首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The structure of turbulent flows along a transition between tall-forested canopies and forest clearings continues to be an active research topic in canopy turbulence. The difficulties in describing the turbulent flow along these transitions stem from the fact that the vertical structure of the canopy and its leaf area distribution cannot be ignored or represented by an effective roughness length. Large-eddy simulation (LES) runs were performed to explore the effect of a homogeneous variation in the forest leaf area index (LAI) on the turbulent flow across forest edges. A nested grid numerical method was used to ensure the development of a deep boundary layer above the forest while maintaining a sufficiently high resolution in the region close to the ground. It was demonstrated that the LES here predicted first-order and second-order mean velocity statistics within the canopy that agree with reported Reynolds-Averaged Navier–Stokes (RANS) model results, field and laboratory experiments. In the simulations reported here, the LAI was varied between 2 and 8 spanning a broad range of observed LAI in terrestrial ecosystems. By increasing the forest LAI, the mean flow properties both within the forest and in the clearing near the forest edge were altered in two fundamental ways: near the forest edge and into the clearing, the flow statistical properties resembled the so-called back-facing step (BFS) flow with a mean recirculation zone near the edge. Another recirculation zone sets up downstream of the clearing as the flow enters the tall forest canopy. The genesis of this within-forest recirculation zone can be primarily described using the interplay between the mean pressure gradients (forcing the flow) and the drag force (opposing the flow). Using the LES results, a simplified analytical model was also proposed to explain the location of the recirculation zone inside the canopy and its dependence on the forest LAI. Furthermore, a simplified scaling argument that decomposes the mean velocity at the outflow edge into a superposition of ‘exit flow’ and BFS-like flow with their relative importance determined by LAI was explored.  相似文献   

2.
Edge Flow and Canopy Structure: A Large-Eddy Simulation Study   总被引:4,自引:4,他引:0  
Sharp heterogeneities in forest structure, such as edges, are often responsible for wind damage. In order to better understand the behaviour of turbulent flow through canopy edges, large-eddy simulations (LES) have been performed at very fine scale (2 m) within and above heterogeneous vegetation canopies. A modified version of the Advanced Regional Prediction System (ARPS), previously validated in homogeneous conditions against field and wind-tunnel measurements, has been used for this purpose. Here it is validated in a simple forest-clearing-forest configuration. The model is shown to be able to reproduce accurately the main features observed in turbulent edge flow, especially the “enhanced gust zone” (EGZ) present around the canopy top at a few canopy heights downwind from the edge, and the turbulent region that develops further downstream. The EGZ is characterized by a peak in streamwise velocity skewness, which reflects the presence of intense intermittent wind gusts. A sensitivity study of the edge flow to the forest morphology shows that with increasing canopy density the flow adjusts faster and turbulent features such as the EGZ become more marked. When the canopy is characterized by a sparse trunk space the length of the adjustment region increases significantly due to the formation of a sub-canopy wind jet from the leading edge. It is shown that the position and magnitude of the EGZ are related to the mean upward motion formed around canopy top behind the leading edge, caused by the deceleration in the sub-canopy. Indeed, this mean upward motion advects low turbulence levels from the bottom of the canopy; this emphasises the passage of sudden strong wind gusts from the clearing, thereby increasing the skewness in streamwise velocity as compared with locations further downstream where ambient turbulence is stronger.  相似文献   

3.
Turbulent statistics of neutrally stratified shear-driven flow within and above a sparse forest canopy are presented from a large-eddy simulation (LES) and compared with those from observations within and above a deciduous forest with similar height and foliage density. First- and second-order moments from the LES agree with observations quite well. Third-order moments from the LES have the same sign and similar vertical patterns as those from the observations, but the LES yields smaller magnitudes of such higher-order moments. Turbulent spectra and cospectra from the LES agree well with observations above the forest. However, at the highest frequencies, the LES spectra have steeper slopes than observations. Quadrant and conditional analyses of the LES resolved-scale flow fields also agree with observations. For example, both LES and observation find that sweeps are more important than ejections for the transport of momentum within the forest, while inward and outward interaction contributions are both small, except near the forest floor. The intermittency of the transport of momentum and scalar increases with depth into the forest. Finally, ramp structures in the time series of a passive scalar at multiple levels within and above the forest show similar features to those measured from field towers. Two-dimensional (height-time cross-section) contours of the passive scalar and wind vectors show sweeps and ejections, and the characteristics of the static pressure perturbation near the ground resemble those deduced from field tower-based measurements. In spite of the limited grid resolution (2 m × 2 m × 2 m) and domain size (192 m × 192 m × 60 m) used in this LES, we demonstrate that the LES is capable of resolving the most important characteristics of the turbulent flow within and above a forest canopy.  相似文献   

