the isolines, both associated with the north-westward pattern off the South equatorial current. Among the 416 copepod species recorded in samples, 51 species were noted throughout the whole gyre. On the other hand, there were a number of species found only in one of the currents. The mesozooplankton biomass size spectra (calculated in carbon units), exhibited a fairly stable slope of the curve from the eastern periphery of the gyre to its centre. The British Atlantic meridional transect program meridional transect through the western part of the gyre showed mesozooplankton size spectra in greater detail between the equator and 50° S. Although the spectra change slowly along the transect as far as 36° S, there is a general trend toward increasing slopes from the equatorial region to the oligotrophic central gyre. The calculated phyto-to-zooplankton ratio indicated that for the tropical anticyclonic gyres, the mesozooplankton carbon biomass could be represented as the exponential function of the phytoplankton carbon.  相似文献   

10.
This two-year study investigates the possible factors that determine spatial and temporal dynamics of picoplankton (heterotrophic bacteria, autotrophic picoplankton—Synechococcus spp., Prochlorococcus, and picoeukaryotes) and nanoflagellate abundance in the subtropical Ilan Bay, Taiwan, where the inner bay is affected by freshwater run-off from the Lanyang River and the eastern outer bay by the Kuroshio Current. In the inner bay, there was more rain and freshwater discharge in 2005 than in 2004 during the warm season (>24° C, June–September). The abundance of bacteria, Synechococcus spp., Prochlorococcus, and picoeukaryotes and the percentage contributions of pigmented nanoflagellate (PNF %) were two- to eight-fold greater during this period (July in 2005) than for other sampling periods. Relatively low abundance of heterotrophic nanoflagellates (HNF) in the presence of abundant picoplankton prey suggests that top-down control determined HNF abundance in the Ilan Bay, Taiwan.  相似文献   

11.
为探究珠江口海域自养微微型浮游生物种群时空分布特征及其与环境之间的关系,于2013年5~11月,运用高液相色谱(HPLC)法和流式细胞术对珠江口海域表层水体中微微型浮游生物进行测定。流式细胞计数结果显示,珠江口海域自养微微型浮游生物由聚球藻(Synechococcus, Syn)和微微型真核生物(Picoeukaryotes,PEUK)组成。聚球藻始终占据总细胞丰度的主导地位。光合色素化学分类法(Chemotaxonomy,CHEMTAX)分析表明,自养微微型浮游生物群落结构具有明显的季节性变化,春季和夏季生物量以聚球藻为主,秋季生物量以青绿藻为主。CHEMTAX分析和流式细胞计数结果的相关性分析表明,在春季和夏季Syn细胞丰度与CHEMTAX生物量(即Syn贡献chla)之间呈现极显著正相关(P<0.01),PEUK细胞丰度与CHEMTAX生物量(即PEUK贡献chla)也存在显著正相关(P<0.05);然而,在秋季则无显著性相关关系(P>0.05)。冗余分析表明,温度和营养盐浓度是影响自养微微型浮游生物群落分布与组成的重要因素。另外,盐度、透明度、悬浮颗粒物对自养...  相似文献   

