首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Data on source conditions for the 14 April 2010 paroxysmal phase of the Eyjafjallaj?kull eruption, Iceland, have been used as inputs to a trajectory-based eruption column model, bent. This model has in turn been adapted to generate output suitable as input to the volcanic ash transport and dispersal model, puff, which was used to propagate the paroxysmal ash cloud toward and over Europe over the following days. Some of the source parameters, specifically vent radius, vent source velocity, mean grain size of ejecta, and standard deviation of ejecta grain size have been assigned probability distributions based on our lack of knowledge of exact conditions at the source. These probability distributions for the input variables have been sampled in a Monte Carlo fashion using a technique that yields what we herein call the polynomial chaos quadrature weighted estimate (PCQWE) of output parameters from the ash transport and dispersal model. The advantage of PCQWE over Monte Carlo is that since it intelligently samples the input parameter space, fewer model runs are needed to yield estimates of moments and probabilities for the output variables. At each of these sample points for the input variables, a model run is performed. Output moments and probabilities are then computed by properly summing the weighted values of the output parameters of interest. Use of a computational eruption column model coupled with known weather conditions as given by radiosonde data gathered near the vent allows us to estimate that initial mass eruption rate on 14 April 2010 may have been as high as 108?kg/s and was almost certainly above 107?kg/s. This estimate is consistent with the probabilistic envelope computed by PCQWE for the downwind plume. The results furthermore show that statistical moments and probabilities can be computed in a reasonable time by using 94?=?6,561 PCQWE model runs as opposed to millions of model runs that might be required by standard Monte Carlo techniques. The output mean ash cloud height plus three standard deviations??encompassing c. 99.7?% of the probability mass??compares well with four-dimensional ash cloud position as retrieved from Meteosat-9 SEVIRI data for 16 April 2010 as the ash cloud drifted over north-central Europe. Finally, the ability to compute statistical moments and probabilities may allow for the better separation of science and decision-making, by making it possible for scientists to better focus on error reduction and decision makers to focus on ??drawing the line?? for risk assessment.  相似文献   

2.
Long-range dispersal of volcanic ash can disrupt civil aviation over large areas, as occurred during the 2010 eruption of Eyjafjallaj?kull volcano in Iceland. Here we assess the hazard for civil aviation posed by volcanic ash from a potential violent Strombolian eruption of Somma-Vesuvius, the most likely scenario if eruptive activity resumed at this volcano. A Somma-Vesuvius eruption is of concern for two main reasons: (1) there is a high probability (38?%) that the eruption will be violent Strombolian, as this activity has been common in the most recent period of activity (between AD 1631 and 1944); and (2) violent Strombolian eruptions typically last longer than higher-magnitude events (from 3 to 7?days for the climactic phases) and, consequently, are likely to cause prolonged air traffic disruption (even at large distances if a substantial amount of fine ash is produced such as is typical during Vesuvius eruptions). We compute probabilistic hazard maps for airborne ash concentration at relevant flight levels using the FALL3D ash dispersal model and a statistically representative set of meteorological conditions. Probabilistic hazard maps are computed for two different ash concentration thresholds, 2 and 0.2?mg/m3, which correspond, respectively, to the no-fly and enhanced procedure conditions defined in Europe during the Eyjafjallaj?kull eruption. The seasonal influence of ash dispersal is also analysed by computing seasonal maps. We define the persistence of ash in the atmosphere as the time that a concentration threshold is exceeded divided by the total duration of the eruption (here the eruption phase producing a sustained eruption column). The maps of averaged persistence give additional information on the expected duration of the conditions leading to flight disruption at a given location. We assess the impact that a violent Strombolian eruption would have on the main airports and aerial corridors of the Central Mediterranean area, and this assessment can help those who devise procedures to minimise the impact of these long-lasting low-intensity volcanic events on civil aviation.  相似文献   