4.
Turbulent flow in a corn canopy is simulated using large-eddy simulation (LES) with a Lagrangian dynamic Smagorinsky model. A new numerical representation of plant canopies is presented that resolves approximately the local structure of plants and takes into account their spatial arrangement. As a validation, computational results are compared with experimental data from recent field particle image velocimetry (PIV) measurements and two previous experimental campaigns. Numerical simulation using the traditional modelling method to represent the canopy (field-scale approach) is also conducted as a comparison to the plant-scale approach. The combination of temporal PIV data, LES and spatial PIV data allows us to couple a wide range of relevant turbulence scales. There is good agreement between experimental data and numerical predictions using the plant-scale approach in terms of various turbulence statistics. Within the canopy, the plant-scale approach also allows the capture of more details than the field-scale approach, including instantaneous gusts that penetrate deep inside the canopy.  相似文献   

5.
Two-point space-time correlations ofvelocities, a passive scalar and static pressure arecalculated using the resolvable flow fields computedby large-eddy simulation (LES) of neutrally stratifiedflow within and above a sparse forest. Zero-time-lagspatial auto-correlation contours in thestreamwise-vertical cross-section for longitudinal andlateral velocities and for a scalar are tilted fromthe vertical in the downstream direction, as istypical in near-wall sheared flow. On the other hand,auto-correlations of vertical velocity and of staticpressure are vertically coherent. Zero-time-lagspatial auto-correlations in the spanwise-verticalcross-section show no distinct tilt, and those forboth longitudinal and vertical velocities demonstratedistinct negative side lobes in the middle forest andabove, while longitudinal velocity in the subcrowntrunk space is laterally in-phase. Static pressureperturbations appear to be spatially coherent in thespanwise direction at all heights, especially insidethe forest. Near the forest floor, longitudinalvelocity is found to be in-phase with static pressureperturbation and to be closely linked to theinstantaneous streamwise pressure gradient, supportinga previous proposal that longitudinal velocity in thisregion is dominantly modulated by the pressurepatterns associated with the coherent sweep/ejectionevents. Near treetop height, a lack of linkage betweenthe pressure gradient and the local time derivative ofthe longitudinal velocity supports the hypothesis ofadvection dominating turbulent flow.The major phase characteristics of the two-pointcorrelations essentially remained the same from fourLES runs with different domain size and/or gridresolution. A larger LES domain yielded betteragreement with field observations in a real forest onboth the magnitudes of the correlations and thesingle-point integral time scales. A finer gridresolution in the LES led to a faster rate of decreaseof correlation with increasing separation in space ortime, as did the higher frequency fluctuations in theturbulent records from field measurements. Convectivevelocities estimated from the lagged two-pointauto-correlations of the calculated flow fields werecompared with similar calculations from wind-tunnelstudies. At the canopy top, estimates from thecorrelation analyses agree with the translationvelocity estimated from instantaneous snapshots of ascalar microfront using both LES and field data. Thistranslation velocity is somewhat higher than the localmean wind speed. Convective velocities estimated fromlagged correlations increase with height above thecanopy. It is suggested that an appropriate filteringprocedure may be necessary to reduce the effects ofsmall-scale random turbulence, as was reported in astudy over an orchard canopy. The mean longitudinalvelocity near the treetops is found to be moreappropriate than the local mean longitudinal velocityat each height to link single-point integral timescales with directly calculated spatial integralstreamwise length scales.  相似文献   

