首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The results of comprehensive field testing of on‐site vapor‐phase‐based groundwater monitoring methods are presented to demonstrate their utility as a robust and cost‐effective approach for rapidly obtaining volatile organic compounds (VOCs) concentration data from a monitoring well. These methods—which rely on sensitive, commercially available field equipment to analyze vapor in equilibrium with groundwater—proved easy to implement and can be tailored to site‐specific needs, including multilevel sampling. During field testing, low‐flow groundwater concentrations could be reasonably estimated using submerged passive vapor diffusion samplers or field equilibration of collected groundwater (R2 = 0.85 to 0.96). These two methods are not as reliant on in‐well mixing to overcome vertical stratification within wells as simpler headspace methods. The importance of well and aquifer‐specific factors on concentration data (and therefore method selection) is highlighted, including the effect of changing in‐well patterns due to seasonal temperature gradients. Results indicated that vertical stratification was relatively limited within the set of wells included in these studies, resulting in similar performance for short depth‐discrete passive vapor diffusion samplers (constructed from 40‐mL vials) and longer samplers (2.5 to 5 feet in length) designed to cover a larger portion of the screened interval. A year‐long, multi‐event evaluation demonstrated that vapor‐phase‐based monitoring methods are no more variable than conventional groundwater monitoring methods, with both types subject to similar spatial and temporal variability that can be difficult to reduce. Vapor sampling methods represent a promising approach for estimation of groundwater concentrations by reducing the cost liabilities associated with monitoring while providing a more sustainable approach.  相似文献   

2.
Water level monitoring provides essential information about the condition of aquifers and their responses to water extraction, land‐use change, and climatic variability. It is important to have a spatially distributed, long‐term monitoring well network for sustainable groundwater resource management. Community‐based monitoring involving citizen scientists provides an approach to complement existing government‐run monitoring programs. This article demonstrates the feasibility of establishing a large‐scale water level monitoring network of private water supply wells using an example from Rocky View County (3900 km2) in Alberta, Canada. In this network, community volunteers measure the water level in their wells, and enter these data through a web‐based data portal, which allows the public to view and download these data. The close collaboration among the university researchers, county staff members, and community volunteers enabled the successful implementation and operation of the network for a 5‐year pilot period, which generated valuable data sets. The monitoring program was accompanied by education and outreach programs, in which the educational materials on groundwater were developed in collaboration with science teachers from local schools. The methodology used in this study can be easily adopted by other municipalities and watershed stewardship groups interested in groundwater monitoring. As governments are starting to rely increasingly on local municipalities and conservation authorities for watershed management and planning, community‐based groundwater monitoring provides an effective and affordable tool for sustainable water resources management.  相似文献   

3.
Lacustrine groundwater discharge (LGD) and the related water residence time are crucial parameters for quantifying lake matter budgets and assessing its vulnerability to contaminant input. Our approach utilizes the stable isotopes of water (δ18O, δ2H) and the radioisotope radon (222Rn) for determining long‐term average and short‐term snapshots in LGD. We conducted isotope balances for the 0.5‐km2 Lake Ammelshainer See (Germany) based on measurements of lake isotope inventories and groundwater composition accompanied by good quality and comprehensive long‐term meteorological and isotopic data (precipitation) from nearby monitoring stations. The results from the steady‐state annual isotope balances that rely on only two sampling campaigns are consistent for both δ18O and δ2H and suggested an overall long‐term average LGD rate that was used to infer the water residence time of the lake. These findings were supported by the good agreement of the simulated LGD‐driven annual cycles of δ18O and δ2H lake inventories with the observed lake isotope inventories. However, radon mass balances revealed lower values that might be the result of seasonal LGD variability. For obtaining further insights into possible seasonal variability of groundwater–lake interaction, stable water isotope and radon mass balances could be conducted more frequently (e.g., monthly) in order to use the derived groundwater discharge rates as input for time‐variant isotope balances.  相似文献   