3.
Geochemical evidence shows that the silicic component of the widespread Ash Zone 1 in the North Atlantic is derived from a major ignimbrite-forming eruption which occurred at the Katla caldera in southern Iceland during the transition from glacial to interglacial conditions in Younger Dryas time. Both trace and major element evidence of the rhyolitic products excludes the Öræfajökull volcano as a source. The high-Ti basaltic component in the marine ash zone can also be attributed to contemporaneous eruption in the Katla volcanic complex. Dispersal of tephra from this event is primarily attributed to the generation of co-ignimbrite ash columns in the atmosphere, with ash fallout on both sea ice and on the ocean floor north and east of Iceland. Owing to the changing ocean circulation characteristics of the glacial regime, including suppression of the Irminger Current and a stronger North Atlantic Current, tephra was rafted on sea ice south into the central North Atlantic and deposited as dispersed Ash Zone 1. Sediments south of Iceland also show evidence of the formation of ash turbidites, generated either by the entrance of pyroclastic flows into the sea, or during discharge of jökulhlaups or glacier bursts from this subglacial eruption.  相似文献   

4.
In April 2010, volcanic ash from the Eyjafjalla volcano in Iceland strongly impacted aviation in Europe. In order to prevent a similar scenario in the future, a threshold value for safe aviation based on actual mass concentrations was introduced (2 mg m−3 in Germany). This study contrasts microphysical and optical properties of volcanic ash and mineral dust and assesses the detectability of potentially dangerous ash layers (mass concentration larger than 2 mg m−3) from a pilot’s perspective during a flight. Also the possibility to distinguish between volcanic ash and other aerosols is investigated. The visual detectability of airborne volcanic ash is addressed based on idealized radiative transfer simulations and on airborne observations with the DLR Falcon gathered during the Eyjafjalla volcanic ash research flights in 2010 and during the Saharan Mineral Dust Experiments in 2006 and 2008. Mineral dust and volcanic ash aerosol both show an enhanced coarse mode (>1 μm) aerosol concentration, but volcanic ash aerosol additionally contains a significant number of Aitken mode particles (<150 nm) not present in mineral dust. Under daylight clear-sky conditions and depending on the viewing geometry, volcanic ash is visible already at mass concentrations far below what is currently considered dangerous for aircraft engines. However, it is not possible to visually distinguish volcanic ash from other aerosol layers or to determine whether a volcanic ash layer is potentially dangerous (mass concentration larger or smaller than 2 mg m−3). Different appearances due to microphysical differences of both aerosol types are not detectable by the human eye. Nonetheless, as ash concentrations can vary significantly over distances travelled by an airplane within seconds, this visual threat evaluation may contribute greatly to the short-term response of pilots in ash-contaminated air space.  相似文献   