6.
A parameterization scheme has been developed to describe the effects of a tall forest on the mean structure of the atmospheric boundary layer (ABL). The main advantage of the scheme is that dynamical and thermodynamical effects of a forest surface can be simulated satisfactorily using only a coarse-grid resolution within numerical models. Thereby, the canopy layer is parameterized as a quasi-subgrid phenomenon. This makes it possible to study meteorological phenomena within the ABL in a very economical way (with respect to computational time) whereby, nevertheless, more detailed information concerning the forest surface is taken into account than could be done using the same grid resolution and quite simple assumptions describing the canopy, e.g., the effective roughness.The applicability in numerical models is shown by using a slightly modified two-dimensional version of the mesoscale model FITNAH. For comparison, simulations with a high numerical grid resolution within the canopy have been carried out.Model results reproduce the known meteorological phenomena in forested areas, e.g., a stable thermal stratification near the surface during the day, and at night, a neutral — or slightly unstable condition — and, in general, reduced windspeed within the canopy layer.Diurnal variations and spatial distributions of temperature and humidity are found to be similar for both cases. Also, a thermally-induced local circulation system in the vicinity of a large clearing has been simulated satisfactorily.A comparison of the calculated results verifies that the parameterization scheme is quite suitable for simulating the effects of plant canopies on the distributions of meteorological variables in the ABL.  相似文献   

7.
Large-Eddy Simulation of Coherent Flow Structures within a Cubical Canopy   总被引:4,自引:4,他引:0  
Instantaneous flow structures “within” a cubical canopy are investigated via large-eddy simulation. The main topics of interest are, (1) large-scale coherent flow structures within a cubical canopy, (2) how the structures are coupled with the turbulent organized structures (TOS) above them, and (3) the classification and quantification of representative instantaneous flow patterns within a street canyon in relation to the coherent structures. We use a large numerical domain (2,560 m × 2,560 m × 1,710 m) with a fine spatial resolution (2.5 m), thereby simulating a complete daytime atmospheric boundary layer (ABL), as well as explicitly resolving a regular array of cubes (40 m in height) at the surface. A typical urban ABL is numerically modelled. In this situation, the constant heat supply from roof and floor surfaces sustains a convective mixed layer as a whole, but strong wind shear near the canopy top maintains the surface layer nearly neutral. The results reveal large coherent structures in both the velocity and temperature fields “within” the canopy layer. These structures are much larger than the cubes, and their shapes and locations are shown to be closely related to the TOS above them. We classify the instantaneous flow patterns in a cavity, specifically focusing on two characteristic flow patterns: flushing and cavity-eddy events. Flushing indicates a strong upward motion, while a cavity eddy is characterized by a dominant vortical motion within a single cavity. Flushing is clearly correlated with the TOS above, occurring frequently beneath low-momentum streaks. The instantaneous momentum and heat transport within and above a cavity due to flushing and cavity-eddy events are also quantified.  相似文献   

8.
Most of our knowledge on forest-edge flows comes from numerical and wind-tunnel experiments where canopies are horizontally homogeneous. To investigate the impact of tree-scale heterogeneities (\({>}1\) m) on the edge-flow dynamics, the flow in an inhomogeneous forest edge on Falster island in Denmark is investigated using large-eddy simulation. The three-dimensional forest structure is prescribed in the model using high resolution helicopter-based lidar scans. After evaluating the simulation against wind measurements upwind and downwind of the forest leading edge, the flow dynamics are compared between the scanned forest and an equivalent homogeneous forest. The simulations reveal that forest inhomogeneities facilitate flow penetration into the canopy from the edge, inducing important dispersive fluxes in the edge region as a consequence of the flow spatial variability. Further downstream from the edge, the forest inhomogeneities accentuate the canopy-top turbulence and the skewness of the wind-velocity components while the momentum flux remains unchanged. This leads to a lower efficiency in the turbulent transport of momentum within the canopy. Dispersive fluxes are only significant in the upper canopy. Above the canopy, the mean flow is less affected by the forest inhomogeneities. The inhomogeneities induce an increase in the mean wind speed that was found to be equivalent to a decrease in the aerodynamic height of the canopy. Overall, these results highlight the importance of forest inhomogeneities when looking at canopy–atmosphere exchanges in forest-edge regions.  相似文献   

