首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 140 毫秒
1.
对流层延迟是影响全球卫星导航系统(GNSS)测量精度的重要因素. 针对现有对流层延迟模型稳定性差,精度较低等问题,在无实测气象参数条件下,提出一种基于Keras平台的长短期记忆神经网络(LSTM)的对流层延迟预测模型. 选取全球均匀分布的8个测站,使用其2016年第90-131年积日共42 天的整点对流层延迟数据预测其第132-136年积日的整点数据. 以国际GNSS服务(IGS)中心提供的对流层产品为真值,分析比较LSTM模型和反向传播(BP)神经网络模型的预测效果. 研究表明,LSTM模型预测结果的均方根误差基本达到mm级,其平均绝对误差和平均绝对百分比误差均比BP模型低,LSTM模型在精度和稳定性上较BP模型均有明显提高;LSTM模型在中高纬区域的均方根误差(RMSE)均值达到7.82 mm,中高纬地区更适合使用该模型.   相似文献   

2.
针对天顶对流层总延迟(ZTD)具有一定的时空变化特性,提出了一种基于BP神经网络、长短期记忆网络(LSTM)算法的区域/单站ZTD组合预测模型. 以连续14天香港连续运行参考站(CORS)网络18个监测站观测数据为例,利用BP神经网络、LSTM及本文算法进行了区域、单站及二者组合ZTD预测模型研究. HKWS测站的预测结果表明:利用前13天数据预报第14天数据,区域、单站、组合模型ZTD预测的均方根误差(RMSE)分别为10.2 mm、10.4 mm、8.5 mm,组合模型相对于区域、单站模型预测精度分别提升了17.2%、18.4%.   相似文献   

3.
对流层延迟是影响全球卫星导航系统(GNSS)定位精度的主要误差源之一,模型修正法是目前削弱对流层延迟影响的主要方法. 以简单易用的角度为切入点,综合UNB3模型的简易性和GPT2w模型的高精度特点,构建一种简易且精度较高的对流层天顶延迟融合模型(FZTD). 并利用多年的国际GNSS服务(IGS) 对流层天顶延迟(ZTD)数据对该模型精度进行了验证. 结果表明FZTD模型的均方根(RMS)与平均偏差(bias)值分别为4.4 cm和?0.3 cm,均小于传统模型UNB3m(RMS:5.1 cm,bias:1.1 cm)和EGNOS(RMS:5.1 cm,bias:0.3 cm),定位精度提高了14%,而且在南半球提高尤为明显,特别在南极地区,精度提高了近3倍,弥补了传统模型在南北半球精度差异大的不足. 新模型总气象参数仅为120个比GPT2w模型急剧减少,与传统模型相当,为GNSS实时导航定位终端的预定义对流层延迟改正提供了更优的选择.   相似文献   

4.
为了减弱对流层延迟的影响,提高GNSS定位精度,探讨了在无气象参数的条件下,利用预测模型计算对流层延迟的可能性,并提出了一种经验对流层延迟预测模型,即基于季节性自回归移动平均模型(SARIMA)的对流层延迟预报方法。结合中国长春和上海两个地区的ZTD数据进行预测分析,预测结果表明:基于SARIMA的ZTD预报模型能够满足不同地区不同时段下的ZTD估计需求,是一种较高精度的ZTD预报方法。  相似文献   