4.
Exposure from groundwater contamination to aquatic receptors residing in receiving surface water is dependent upon the rate of contaminated groundwater discharge. Characterization of groundwater fluxes is challenging, especially in coastal environments where tidal fluctuations result in transient groundwater flows towards these receptors. This can also be further complicated by the high spatial heterogeneity of subsurface deposits enhanced by anthropogenic influences such as the mixing of natural sediments and backfill materials, the presence of subsurface built structures such as sheet pile walls or even occurrence of other sources of contaminant discharge. In this study, the finite volume point dilution method (FVPDM) was successfully used to characterize highly transient groundwater flows and contaminant mass fluxes within a coastal groundwater flow system influenced by marked tides. FVPDM tests were undertaken continuously for more than 48 h at six groundwater monitoring wells, in order to evaluate groundwater flow dynamics during several tide cycles. Contaminant concentrations were measured simultaneously which allowed calculating contaminant mass fluxes. The study highlighted the importance of the aquifer heterogeneity, with groundwater fluxes ranging from 10−7 to 10−3 m/s. Groundwater flux monitoring enabled a significant refinement of the conceptual site model, including the fact that inversion of groundwater fluxes was not observed at high tide. Results indicated that contaminant mass fluxes were particularly higher at a specific monitoring well, by more than three orders of magnitude, than at other wells of the investigated aquifer. This study provided crucial information for optimizing further field investigations and risk mitigation measures.  相似文献   

5.
South Florida's Miami‐Dade agricultural area is located between two protected natural areas, the Biscayne and Everglades National Parks, subject to the costliest environmental restoration project in history. Agriculture, an important economic activity in the region, competes for land and water resources with the restoration efforts and Miami's urban sprawl. The objective of this study, understanding water quality interactions between agricultural land use and the shallow regional aquifer, is critical to the reduction of agriculture's potentially negative impacts. A study was conducted in a 4‐ha square field containing 0·9 ha of corn surrounded by fallow land. The crop rows were oriented NW–SE along the dominant groundwater flow in the area. A network of 18 monitoring wells was distributed across the field. Shallow groundwater nitrate–nitrogen concentration [N‐NO3?] was analyzed on samples collected from the wells biweekly for 3 years. Detailed hydrological (water table elevation [WTE] at each well, groundwater flow direction [GwFD], rainfall) and crop (irrigation, fertilization, calendar) data were also recorded in situ. Flow direction is locally affected by seasonal regional drainage through canal management exercised by the local water authority. The data set was analyzed by dynamic factor analysis (DFA), a specialized time series statistical technique only recently applied in hydrology. In a first step, the observed nitrate variation was successfully described by five common trends representing the unexplained variability. By including the measured hydrological series as explanatory variables the trends were reduced to only three. The analysis yields a quantification of the effects of hydrological factors over local groundwater nitrate concentration. Furthermore, a spatial structure across the field, matching land use, was found in the five remaining common trends whereby the groundwater [N‐NO3?] in wells within the corn rows could be generally separated from those in fallow land NW and SE of the crop strip. Fertilization, masked by soil/water/plant‐delayed processes, had no discernible effect on groundwater nitrate levels. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
David F. Boutt 《水文研究》2017,31(7):1479-1497
This study analyzes a long‐term regional compilation of water table response to climate variability based on 124 long‐term groundwater wells distributed across New England, USA, screened in a variety of geologic materials. The New England region of the USA is located in a humid‐temperature climate underlain by low‐storage‐fractured metamorphic and crystalline bedrock dissected by north–south trending valleys filled with glacial and post‐glacial valley fill sediments. Uplands are covered by thin glacial till that comprises more than 60% of the total area. Annual and multi‐annual responses of the water table to climate variability are assessed to understand how local hydraulic properties and hydrogeologic setting (located in recharge/discharge region) of the aquifer influence the hydrologic sensitivity of the aquifer system to climate variability. This study documents that upland aquifer systems dominated by thin deposits of surface till comprise ~70% of the active and dynamic storage of the region. Total aquifer storage changes of +5 to ?7 km3 occur over the region during the study interval. The storage response is dominated by thin and low permeability surficial till aquifer that fills and drains on a multi‐annual basis and serves as the main mechanism to deliver water to valley fill aquifers and underlying bedrock aquifers. Whereas the till aquifer system is traditionally neglected as an important storage reservoir, this study highlights the importance of a process‐based understanding of how different landscape hydrogeologic units contribute to the overall hydrologic response of a region.  相似文献   

7.
Elevated levels of nitrate in groundwater are an important concern for health and the environment. The overapplication of nitrogen fertilizer to croplands is one of the major sources of high nitrate content in groundwater. In this study, we analyse the nitrate concentrations in Korean groundwater based on data from groundwater quality monitoring wells (n = 1,022–2,072), which were sampled twice annually over a recent 13‐year analysis period (2001–2013). We report that groundwater nitrate levels are decreasing, despite steadily increasing groundwater use. The maximum nitrate concentration decreased from 168.91 to 48.11 mg/L, whereas the mean values also show a gradual decreasing trend. Non‐parametric Mann–Kendall tests on nitrate concentrations also confirm the decreasing trend. The nitrate decrease is more clearly evident in agricultural groundwater as compared to domestic and drinking groundwaters. This decrease of nitrate in groundwater coincides with a large decline in nitrogen fertilizer application due to reduced cropland areas, more sustainable agricultural practices, and progressive improvement of sewage disposal services. This study proposes that the long‐term adoption of best practices in agriculture has had a positive impact on groundwater nitrate control.  相似文献   