9.
Momentum and turbulent kinetic energy (TKE) budgets across a forest edge have been investigated using large-eddy simulation (LES). Edge effects are observed in the rapid variation of a number of budget terms across this vegetation transition. The enhanced drag force at the forest edge is largely balanced by the pressure gradient force and by streamwise advection of upstream momentum, while vertical turbulent diffusion is relatively insignificant. For variance and TKE budgets, the most important processes at the forest edge are production due to the convergence (or divergence) of the mean flow, streamwise advection, pressure diffusion and enhanced dissipation by canopy drag. Turbulent diffusion, pressure redistribution and vertical shear production, which are characteristic processes in homogeneous canopy flow, are less important at the forest transition. We demonstrate that, in the equilibrated canopy flow, a substantial amount of TKE produced in the streamwise direction by the vertical shear of the mean flow is redistributed in the vertical direction by pressure fluctuations. This redistribution process occurs in the upper canopy layers. Part of the TKE in the vertical velocity component is transferred by turbulent and pressure diffusion to the lower canopy levels, where pressure redistribution takes place again and feeds TKE back to the streamwise direction. In this TKE cycle, the primary source terms are vertical shear production for streamwise velocity variance and pressure redistribution for vertical velocity variance. The evolution of these primary source terms downwind of the forest edge largely controls the adjustment rates of velocity variances.  相似文献   

10.
High-accuracy large-eddy simulations of neutral atmospheric surface-layer flow over a gapped plant canopy strip have been performed. Subgrid-scale (SGS) motions are parameterized by the Sagaut mixed length SGS model, with a modification to compute the SGS characteristic length self-adaptively. Shaw’s plant canopy model, taking the vertical variation of leaf area density into account, is applied to study the response of the atmospheric surface layer to the gapped dense forest strip. Differences in the region far away from the gap and in the middle of the gap are investigated, according to the instantaneous velocity magnitude, the zero-plane displacement, the potential temperature and the streamlines. The large-scale vortex structure, in the form of a roll vortex, is revealed in the region far away from the gap. The nonuniform spatial distribution of plants appears to cause the formation of the coherent structure. The roll vortex starts in the wake of the canopy, and results in strong fluctuations throughout the entire canopy region. Wind sweeps and ejections in the plant canopy are also attributed to the large vortex structure.  相似文献   

11.
The atmospheric conditions that lead to strong offshore surface winds in Southern California, commonly referred to as Santa Ana winds, are investigated using the North American Regional Reanalysis and a 12-year, 6-km resolution regional climate simulation of Southern California. We first construct an index to characterize Santa Ana events based on offshore wind strength. This index is then used to identify the average synoptic conditions associated with Santa Ana events—a high pressure anomaly over the Great Basin. This pressure anomaly causes offshore geostrophic winds roughly perpendicular to the region’s mountain ranges, which in turn cause surface flow as the offshore momentum is transferred to the surface. We find, however, that there are large variations in the synoptic conditions during Santa Ana conditions, and that there are many days with strong offshore flow and weak synoptic forcing. This is due to local thermodynamic forcing that also causes strong offshore surface flow: a large temperature gradient between the cold desert surface and the warm ocean air at the same altitude creates an offshore pressure gradient at that altitude, in turn causing katabatic-like offshore flow in a thin layer near the surface. We quantify the contribution of “synoptic” and “local thermodynamic” mechanisms using a bivariate linear regression model, and find that, unless synoptic conditions force strongly onshore winds, the local thermodynamic forcing is the primary control on Santa Ana variability.  相似文献   

12.
Large-eddy simulations of the neutrally-stratified flow over an extended homogeneous forest were used to calibrate a canopy model for the Reynolds-averaged Navier–Stokes (RaNS) method with the $k-\varepsilon $ k - ε turbulence model. It was found that, when modelling the forest as a porous medium, the canopy drag dissipates the turbulent kinetic energy (acts as a sink term). The proposed model was then tested in more complex flows: a finite length forest and a forested hill. In the finite length forest, the destruction of the turbulent kinetic energy by the canopy was overestimated near the edge, for a length approximately twice the tree height. In the forested hill, the model was less accurate inside the recirculation zone and overestimated the turbulent kinetic energy, due to an incorrect prediction of the production term. Nevertheless, the canopy model presented here provided consistent results in both a priori and a posteriori tests and improved the accuracy of RaNS simulations with the $k-\varepsilon $ k - ε model.  相似文献   