5.
6.
《Journal of Geodynamics》2007,43(1):118-152
The large-scale volcanic lineaments in Iceland are an axial zone, which is delineated by the Reykjanes, West and North Volcanic Zones (RVZ, WVZ, NVZ) and the East Volcanic Zone (EVZ), which is growing in length by propagation to the southwest through pre-existing crust. These zones are connected across central Iceland by the Mid-Iceland Belt (MIB). Other volcanically active areas are the two intraplate belts of Öræfajökull (ÖVB) and Snæfellsnes (SVB). The principal structure of the volcanic zones are the 30 volcanic systems, where 12 are comprised of a fissure swarm and a central volcano, 7 of a central volcano, 9 of a fissure swarm and a central domain, and 2 are typified by a central domain alone.Volcanism in Iceland is unusually diverse for an oceanic island because of special geological and climatological circumstances. It features nearly all volcano types and eruption styles known on Earth. The first order grouping of volcanoes is in accordance with recurrence of eruptions on the same vent system and is divided into central volcanoes (polygenetic) and basalt volcanoes (monogenetic). The basalt volcanoes are categorized further in accordance with vent geometry (circular or linear), type of vent accumulation, characteristic style of eruption and volcanic environment (i.e. subaerial, subglacial, submarine).Eruptions are broadly grouped into effusive eruptions where >95% of the erupted magma is lava, explosive eruptions if >95% of the erupted magma is tephra (volume calculated as dense rock equivalent, DRE), and mixed eruptions if the ratio of lava to tephra occupy the range in between these two end-members. Although basaltic volcanism dominates, the activity in historical time (i.e. last 11 centuries) features expulsion of basalt, andesite, dacite and rhyolite magmas that have produced effusive eruptions of Hawaiian and flood lava magnitudes, mixed eruptions featuring phases of Strombolian to Plinian intensities, and explosive phreatomagmatic and magmatic eruptions spanning almost the entire intensity scale; from Surtseyan to Phreatoplinian in case of “wet” eruptions and Strombolian to Plinian in terms of “dry” eruptions. In historical time the magma volume extruded by individual eruptions ranges from ∼1 m3 to ∼20 km3 DRE, reflecting variable magma compositions, effusion rates and eruption durations.All together 205 eruptive events have been identified in historical time by detailed mapping and dating of events along with extensive research on documentation of eruptions in historical chronicles. Of these 205 events, 192 represent individual eruptions and 13 are classified as “Fires”, which include two or more eruptions defining an episode of volcanic activity that lasts for months to years. Of the 159 eruptions verified by identification of their products 124 are explosive, effusive eruptions are 14 and mixed eruptions are 21. Eruptions listed as reported-only are 33. Eight of the Fires are predominantly effusive and the remaining five include explosive activity that produced extensive tephra layers. The record indicates an average of 20–25 eruptions per century in Iceland, but eruption frequency has varied on time scale of decades. An apparent stepwise increase in eruption frequency is observed over the last 1100 years that reflects improved documentation of eruptive events with time. About 80% of the verified eruptions took place on the EVZ where the four most active volcanic systems (Grímsvötn, Bárdarbunga–Veidivötn, Hekla and Katla) are located and 9%, 5%, 1% and 0.5% on the RVZ–WVZ, NVZ, ÖVB, and SVB, respectively. Source volcano for ∼4.5% of the eruptions is not known.Magma productivity over 1100 years equals about 87 km3 DRE with basaltic magma accounting for about 79% and intermediate and acid magma accounting for 16% and 5%, respectively. Productivity is by far highest on the EVZ where 71 km3 (∼82%) were erupted, with three flood lava eruptions accounting for more than one half of that volume. RVZ–WVZ accounts for 13% of the magma and the NWZ and the intraplate belts for 2.5% each. Collectively the axial zone (RVZ, WVZ, NVZ) has only erupted 15–16% of total magma volume in the last 1130 years.  相似文献   

7.
Ash clouds are one of the major hazards that result from volcanic eruptions. Once an eruption is reported, volcanic ash transport and dispersion (VATD) models are used to forecast the location of the ash cloud. These models require source parameters to describe the ash column for initialization. These parameters include: eruption cloud height and vertical distribution, particle size distribution, and start and end time of the eruption. Further, if downwind concentrations are needed, the eruption mass rate and/or volume of ash need to be known. Upon notification of an eruption, few constraints are typically available on many of these source parameters. Recently, scientists have defined classes of eruption types, each with a set of pre-defined eruption source parameters (ESP). We analyze the August 18, 1992 eruption of the Crater Peak vent at Mount Spurr, Alaska, which is the example case for the Medium Silicic eruption type. We have evaluated the sensitivity of two of the ESP – the grain size distribution (GSD) and the vertical distribution of ash – on the modeled ash cloud. HYSPLIT and Puff VATD models are used to simulate the ash clouds from the different sets of source parameters. We use satellite data, processed through the reverse absorption method, as reference for computing statistics that describe the modeled-to-observed comparison. With the grain size distribution, the three options chosen, (1) an estimated distribution based on past eruption studies, (2) a distribution with finer particles and (3) the National Oceanic and Atmospheric Administration HYSPLIT GSD, have little effect on the modeled ash cloud. For the initial vertical distribution, both linear (uniform concentration throughout the vertical column) and umbrella shapes were chosen. For HYSPLIT, the defined umbrella distribution (no ash below the umbrella), apparently underestimates the lower altitude portions of the ash cloud and as a result has a worse agreement with the satellite detected ash cloud compared to that with the linear vertical distribution for this particular eruption. The Puff model, with a Poisson function to represent the umbrella cloud, gave similar results as for a linear distribution, both having reasonable agreement with the satellite detected cloud. Further sensitivity studies of this eruption, as well as studies using the other source parameters, are needed.  相似文献   