8.
The hydraulic properties of aquitards are not easily obtained because monitoring wells are usually installed in aquifers for groundwater resources management. Earthquake‐induced crust stress (strain) triggers groundwater level variations over a short period of time in a large area. These groundwater anomalies can be used to investigate aquifer systems. This study uses a poroelastic model to fit the postseismic variations of groundwater level triggered by the Chi‐Chi earthquake to evaluate the hydraulic properties of aquitards in the Jhoushuei River alluvial fan (JRAF), Taiwan. Six of the adopted eight wells with depths of 70 to 130 m showed good agreement with the recovery theory. The mean hydraulic conductivities (K) of the aquifers for the eight wells are 1.62 × 10?4 to 9.06 × 10?4 m/s, and the thicknesses are 18.8 to 46.1 m. The thicknesses of the aquitards are 11.3 to 42.0 m. Under the isotropic assumption for K, the estimated values of K for the aquitards are 3.0 × 10?8 to 2.1 × 10?6 m/s, corresponding to a silty medium. The results match the values obtained for the geological material of the drilling core and those reported in previous studies. The estimated values were combined with those given in previous studies to determine the distribution of K in the first two aquitards in the JRAF. The distribution patterns of the aquitards reflect the sedimentary environments and fit the geological material. The proposed technique can be used to evaluate the K value of aquitards using inverse methods. The inversion results can be used in hydrogeological analyses, contaminant modeling, and subsidence evaluation.  相似文献   

9.
The HydraSleeve is a sampling device for collecting groundwater from the screened interval of a monitoring well without purging that uses a check valve to take in water over the first 3 to 5 feet of an upward pulling motion. If the check valve does not perform as expected, then the HydraSleeve has the potential to collect water from an incorrect depth interval, possibly above the screened interval of the well. We have evaluated volatile organic chemical (VOC) results from groundwater samples collected with the HydraSleeve sampler compared to other methods for sampling monitoring wells at three sites. At all three sites, lower VOC concentration results were observed for samples collected using the HydraSleeve. At two of these three sites, the low concentration sample results were most strongly associated with monitoring wells with more than 10 feet of water above the monitoring well‐screened interval. At the site with the largest dataset, the median bias for samples collected with HydraSleeve was ?20% (p < 0.001). At this site, a bias of ?26% (p < 0.001) was observed for the subset of monitoring wells with greater than 10 feet of water above the screened interval compared to a bias of ?7% (p = 0.21) for wells screened across the top of the water table. In addition to lower VOC concentrations, the monitoring records obtained using the HydraSleeve were more variable compared to monitoring records obtained using purge sampling methods, a characteristic that would make it more difficult to determine the long‐term concentration trend in the well.  相似文献   