13.
Large-eddy Simulations of Flow Over Forested Ridges   总被引:4,自引:4,他引:0  
Large-eddy simulations (LES) of flow over a series of small forested ridges are performed, and compared with numerical simulations using a one-and-a-half order mixing length closure scheme. The qualitative and quantitative similarity between these results provides some confidence in the results of recent analytical and numerical studies of flow over forested hills using first-order mixing length schemes. Time series of model velocities at various locations within the canopy allow the application of various experimental techniques to study the turbulence in the LES. The application of conditional analysis shows that the structure of the turbulence over a forested hill is broadly similar to that over flat ground, with sweeps and ejections dominating. Differences are seen across the hill, particularly associated with regions of mean flow separation and recirculation near the summit and in the lee of the hill. Detailed comparison of derived mixing lengths from the LES with the assumed values used in mixing-length closure schemes show that the mixing length varies with location across the hill and with height in the canopy. This is consistent with previous wind-tunnel measurements, and demonstrates that a constant mixing-length assumption is not strictly valid within the canopy. Despite this, the first-order mixing-length schemes do give similar results both for the mean flow and the turbulence in such situations.  相似文献   

14.
Summary This paper investigates the characteristics of channelled airflow in the vicinity of a junction of three idealized valleys (one valley carrying the incoming flow and two tributaries carrying the outflow), using a two-dimensional single-layer shallow water model. Particular attention is given to the flow splitting occurring at the junction. Nondimensionalized, the model depends on the valley geometry, the Reynolds number, which is related to the eddy viscosity, and on the difference of the hydrostatic pressure imposed at the exit of the tributaries. At the spatial scale considered in this study, the Rossby number relating the inertial and Coriolis forces is always larger than 1, implying that the effect of earth rotation can be neglected to a first approximation. The analysis of the flow structure within the three valleys as well as the calculation of the split ratio (fraction of the air flow diverted into one of the two downstream valleys with respect to the total mass flux in the upstream valley) show that (i) the flow pattern depends strongly on the Reynolds number while the split ratio is comparatively insensitive; (ii) the valley geometry and the difference between the upstream and downstream hydrostatic pressures affect the flow pattern, the location of the split point and the split ratio; (iii) the relative contribution of flow deflection by the sidewalls and the blocking/splitting mechanism differs between the settings of a “Y-shape” valley and a “T-shape” valley. Quantitative comparison of the present results with numerical simulations of realistic cases and with observations collected in the region of the Rhine and Seez valleys (Switzerland) (“Y-shape” valley) and in the region of the Inn and Wipp valleys (Austria) (“T-shape” valley) during the Mesoscale Alpine Programme (MAP) field experiment shows good agreement provided that the normalized valley depth NΔH/Uu significantly exceeds 1, i.e., when “flow around” is expected. A structural disagreement between the idealized simulations and the observed wind field is found only when NΔH/Uu ≃ 1, that is, in the “flow over” regime. This shows that the dimensionless valley depth is indeed a good indicator for flow splitting, implying that the stratification is a key player in reality.  相似文献   

15.
The spatial variability of both turbulent flow statistics in the roughness sublayer (RSL) and temperature profiles within and above the canopy layer (CL) were investigated experimentally in a densely built-up residential area in Tokyo, Japan. Using five towers with measuring devices, each tower isolated from the others by at least 200 m, we collected high-frequency measurements of velocity and temperature at a height z=1.8 z H, where z H, the mean building height in the area, is 7.3 m. Also, temperature profiles were measured from z=0.4 to 1.8 z H. The ‘areal mean’ geometric parameters that were obtained for the areas within 200 m of each tower were fairly homogeneous among the tower sites. The main results are as follows: (1) The spatial variability of all RSL turbulent statistics, except the sensible heat flux, was comparable to that reported in a pine forest. Also, the variability decreased with increasing friction velocity. (2) The spatial variability of the RSL sensible heat flux was larger than that reported in a pine forest. Also, the variability depended on the time of the day and became larger in the morning. The difference among the sites was well related to the areal fraction of vegetation. (3) The spatial variability of the CL temperature profile depended on the time of the day and became larger in the morning. Nevertheless, the spatial standard deviation of CL temperature was always below 0.7 K. (4) It is suggested that the “warming-up” process in the morning when heat storage is dominant increases the spatial variation of RSL sensible heat flux and CL temperature according to the local properties around each tower and the variation decreases once there is further convective mixing in the midday  相似文献   