8.
The Hekla eruption cloud on 26–27 February 2000 was the first volcanic cloud to be continuously and completely monitored advecting above Iceland, using the C-band weather radar near the Keflavík international airport. Real-time radar observations of the onset, advection, and waning of the eruption cloud were studied using time series of PPI (plan-position indicator) radar images, including VMI normal, Echotop, and Cappi level 2 displays. The reflectivity of the entire volcanic cloud ranges from 0 to >60 dBz. The eruption column above the vent is essentially characterised by VMI normal and Cappi level 2 values, >30 dBz, due to the dominant influence of lapilli and ash (tephra) on the overall reflected signal. The cloud generated by the column was advected downwind to the north-northeast. It is characterised by values between 0 and 30 dBz, and the persistence of these reflections likely result from continuing water condensation and freezing on ash particles. Echotop radar images of the eruption onset document a rapid ascent of the plume head with a mean velocity of ~30 to 50 m s–1, before it reached an altitude of ~11–12 km. The evolution of the reflected cloud was studied from the area change in pixels of its highly reflected portions, >30 dBz, and tied to recorded volcanic tremor amplitudes. The synchronous initial variation of both radar and seismic signals documents the abrupt increase in tephra emission and magma discharge rate from 18:20 to 19:00 UTC on 26 February. From 19:00 the >45 dBz and 30–45 dBz portions of the reflected cloud decrease and disappear at about 7 and 10.5 h, respectively, after the eruption began, indicating the end of the decaying explosive phase. The advection and extent of the reflected eruption cloud were compared with eyewitness accounts of tephra fall onset and the measured mass of tephra deposited on the ground during the first 12 h. Differences in the deposit map and volcanic cloud radar map are due to the fact that the greater part of the deposit originates by fallout off the column margins and from the base of the cloud followed by advection of falling particle in lower level winds.Editorial responsibility: P. Mouginis-Mark  相似文献   

9.
Volcanic eruptions produce ash clouds, which are a major hazard to population centers and the aviation community. Within the North Pacific (NOPAC) region, there have been numerous volcanic ash clouds that have reached aviation routes. Others have closed airports and traveled for thousands of kilometers. Being able to detect these ash clouds and then provide an assessment of their potential movement is essential for hazard assessment and mitigation. Remote sensing satellite data, through the reverse absorption or split window method, is used to detect these volcanic ash clouds, with a negative signal produced from spectrally semi-transparent ash clouds. Single channel satellite is used to detect the early eruption spectrally opaque ash clouds. Volcanic Ash Transport and Dispersion (VATD) models are used to provide a forecast of the ash clouds' future location. The Alaska Volcano Observatory (AVO) remote sensing ash detection system automatically analyzes satellite data of volcanic ash clouds, detecting new ash clouds and also providing alerts, both email and text, to those with AVO. However, there are also non-volcanic related features across the NOPAC region that can produce a negative signal. These can complicate alerts and warning of impending ash clouds. Discussions and examples are shown of these non-volcanic features and some analysis is provided on how these features can be discriminated from volcanic ash clouds. Finally, there is discussion on how information of the ash cloud such as location, particle size and concentrations, could be used as VATD model initialization. These model forecasts could then provide an improved assessment of the clouds' future movement.  相似文献   