5.
一种优化的基于神经网络的经验ZTD模型   总被引:1,自引:0,他引:1  
目前,经验对流层天顶延迟(ZTD)模型已经有了飞速的发展,因为它们在使用时无需任何测量的实时地面气象数据,这给GNSS用户提供了极大方便。神经网络技术在实测参数型的ZTD建模中已经取得了一定的成果。与此同时,国内虽然有学者构建了神经外网络的经验ZTD模型,其最大的缺点是忽略了ZTD时间变化且只能单独预报ZTD。本文针对这些缺点构建了优化的神经网络经验ZTD模型。试验结果表明,本文提出的神经网络模型可以分别预报天顶干延迟ZHD和天顶湿延迟ZWD,且具有良好的精度:ZHD的Bias和RMSE分别为-3.7和19.8 mm;ZWD的Bias和RMSE分别为-0.6和34.2 mm。本文的神经网络模型预报的ZHD和ZWD的精度均与目前世界著名的GPT2w格网模型相当。另外,与GPT2w模型相比较,神经网络模型最大的优点就是无需庞大的预存格网数据作为输入,在使用时仅需要知道一个训练好的神经网络即可,该特点为GNSS用户提供了极大的方便。  相似文献   

6.
利用CDDIS提供的6个IGS站点2018年高精度对流层天顶延迟(ZTD)参考值,对利用ERA-Interim资料计算的ZTD值进行了精度评估.结果显示,ERA-Interim资料计算的ZTD与IGS提供的ZTD产品相比误差在cm级,不同纬度的计算ZTD及其偏差有不同的季节特征.IGS ZTD和ERA-Interim ZTD分别用于GNSS单点定位改正,伪距结果显示两者改正偏差的差异在亚毫米级,且结果在各个方向都得到了改善,U方向最明显,能达到0.5 m左右.  相似文献   

7.
为研究IGS精密轨道和钟差产品对天顶对流层延迟精度的影响,文章利用位于中国北京、上海、拉萨等地的6个IGS跟踪站所提供的2013年4月7日~10日4天的数据,采用GPSTools软件进行实验,计算各跟踪站的天顶对流层延迟(ZTD),并与IGS提供的对流层延迟产品进行对比.结果表明,利用IGS精密轨道解算的ZTD与IGS提供的ZTD相当,两者偏差的平均RMS优于5mm,利用IGS超快速钟差预报部分解算的ZTD与IGS提供的ZTD存在2cm~3cm误差,平均RMS大于1cm.  相似文献   

8.
为验证分析最新全球气压气温模型(GPT3模型)在中国区域的模型精度,以中国区域18个IGS站为例,分别利用全球大地测量观测系统(Global Geodetic Observing System, GGOS) Atmosphere机构提供的2015-2017年气象数据和国际卫星导航服务(International GNSS Service,IGS)数据中心提供的2015年对流层延迟数据对GPT3模型气象参数和天顶对流层延迟(zenith troposphere delay,ZTD)进行验证,并联合全球其他GNSS站点共同进行GPT3模型误差特性分析。结果表明,相比GPT和GPT2模型,GPT3模型的精度和稳定性明显提高;GPT3模型在取得与GPT2w模型相近精度的同时,稳定性有所提高。GPT3模型精度受纬度影响显著,气温和气压的精度和稳定性由赤道向两极地区逐渐降低,水汽压精度几乎不受纬度影响,稳定性在中纬度和部分低纬度区域比高纬度地区差。GPT3模型对气象参数估值的偏差在低海拔地区具有随机性,以气压偏差最为明显,随着海拔升高,气压和水汽压偏差逐渐稳定在±2 hPa内,气温偏差在±2℃内。  相似文献   

9.
对流层延迟误差与信号频率无关,且具有较强的随机性,是GNSS导航定位中的主要误差源之一。以GGOS Atmosphere发布的格网数据作为真值,从纬度、高程及时间特性3个方面分析了两种全球天顶对流层延迟ZTD(Zenith Total Delay)模型(UNB模型和EGNOS模型)的时空特征,为GNSS导航定位中模型选择的正确性与合理性提供参考依据。分析得出:在纬度方向,ZTD值的RMSE和Bias从南到北呈现递减趋势且逐渐趋于稳定,建议计算ZTD时在南半球通过格网插值,北半球采用UNB模型;在高程方向,ZTD值与高程值呈现出反比关系,EGNOS的残差值较UNB残差值分布更加均匀且规律性较强,可利用高程值进行建模修正;在时间特征方面,ZTD单天内变化较小,两模型互差在mm级且表现出一定的季节性特征。  相似文献   