16.
Large-eddy simulation (LES) is a well-established numerical technique, resolving the most energetic turbulent fluctuations in the planetary boundary layer. By averaging these fluctuations, high-quality profiles of mean quantities and turbulence statistics can be obtained in experiments with well-defined initial and boundary conditions. Hence, LES data can be beneficial for assessment and optimisation of turbulence closure schemes. A database of 80 LES runs (DATABASE64) for neutral and stably stratified planetary boundary layers (PBLs) is applied in this study to optimize first-order turbulence closure (FOC). Approximations for the mixing length scale and stability correction functions have been made to minimise a relative root-mean-square error over the entire database. New stability functions have correct asymptotes describing regimes of strong and weak mixing found in theoretical approaches, atmospheric observations and LES. The correct asymptotes exclude the need for a critical Richardson number in the FOC formulation. Further, we analysed the FOC quality as functions of the integral PBL stability and the vertical model resolution. We show that the FOC is never perfect because the turbulence in the upper half of the PBL is not generated by the local vertical gradients. Accordingly, the parameterised and LES-based fluxes decorrelate in the upper PBL. With this imperfection in mind, we show that there is no systematic quality deterioration of the FOC in the strongly stable PBL provided that the vertical model resolution is better than 10 levels within the PBL. In agreement with previous studies, we found that the quality improves slowly with the vertical resolution refinement, though it is generally wise not to overstretch the mesh in the lowest 500 m of the atmosphere where the observed, simulated and theoretically predicted stably stratified PBL is mostly located. The submission to a special issue of the “Boundary-Layer Meteorology” devoted to the NATO advanced research workshop “Atmospheric Boundary Layers: Modelling and Applications for Environmental Security”.  相似文献   

17.
 This work concerns an analysis of inter-basin and inter-layer exchanges in the component ocean part of the coupled ECHAM4/OPYC3 general circulation model, aimed at documenting the simulation of North Atlantic Deep Water (NADW) and related thermohaline circulations in the Indian and Pacific Oceans. The modeled NADW is formed mainly in the Greenland– Iceland–Norwegian Seas through a composite effect of deep convection and downward cross-isopycnal transport. The modeled deep-layer outflow of NADW can reach 16 Sv near 30 °S in the South Atlantic, with the corresponding upper-layer return flow mainly coming from the “cold water path” through Drake Passage. Less than 4 Sv of the Agulhas “leakage” water contributes to the replacement of NADW along the “warm water path”. In the South Atlantic Ocean, the model shows that some intermediate isopycnal layers with potential densities ranging between 27.0 and 27.5 are the major water source that compensate the NADW return flow and enhance the Circumpolar Deep Water (CDW) flowing from the Atlantic into Indian Ocean. The modeled thermohaline circulations in the Indian and Pacific Oceans indicate that the Indian Ocean may play the major role in converting deep water into intermediate water. About 16 Sv of the CDW-originating deep water enters the Indian Ocean northward of 31 °S, of which more than 13 Sv “upwell” mainly near the continental boundaries of Africa, South Asia and Australia through inter-layer exchanges and return to the Antarctic Circumpolar Current (ACC) as intermediate-layer water. As a contrast, only 4 Sv of Pacific intermediate water is connected to “upwelling” flow southward across 31 °S while the magnitude of northward deep flow across 31 °S in the Pacific Ocean is significantly greater than that in the Indian Ocean. The model suggests that a large portion of the deep waters entering the Pacific Ocean (about 14 Sv) “upwells” continually into some upper layers through the thermocline, and becomes the source of the Indonesian throughflow. Uncertainties in these results may be related to the incomplete adjustment of the model’s isopycnal layers and the sensitivity of the Indonesian throughflow to the model’s geography and topography. Received: 12 August 1997/Accepted: 12 March 1998  相似文献   