12.
We present an overview of the spatial distributions of phytoplankton pigments along transects between the UK and the Falkland Islands. These studies, undertaken as a component of the UK Atlantic Meridional Transect (AMT) programme, provided the first post-launch validation data for the NASA SeaWiFS satellite. Pigment data are used to characterise basin-scale variations in phytoplankton biomass and community composition over 100° of latitude, and to compliment the definition of hydrographic oceanic provinces. A summary of the key pigment characteristics of each province is presented.Concentrations of total chlorophyll a (totCHLa = chlorophyll a, CHLa + divinyl CHLa, dvCHLa) were greatest in high latitude temperate waters (>37°N and >35°S), and in the Canary Current Upwelling system. In these regions, the total carotenoid (totCAR) budget was dominated by photosynthetic carotenoids (PSCs). High accessory pigment diversity was observed of which fucoxanthin (FUC), 19'–hexanoyloxyfucoxanthin (HEX), and diadinoxanthin (DIAD) were most abundant, indicating proliferation of large eukaryotes and nanoflagellates. In contrast, tropical and sub-tropical waters exhibited concentrations of totCHLa below 500 ng l−1, with the North Atlantic Sub-tropical East gyre (NASE, 26.7–35°N), South Equatorial Current (SeqC, 7–14.6°S) and South Atlantic tropical Gyre (SATG, 14.6–26°S) characterised by totCHLa of <100 ng−1. These waters exhibited relatively limited pigment diversity, and the totCAR budget was dominated by photoprotecting pigments (PPCs) of which zeaxanthin (ZEA), a marker of prokaryotes (cyanobacteria and prochlorophytes), was most abundant. DvCHLa, a marker of prochlorophytes was detected in waters at temperatures >15°C, and between the extremes of 48°N and 42°S. DvCHLa accounted for up to two-thirds of totCHLa in oligotrophic provinces demonstrating the importance of prochlorophytes to oceanic biomass.Overall, HEX was the dominant PSC, contributing up to 75% of totCAR. HEX always represented >2% of totCAR and was the only truly ubiquitous carotenoid. Since HEX is a chemotaxonomic marker of prymnesiophytes, this observation reflects the truly cosmopolitan distribution of this algal class. ZEA was found to be the most abundant PPC contributing more than one third of the total carotenoid budget in each transect.Greatest seasonality was observed in highly productive waters at high latitudes and in shallow continental shelf waters and attributed to proliferation of large eukaryotes during spring. Concentrations of the prokaryote pigments (ZEA + dvCHLa) also exhibited some seasonality, with elevated concentrations throughout most of the transect during Northern Hemisphere spring.  相似文献   

13.
2009年2月(冬季)和8月(夏季)在南海北部海域(nSCS)采用流式细胞术对聚球藻、原绿球藻、超微型光合真核生物3类超微型光合浮游生物和异养浮游细菌的丰度和碳生物量的时空分布特征进行了研究,并分析了其与环境因子之间的关系。结果表明,夏季聚球藻和原绿球藻的平均丰度高于冬季,超微型光合真核生物和异养浮游细菌的丰度反之,为冬季高于夏季。聚球藻、超微型光合真核生物和异养浮游细菌在富营养的近岸陆架海域丰度较高,而原绿球藻高丰度则出现在陆坡开阔海域。在垂直分布上,聚球藻主要分布在跃层以上,跃层以下丰度迅速降低;原绿球藻高丰度主要出现在真光层底部;超微型光合真核生物在水层中的高值同样出现在真光层底部,且与Pico级份叶绿素a浓度分布一致;异养浮游细菌在水体中的分布与聚球藻类似。这些分布格局的差异,取决于环境条件的变化和4类超微型浮游生物生态生理适应性的差异。在超微型光合浮游生物群落中,各类群碳生物量的贡献因季节和海域类型的不同而发生变化:聚球藻在夏季近岸陆架区占超微型光合浮游生物总碳生物量的41%,原绿球藻在陆坡开阔海成为主要贡献者(50%),超微型光合真核生物碳生物量以冬季为高(在近岸陆架区占比68%)。冬、夏季异养浮游细菌碳生物量均高于超微型光合浮游生物碳生物量。  相似文献   

14.
Using a flow cytometer (FCM) onboard the R/V Xuelong during the 24th Chinese Antarctic cruise, picoplankton community structure and biomass in the surface water were examined along the latitude and around the Antarctic Ocean. Salinity and temperature were automatically recorded and total Chla was determined. Along the cruise, the abundance of Synechococcus, Prochlorococcus, pico-eukaryotes and heterotrophic bacteria ranged in 0.001-1.855×108 ind./L, 0.000-2.778£108 ind./L, 0.002-1.060×108 ind./L and 0.132-27.073×108 ind./L, respectively. Major oceanic distribution of Synechococcus and Prochlorococcus appeared between latitudes 30°N and 30°S. Prochlorococcus was mainly influenced by water temperature, water mass combination and freshwater inflow. Meanwhile, Synechococcus distribution was significantly associated with landing freshwater inflow. Pico-eukaryotes and heterotrophic bacteria were distributed all over the oceans, but with a relatively low abundance in the high latitudes of the Antarctic Ocean. Principal Component Analysis showed that at same latitude of Atlantic Ocean and Indian Ocean, picoplankton distribution and constitution were totally different, geographical location and different water masses combination would be main reasons.  相似文献   