10.
The maximum height attained by a volcanic eruption cloud is principally determined by the convective buoyancy of the mixture of volcanic gas + entrained air + fine-sized pyroclasts within the cloud. The thermal energy supplied to convection processes within an eruption cloud is derived from the cooling of pyroclastic material and volcanic gases discharged by an explosive eruption. Observational data from six recent eruptions indicates that the maximum height attained by volcanic eruption clouds is positively correlated with the rate at which pyroclastic material is produced by an explosive eruption (correlation coefficient r = + 0.97). The ascent of industrial hot gas plumes is also governed by the thermal convection process. Empirical scaling relationships between plume height and thermal flux have been developed for industrial plumes. Applying these scaling relationships to volcanic eruption clouds suggests that the rate at which thermal energy is released into the atmosphere by an explosive eruption increases in an approximately linear manner as an eruption's pyroclastic production rate increases.  相似文献   

11.
Along the Reykjanes Ridge from 63°10′N to 63°50′N we identify 10 en-echelon shallow closely spaced axial volcanic ridges (AVR). The AVRs are confined to the crest of the Reykjanes Ridge. This has been suggested to imply intense tectonic erosion of the ridges and subsequent sediment covering as they drift off axis. All AVRs studied are small and their length does not exceed that of individual eruptive fissures on land. Recent seismic activity is concentrated near Fuglasker seamount and the two AVRs in the Húllið graben. Tectonic strike changes drastically at the Skerjadjúp graben from N28°E to N40°E. Historic volcanic activity has been intense in this area with up to 14 eruptions, the last confirmed eruption occurring in 1926. New multibeam and backscatter data in the area of AVR 1 and the northernmost tip of AVR 2 show that the ridges were created by multiple eruptions, with clearly defined volcanic centres or cones, in contrast to monogenetic Pleistocene hyaloclastite ridges on land in Iceland with similar dimensions. In this area there was a series of eruptions during the years 1226–1238 in which the craters could have formed. The data also show normal faults in the Húllið graben. The western boundary faults have a drop of more than 25 m, while the eastern faults are smaller but denser.  相似文献   

12.
A model is developed for estimating location of a volcano relative to sample points in an associated ashfall, cloud height during eruption, and mean wind velocity during ash deposition. The ash deposit must cover a large area and have an elongate axis. The model appears to be applicable both to recent and to unobserved ashfalls in the past, provided adequate and representative ash samples are available. The opportunity to test the diagnostic model on volcanic ashfalls is limited by sparsity of the necessary input data. From more than 20 ashfalls described in the literature, the 1947 Hekla (Iceland) eruption is the only one which includes suitable particle size analyses taken from samples related to a well-defined axis. The application of the model to the Hekla ashfall is discussed.  相似文献   

13.
The Alleret maar (Massif Central, France) is part of the few Western European early middle Pleistocene lacustrine sequences. In the AL3 core several new ash layers were recovered in the 10 first meters of the sedimentary filling. We obtained three 40Ar/39Ar ages, which range from 683 ± 5 ka (MSWD: 1.2, n = 17) to 722 ± 6 ka (MSWD: 3.2, n = 18). All the studied ash layers belong to the Super-Besse eruptive cycle of the Sancy volcano. Based on the chronostratigraphy that we have derived we estimate that the age of the main eruption could correspond to the Sancy volcano caldera formation at 725 ka close to the end of MIS 18 and that the Super-Besse explosive episode duration lasted only about 40 ka. The time framework we build evidences that the Alleret lacustrine sequence represents a time interval of probably 180 ka spanning from MIS 18 to MIS 14. This sequence offers the first well constrained comparison between terrestrial environmental history and that preserved in marine sediments during the Mid-Pleistocene Revolution.  相似文献   