18.
The two-scalar covariance budget is significant within the canopy sublayer (CSL) given its role in modelling scalar flux budgets using higher-order closure principles and in estimating the segregation ratio for chemically reactive species. Despite its importance, an explicit expression describing how the two-scalar covariance is modified by inhomogeneity in the flow statistics and in the vertical variation in scalar emission or uptake rates within the canopy volume remains elusive even for passive scalars. To progress on a narrower version of this problem, an analytical solution to the two-scalar covariance budget in the CSL is proposed for the most idealized flow conditions: a stationary and planar homogeneous flow inside a uniform and dense canopy with a constant leaf area density distribution. The foliage emission (or uptake) source strengths are assumed to vary exponentially with depth while the forest floor emission is represented as a scalar flux. The analytical solution is a superposition of a homogeneous part that describes how the two-scalar covariance at the canopy top is transported and dissipated within the canopy volume, and an inhomogeneous part governed by local production mechanisms of the two-scalar covariance. The homogeneous part is primarily described by the canopy adjustment length scale, and the attenuation coefficients of the turbulent kinetic energy and the mean velocity. Conditions for which the vertical variation of the two-scalar covariance is controlled by the rapid attenuation in the mean velocity and turbulent kinetic energy profiles, vis-à-vis the vertical variation of the scalar source strength, are explicitly established. This model also demonstrates how dissimilarity in the emissions from the ground, even for the extreme binary case with one scalar turned ‘on’ and the other scalar turned ‘off’, modifies the vertical variation of the two-scalar covariance within the CSL. To assess its applicability to field conditions, the analytical model predictions were compared with observations made at two different forest types—a sparse pine forest at the Hyytiälä SMEAR II-station (in Finland) and a dense alpine hardwood forest at Lavarone (in Italy). While the model assumptions do not represent the precise canopy morphology, attenuation properties of the turbulent kinetic energy and the mean velocity, observed mixing length, and scalar source attenuation properties for these two forest types, good agreement was found between measured and modelled two scalar covariances for multiple scalars and for the triple moments at the Hyytiälä site.  相似文献   

19.
A three-dimensional large-eddy simulation (LES) model, which includes the effects of plant–atmosphere interactions, is used to study the effects of surface inhomogeneities on near-surface coherent structures over an open field and behind a forest canopy. These simulated conditions are representative of two wind sectors of the Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA) experimental site at the Institut Pierre Simon Laplace, Palaiseau, France. Coherent structure properties deduced from wavelet transforms of the simulated near-surface vertical velocity time series are not modified by upstream terrain heterogeneities, in agreement with site measurements. This feature is related to the nature of structures detected from the vertical velocity time series. The turbulence close to the surface seems composed of both local coherent structures and large coherent structures reflecting outer-layer properties, which depend on the overall surface heterogeneity or upstream heterogeneity. It is argued that the streamwise velocity is representative of these large outer-layer structures that impinge onto the ground through a top-down mechanism as identified through the space–time correlation of the wind velocity components. In contrast, the vertical velocity is more representative of small structures resulting from the impingement of the large outer-layer structures. These small structures represent locally-generated, active turbulence, which adjusts rapidly to local surface conditions, and consequently they are only weakly dependent on upstream heterogeneities.  相似文献   

20.
Measurements and Computations of Flow in an Urban Street System   总被引:1,自引:1,他引:0  
We present results from laboratory and computational experiments on the turbulent flow over an array of rectangular blocks modelling a typical, asymmetric urban canopy at various orientations to the approach flow. The work forms part of a larger study on dispersion within such arrays (project DIPLOS) and concentrates on the nature of the mean flow and turbulence fields within the canopy region, recognising that unless the flow field is adequately represented in computational models there is no reason to expect realistic simulations of the nature of the dispersion of pollutants emitted within the canopy. Comparisons between the experimental data and those obtained from both large-eddy simulation (LES) and direct numerical simulation (DNS) are shown and it is concluded that careful use of LES can produce generally excellent agreement with laboratory and DNS results, lending further confidence in the use of LES for such situations. Various crucial issues are discussed and advice offered to both experimentalists and those seeking to compute canopy flows with turbulence resolving models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号