10.
对流层延迟是卫星导航定位的主要误差源,GNSS广域增强需要高精度的对流层延迟产品进行误差修正。对流层延迟可通过GNSS进行实时估计,也可通过融合多源数据的数值气象预报模型获取。IGS发布的全球对流层天顶延迟产品由GNSS解算,其精度可达4mm,时间分辨率为5min,但其分布不均匀,在广袤的海洋区域无数据覆盖。GGOS Atmosphere基于ECMWF 40年再分析资料,可提供1979年以来时间分辨率为6h、空间分辨率为2.5°×2°的全球天顶对流层总延迟格网数据。本文通过2015年全球IGS测站的ZTD资料对GGOS的ZTD产品进行了评估,研究了GGOS Atmosphere对流层延迟产品与IGS发布ZTD资料之间的系统差,通过线性拟合估计出每个测站GGOS-ZTD与IGSZTD系统差系数(包括比例误差a和固定误差b),然后对比例误差a、固定误差b进行球谐展开,建立了两种ZTD数据源之间的系统差模型。选取IGS测站和陆态网测站,对附加系统偏差改正后的GGOSZTD产品对PPP的收敛速度的影响进行研究。本文研究结果表明:GGOS-ZTD与IGS-ZTD间存在系统偏差,其bias平均为-0.54cm;两者之间较差的RMS平均为1.31cm,说明GGOS-ZTD产品足以满足广大GNSS导航定位用户对对流层延迟改正的需要。将改正了系统差后的GGOS-ZTD产品用于ALBH、DEAR、ISPA测站、PALM测站、ADIS测站、YNMH测站、WUHN测站进行PPP试验,发现可明显提高定位收敛速度,尤其是在U方向上,收敛速度分别提高10.58%、31.68%、15.96%、43.89%、51.46%、14.69%、18.40%。  相似文献   

11.
以亚洲地区46个IGS站2008-2011年实测的高精度天顶对流层延迟(ZTD)数据为参考值,通过对2008-2010年EGNOS模型计算ZTD的日均偏差进行频谱分析,建立了亚洲地区EGNOS模型的单站修正模型(SSIEGNOS),对EGNOS和SSIEGNOS模型在亚洲地区的精度和适用情况进行了评估,结果表明:(1)EGNOS模型偏差和RMS在时间分布上呈现明显的季节变化规律,而SSIEGNOS模型偏差和RMS变化较小且平稳;(2)在空间分布上,两种模型的偏差随着经纬度和高程的变化均无明显规律,但随着高程或者纬度的增加RMS总体上都有递减的趋势;(3)SSIEGNOS模型预测ZTD的精度相对于EGNOS模型有明显提高。  相似文献   

12.
对流层延迟是影响高精度定位与导航的主要误差之一,也是全球导航卫星系统(global navigation satellite system,GNSS)水汽探测的关键参数。美国航空航天局发布了最新一代的大气再分析资料(MERRA-2资料),其可用于计算高时空分辨率的对流层延迟产品,但是目前尚无文献对利用MERRA-2资料计算天顶对流层延迟(zenith tropospheric delay,ZTD)和天顶湿延迟(zenith wet delay,ZWD)的精度进行分析。因此,联合2015年中国陆态网214个GNSS站ZTD产品和分布于中国区域的87个探空站资料,对利用MERRA-2资料在中国区域计算ZTD/ZWD的精度进行评估。结果表明:(1)以陆态网ZTD为参考值,利用MERRA-2资料积分计算ZTD的年均偏差和均方根误差(root mean square error,RMSE)分别为0.32 cm和1.21 cm,且偏差和RMSE均表现出一定的季节变化,总体上呈现为夏季精度低、冬季精度高;在空间分布上,偏差随纬度和高程的变化趋势并不明显,但RMSE随纬度和高程的增加总体上呈现递减的趋...  相似文献   