14.
Volcanic ash causes multiple hazards. One hazard of increasing importance is the threat posed to civil aviation, which occurs over proximal to long-range distances. Ash fallout disrupts airport operations, while the presence of airborne ash at low altitudes near airports affects visibility and the safety of landing and take-off operations. Low concentrations of ash at airplane cruise levels are sufficient to force re-routing of in-flight aircrafts. Volcanic fallout deposits spanning large distances have been recognized from the Somma-Vesuvius volcano for several Holocene explosive eruptions. Here we develop hazard and isochron maps for distal ash fallout from the Somma-Vesuvius, as well as hazard maps for critical ash concentrations at relevant flight levels. Maps are computed by coupling a meteorological model with a fully numeric tephra dispersal model that can account for ash aggregation processes, which are relevant to the dispersion dynamics of fine ash. The simulations were carried out using supercomputing facilities, spanning on entire meteorological year that is statistically representative of the local meteorology during the last few decades. Seasonal influences are also analyzed. The eruptive scenario is based on a Subplinian I-type eruption, which is within the range of the maximum expected event for this volcano. Results allow us to quantify the impact that an event of this magnitude and intensity would have on the main airports and aerial corridors of the Central Mediterranean Area.  相似文献   

15.
Regional ash fall hazard I: a probabilistic assessment methodology   总被引:1,自引:0,他引:1  
Volcanic ash is one of the farthest-reaching volcanic hazards and ash produced by large magnitude explosive eruptions has the potential to affect communities over thousands of kilometres. Quantifying the hazard from ash fall is problematic, in part because of data limitations that make eruption characteristics uncertain but also because, given an eruption, the distribution of ash is then controlled by time and altitude-varying wind conditions. Any one location may potentially be affected by ash falls from one, or a number of, volcanoes so that volcano-specific studies may not fully capture the ash fall hazard for communities in volcanically active areas. In an attempt to deal with these uncertainties, this paper outlines a probabilistic framework for assessing ash fall hazard on a regional scale. The methodology employs stochastic simulation techniques and is based upon generic principles that could be applied to any area, but is here applied to the Asia-Pacific region. Average recurrence intervals for eruptions greater than or equal to Volcanic Explosivity Index 4 were established for 190 volcanoes in the region, based upon the eruption history of each volcano and, where data were lacking, the averaged eruptive behaviour of global analogous volcanoes. Eruption histories are drawn from the Smithsonian Institution’s Global Volcanism Program catalogue of Holocene events and unpublished data, with global analogues taken from volcanoes of the same type category: Caldera, Large Cone, Shield, Lava dome or Small Cone. Simulated are 190,000 plausible eruption scenarios, with ash dispersal for each determined using an advection–diffusion model and local wind conditions. Key uncertainties are described by probability distributions. Modelled results include the annual probability of exceeding given ash thicknesses, summed over all eruption scenarios and volcanoes. A companion paper describes the results obtained for the Asia-Pacific region  相似文献   

16.
2010年3月开始的冰岛埃亚菲亚德拉火山喷发,火山灰肆虐欧洲,迫使很多机场关闭,航班取消,对世界的空中交通造成了极大的影响。本文分析了冰岛埃亚火山的喷发机制和灾害效应,回顾了近些年来我国在活动火山监测与研究领域取得的进展和存在的不足,强调了迅速加大我国火山监测与研究工作力度的重要性。  相似文献   

17.
Meteorological measurements from Lerwick Observatory, Shetland (60°09′N, 1°08′W), are compared with short-term changes in Climax neutron counter cosmic ray measurements. For transient neutron count reductions of 10–12%, broken cloud becomes at least 10% more frequent on the neutron minimum day, above expectations from sampling. This suggests a rapid timescale (~1 day) cloud response to cosmic ray changes. However, larger or smaller neutron count reductions do not coincide with cloud responses exceeding sampling effects. Larger events are too rare to provide a robust signal above the sampling noise. Smaller events are too weak to be observed above the natural variability.  相似文献   