15.
Sterol and fatty alcohol biomarkers were analyzed in suspended and sinking particles from the water column (20–300 m) of the Almeria–Oran frontal zone to characterize the biogenic sources and biogeochemical processes. Diatom- and haptophyte-related sterols were predominant at all sites and vertical distributions of sterol, and fatty alcohol biomarkers in sinking particles were markedly different from suspended particles. In contrast to the relatively fresh sinking particles with elevated concentrations of phyto- and zooplanktonic sterols, suspended particles were extensively degraded with increasing depth and exhibited a more terrestrial and zooplanktonic signature with depth.Sterol and alcohol biomarkers distributions and δ13C values from the jet core and the associated gyre of Atlantic waters showed a decoupling between the sinking particles of 100- and 300-m depth, demonstrating the influence of lateral advection in the frontal zone. In contrast, vertical transport of the particulate organic matter in Mediterranean waters was interpreted from the similar isotopic and molecular composition at both depths. The high abundance of phytosterols and phytol below the euphotic zone at 100 m signified that downwelling of biomass occurred on the downstream side of the gyre. The high concentrations of phytosterols and POC, in combination with the high phytosterols/phytol ratio, indicated the accumulation of detrital plant material in the oligotrophic Mediterranean waters near the frontal zone.A higher contribution of phytol in the sinking particles collected during the night at the surface of the jet and at the upstream side of the gyre provided evidence of diel vertical zooplankton migration and important grazing by herbivorous zooplankton.Carbon isotope ratios of sterols confirmed that the 24-ethylcholest-5-en-3β-ol, commonly associated with terrestrial sources, was a substantial constituent of the phytoplankton in this area. However, the more δ13C depleted values obtained for this compound in suspended particles suggested that there was some terrestrial contribution that only becomes evident after degradation of the more labile marine organic matter.  相似文献   

16.
黄海和东海是西北太平洋重要的边缘海,复杂的海洋环流和丰富的陆源物质输入共同影响着海域环境和生态系统。为了解黄、东海浮游植物群落组成、分布状况及其影响因素,本研究于2015年8—9月期间,通过流式细胞仪和形态学观察等方法,调查了该海域微型真核藻类、微微型真核藻类、聚球藻(Synechococcus)、原绿球藻(Prochlorococcus)以及浮游植物优势种的组成、丰度与分布情况,并基于浮游植物种类和丰度状况进行了聚类分析。结果表明,黄、东海浮游植物群落组成存在明显差别,黄海海域微型浮游植物丰度高于东海,而微微型浮游植物丰度低于东海,原绿球藻主要分布在东海海域。黄、东海海域浮游植物群落组成及分布状况与海域环境特征密切相关。夏季黄海海域相对封闭,受黄海冷水团控制,表层海水中高丰度的微型真核藻类主要出现在冷水团西侧边缘锋面区。东海海域受到长江冲淡水和黑潮水向岸入侵的强烈影响,在长江口邻近海域出现硅藻赤潮,而原绿球藻呈现出自外海向近岸输送的分布态势。相关结果可望为进一步探讨陆源物质输入和邻近大洋对我国近海生态系统的影响及机理提供依据。  相似文献   

17.
Bacterial biomass and production rate were measured in the surface (0–100 m) and mesopelagic layers (100–1,000 m) in the subarctic Pacific and the Bering Sea between July–September, 1997. Depth profiles were determined at stations occupied in oceanic domains including the subarctic gyres (western, Bering Sea, and Gulf of Alaska) and a boundary region south of the gyres. In the surface layer (0–100 m), both bacterial biomass and production were generally high in the western and Bering Sea gyres, with the tendency of decrease toward east. This geographic pattern was consistent with the dominant regime of phytoplankton biomass at the time of our survey. A significant portion of variation in bacterial production was explained by the concentration of chlorophyll a (r 2 = 0.340, n = 60, P < 0.001) and, to the greater extent, by the concentration of semilabile total organic carbon (SL-TOC = TOC at a given depth—TOC at 1,000 m, r 2 = 0.488, n = 59, P < 0.0001). Temperature significantly improved the regression model: temperature and chlorophyll jointly explained 60% of variation in bacterial production. These results support the hypothesis that bacteiral growth is largely regulated by the combination of temperature and the supply of dissolved organic carbon in subarctic surface waters. In the mesopelagic layer (100–1,000 m), the geographic pattern of bacterial production was strikingly different from the surface phytoplankton distribution: the production was high in the boundary region where the phytoplankton biomass was lowest. Bacterial growth appeared to be largely controlled by the supply of organic carbon, as indicated by the strong dependency of bacterial production on SL-TOC (r 2 = 0.753, n = 75, P < 0.0001). The spatial uncoupling between surface phytoplankton and mesopelagic bacterial production suggests that the supply rate of labile dissolved organic carbon in the mesopelagic zone does not simply reflect the magnitude of the particulate organic carbon flux in the subarctic Pacific.  相似文献   