13.
Assessment of ZTD derived from ECMWF/NCEP data with GPS ZTD over China   总被引:4,自引:0,他引:4  
The accuracy and feasibility of computing the zenith tropospheric delays (ZTDs) from data of the European Center for Medium-Range Weather Forecasts (ECMWF) and the United States National Centers for Environmental Prediction (NCEP) are studied. The ZTDs are calculated from ECMWF/NCEP pressure-level data by integration and from the surface data with the Saastamoinen model method and then compared with the solutions measured from 28 global positioning system (GPS) stations of the Crustal Movement Observation Network of China (CMONOC) for 1 year. The results are as follows: (1) the error of the integration method is 1–3 cm less than that of the Saastamoinen model method. The agreement between the ECMWF ZTD and GPS ZTD is better than that between NCEP ZTD and GPS ZTD; (2) the bias and root mean square difference (RMSD), especially the latter, have a seasonal variation, and the RMSD decreases with increasing altitude while the variation with latitude is not obvious; and (3) when using the full horizontal resolution of 0.5° × 0.5° of the ECMWF meteorological data in place of a reduced 2.5° × 2.5° grid, the mean RMSD between GPS and ECMWF ZTD decreases by 4.5 mm. These results illuminated the accuracy and feasibility of computing the tropospheric delays and establishing the ZTD prediction model over China for navigation and positioning with ECMWF and NCEP data.  相似文献   

14.
对流层延迟是影响精密单点定位效果的一项重要误差源,不同的对流层改正方法直接影响PPP的定位结果。对比分析采用UNB3模型、Saastamoinen模型、ZTD参数估计3种方法对PPP定位精度和收敛时间的影响。实验结果表明:3种模型平面改正精度和收敛时间基本一致。天顶方向改正精度UNB3模型与ZTD参数估计法基本相当,但两者优于Saastamoinen模型;收敛速度UNB3模型与Saastamoinen模型基本一致,ZTD参数估计法收敛速度较慢。  相似文献   

15.
During past decades, precise point positioning (PPP) has been proven to be a well-known positioning technique for centimeter or decimeter level accuracy. However, it needs long convergence time to get high-accuracy positioning, which limits the prospects of PPP, especially in real-time applications. It is expected that the PPP convergence time can be reduced by introducing high-quality external information, such as ionospheric or tropospheric corrections. In this study, several methods for tropospheric wet delays modeling over wide areas are investigated. A new, improved model is developed, applicable in real-time applications in China. Based on the GPT2w model, a modified parameter of zenith wet delay exponential decay wrt. height is introduced in the modeling of the real-time tropospheric delay. The accuracy of this tropospheric model and GPT2w model in different seasons is evaluated with cross-validation, the root mean square of the zenith troposphere delay (ZTD) is 1.2 and 3.6 cm on average, respectively. On the other hand, this new model proves to be better than the tropospheric modeling based on water-vapor scale height; it can accurately express tropospheric delays up to 10 km altitude, which potentially has benefits in many real-time applications. With the high-accuracy ZTD model, the augmented PPP convergence performance for BeiDou navigation satellite system (BDS) and GPS is evaluated. It shows that the contribution of the high-quality ZTD model on PPP convergence performance has relation with the constellation geometry. As BDS constellation geometry is poorer than GPS, the improvement for BDS PPP is more significant than that for GPS PPP. Compared with standard real-time PPP, the convergence time is reduced by 2–7 and 20–50% for the augmented BDS PPP, while GPS PPP only improves about 6 and 18% (on average), in horizontal and vertical directions, respectively. When GPS and BDS are combined, the geometry is greatly improved, which is good enough to get a reliable PPP solution, the augmentation PPP improves insignificantly comparing with standard PPP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号