18.
The explosive rhyolitic eruption of Öræfajökull volcano, Iceland, in AD 1362 is described and interpreted based on the sequence of pyroclastic fall and flow deposits at 10 proximal locations around the south side of the volcano. Öræfajökull is an ice-clad stratovolcano in south central Iceland which has an ice-filled caldera (4–5 km diameter) of uncertain origin. The main phase of the eruption took place over a few days in June and proceeded in three main phases that produced widely dispersed fallout deposits and a pyroclastic flow deposit. An initial phase of phreatomagmatic eruptive activity produced a volumetrically minor, coarse ash fall deposit (unit A) with a bi-lobate dispersal. This was followed by a second phreatomagmatic, possibly phreatoplinian, phase that deposited more fine ash beds (unit B), dispersed to the SSE. Phases A and B were followed by an intense, climactic Plinian phase that lasted ∼ 8–12 h and produced unit C, a coarse-lapilli, pumice-clast-dominated fall deposit in the proximal region. At the end of Plinian activity, pyroclastic flows formed a poorly-sorted deposit, unit D, presently of very limited thickness and exposed distribution. Much of Eastern Iceland is covered with a very fine distal ash layer, dispersed to the NE. This was probably deposited from an umbrella cloud and is the distal representation of the Plinian fallout. A total bulk fall deposit volume of ∼ 2.3 km3 is calculated (∼ 1.2 km3 DRE). Pyroclastic flow deposit volumes have been crudely estimated to be < 0.1 km3. Maximum clast size data interpreted by 1-D models suggests an eruption column ∼ 30 km high and mass discharge rates of ∼ 108 kg s− 1. Ash fall may have taken place from heights around 15 km, above the local tropopause (∼ 10 km), with coarser clasts dispersed below that under a different wind regime. Analyses of glass inclusions and matrix glasses suggest that the syn-eruptive SO2 release was only ∼ 1 Mt. This result is supported by published Greenland ice-core acidity peak data that also suggest very minor sulphate deposition and thus SO2 release. The small sulphur release reflects the low sulphur solubility in the 1362 rhyolitic melt. The low tropopause over Iceland and the 30-km-high eruption column certainly led to stratospheric injection of gas and ash but little sulphate aerosol was generated. Moreover, pre-eruptive and degassed halogen concentrations (Cl, F) indicate that these volatiles were not efficiently released during the eruption. Besides the local pyroclastic flow (and related lahar) hazard, the impact of the Öræfajökull 1362 eruption was perhaps restricted to widespread ash fall across Eastern Iceland and parts of northern Europe.  相似文献   

19.
20.
On December 1, 2007, the solar absorption infrared spectra of the Popocatépetl volcanic plume was recorded during an eruptive event and complementarily on November 17, 2008, the passive quiescent degassing was measured from the same site. A portable FTIR spectrometer with a scanning mirror for fast tracking of the sun provided the flexibility, quality, and simplicity needed for field deployment. Slant columns of the gases SO2, HCl, HF, and SiF4 were retrieved and strong differences could be observed when comparing gas ratios in both time periods. During the explosive eruption, the SO2/HCl ratio was three times greater and the HF/HCl ratio was slightly smaller than during passive degassing.While the ratios among SO2, HCl, HF, and SiF4 describe the chemical composition of the volcanic gas mixture, the SiF4/HF ratio provides information about the equilibrium temperatures of the stored gases which in this study were calculated at 150° and 185 °C for the explosive and quiescent degassing episodes, respectively. We conclude that cooling of lava domes in the crater precedes Vulcanian explosions as suggested by Schaaf et al (2005). Based on SO2 flux (Grutter et al., 2008) and measurements and data from the November 2008 event, the average fluxes for HCl, HF, SiF4, and F through quiescent degassing are estimated to be 204, 22.7, 9.8, and 31.7 tons/day, respectively. These values are similar to those reported by Love et al. (1998) more than 10 yrs ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号