18.
北黄海冷水团对獐子岛微微型浮游生物分布的影响   总被引:3,自引:1,他引:2  
Picoplankton distribution around the Zhangzi Island(northern Yellow Sea)was investigated by monthly observation from July 2009 to June 2010.Three picoplankton populations were discriminated by flow cytometry,namely Synechococcus,picoeukaryotes and heterotrophic prokaryotes.In summer(from July to September),the edge of the northern Yellow Sea Cold Water Mass(NYSCWM)resulting from water column stratification was observed.In the NYSCWM,picoplankton(including Synechococcus,picoeukaryotes and heterotrophic prokaryotes)distributed synchronically with extremely high abundance in the thermocline(20 m)in July and August(especially in August),whereas in the bottom zone of the NYSCWM(below 30 m),picoplankton abundance was quite low.Synechococcus,picoeukaryotes and heterotrophic prokaryotes showed similar response to the NYSCWM,indicating they had similar regulating mechanism under the influence of NYSCWM.Whereas in the non-NYSCWM,Synechococcus,picoeukaryotes and heterotrophic prokaryotes exhibited different distribution patterns,suggesting they had different controlling mechanisms.Statistical analysis indicated that temperature,nutrients(NO3–and PO43–)and ciliate were important factors in regulating picoplankton distribution.The results in this study suggested that the physical event NYSCWM,had strong influence on picoplankton distribution around the Zhangzi Island in the northern Yellow Sea.  相似文献   

19.
A simple one-dimensional model, validated with observations from ship of opportunity programs, was run at different locations in the North and South Atlantic gyres to produce seasonal partial pressure of CO2 (pCO2)–sea surface temperature (SST) relationships. The pCO2–SST relationships obtained at different locations in the North Atlantic gyre can be approximated by two regression lines, one from February to July and another from August to January. An algorithm including SST, latitude, longitude and atmospheric pCO2 was constructed for each period. The robustness of these relationships was tested along several transects in the North Atlantic gyre and found to be in good agreement with the observations. The same approach was used in the South Atlantic gyre, but more observations are required in this region. In both gyres, the pCO2–SST relationships are close to 4%/°C, which is higher than the pCO2–SST relationships deduced from a CO2 climatology.  相似文献   

20.
High-latitude seas are mostly covered by multi-year ice, which impacts processes of primary production and sedimentation of organic matter. Because of the warming effect of West Spitsbergen Current (WSC), the waters off West Spitsbergen have only winter ice cover. That is uncommon for such a high latitude and enables to separate effects of multiyear-ice cover from the latitudinal patterns. Macrofauna was sampled off Kongsfjord (79°N) along the depth gradient from 300 to 3000 m. The density, biomass and diversity at shallow sites situated in a canyon were very variable. Biomass was negatively correlated with depth (R=-0.86, p<0.001), and ranged from 61 g ww m−2 (212 m) to 1 g ww m−2 (2025 m). The biomasses were much higher than in the multiyear-ice covered High Arctic at similar depths, while resembling those from temperate and tropical localities. Species richness (expressed by number of species per sample and species–area accumulation curves) decreased with depth. There was no clear depth-related pattern in diversity measures: Hurbert rarefaction, Shannon–Wiener or Pielou. The classic increase of species richness and diversity with depth was not observed. Species richness and diversity of deep-sea macrofauna were much lower in our study than in comparable studies of temperate North Atlantic localities. That is related to geographic isolation of Greenland–Icelandic–Norwegian (GIN) seas from the Atlantic pool of species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号