10.
John Houston 《水文研究》2002,16(15):3019-3035
The Chacarilla fan in the Atacama Desert is one of several formed in the Late Miocene at the foot of the Pre‐Andean Cordillera overlying the large, complex, Pampa Tamarugal aquifer contained in the continental clastic sediments of the fore‐arc basin. The Pampa Tamarugal aquifer is a strategic source of water for northern Chile but there is continuing doubt over the resource magnitude and recharge. During January 2000 a 1 in 4 year storm in the Andes delivered a 34 million m3 flash flood to the fan apex where c. 70% percolated to the underlying aquifers. Groundwater recharge through the fan is calculated to be a minimum of 200 l/s or 6% of the long‐term catchment rainfall. These figures are supported by hydrochemical data that suggest that recharge may be 9% of long‐term rainfall. Isotopic data suggest groundwater less than 50 years old is transmitted westward through the permeable sheetflood sediments of the fan overlying the main aquifer. Analysis of this and other events shows that the hydrological system is non‐linear with positive feedback. The magnitude of groundwater recharge is dependent on climatic variations, antecedent soil moisture storage and changes in channel characteristics. Long‐term declines in groundwater level may partly result from climatic fluctuations and the causes of such fluctuations are discussed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
The coastal confined aquifer in the Gulf of Urabá (Colombia) is an important water source for the banana agro‐industry as well as for urban and rural communities. However, the main processes controlling recharge and mixing in the aquifer are still poorly understood. Hydrochemical analyses and stable isotope monitoring were conducted to (a) determine groundwater recharge origin, mean groundwater age, and the main processes governing groundwater chemistry and the potential mixing of marine water and the influence of diffusive processes from the two surrounding aquitard layers. Hydrochemical data indicate that the main processes affecting the dissolved chemical composition include cation exchange, dissolution of carbonated and CO2, and silicate weathering. δ18O and δ2H compositions combined with 14C data highlight the differences in climatic conditions between the recharge zone and the confined section of the aquifer, which is close to the Atlantic Ocean. Groundwater samples with 14C ages from recent to 28,300 years BP show a depleted isotopic trend ranging from ?6.43‰ to ?9.14‰ in δ18O and from ?43.2‰ to ?65.7‰ in δ2H. The most depleted δ18O and δ2H compositions suggest a cooler recharge climate than the current conditions (corresponding to the last glacial period of the late Pleistocene). Depleted δ13C values in the total dissolved inorganic carbon indicate the existence of organic material oxidation processes within the geologic formation. These results can be used or transferred to enhance groundwater modelling efforts in other confined coastal aquifers of South America where scarcity of long‐term monitoring data limits water resources planification under a changing climate.  相似文献   

12.
A variety of multivariate statistical procedures were applied to three separate sets of quantitative analytical data from a coastal aquifer located in Malia, Crete (Greece), in order to identify the major hydrochemical processes affecting the groundwater quality and to investigate the evolution of groundwater composition in three different sampling periods. Two of them were carried out on October 2001 and September 2002 at the end of the dry season and the third on April 2002 at the end of the wet period. Two factors were found that explained major hydrochemical processes in the aquifer. These factors reveal the existence of an intensive intrusion of seawater and mechanisms of nitrate contamination of groundwater. Bivariate plots of the scores of the two main factors showed that the seawater intrusion and nitrate pollution processes are maintained through three surveys and that the process of nitrate pollution increases from the first to the second dry survey. Q‐mode factor analysis and discriminant analysis of the three sampling periods clearly showed a seasonal variation of the whole chemistry of groundwater samples. This seasonal variation can be attributed to the freshwater recharge and seawater intrusion that affect the groundwater quality of the Malia aquifer. The results of trend surface analysis are in agreement with those of factor analysis. Moreover, the fourth‐order trend surfaces of EC, Cl? and NO3? showed that the salinization process is more intensive during the first dry period and the spatial variation of NO3? maxima plumes are strongly affected by the flow regime of the Malia aquifer. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Water level time series from groundwater production wells offer a transient dataset that can be used to estimate aquifer properties in areas with active groundwater development. This article describes a new parameter estimation method to infer aquifer properties from such datasets. Specifically, the method analyzes long‐term water level measurements from multiple, interacting groundwater production wells and relies on temporal water level derivatives to estimate the aquifer transmissivity and storativity. Analytically modeled derivatives are compared to derivatives calculated directly from the observed water level data; an optimization technique is used to identify best‐fitting transmissivity and storativity values that minimize the difference between modeled and observed derivatives. We demonstrate how the consideration of derivative (slope) behavior eliminates uncertainty associated with static water levels and well‐loss coefficients, enabling effective use of water level data from groundwater production wells. The method is applied to time‐series data collected over a period of 6 years from a municipal well field operating in the Denver Basin, Colorado (USA). The estimated aquifer properties are shown to be consistent with previously published values. The parameter estimation method is further tested using synthetic water level time series generated with a numerical model that incorporates the style of heterogeneity that occurs in the Denver Basin sandstone aquifers.  相似文献   

14.
Multivariate statistical techniques, cluster and factor analyses were applied on the Amman/Wadi Sir groundwater chemistry, Yarmouk River basin, north Jordan. The main objective was to investigate the main processes affecting the groundwater chemical quality and its evolution. The k‐means cluster analysis yields three groups with distinct ionic concentrations. Cluster 1 comprises the vast majority of the sampled wells, and the water that belongs to this cluster can be classified as freshwater. Cluster 2 comprises only 2% of the sampled wells; it has the highest ionic concentration. The water of this cluster can be classified as brackish water. Cluster 3 involves 23% of the sampled wells, and it has total ionic concentration intermediate to that of clusters 1 and 2. Factor analysis yields a three‐factor model, which explains 76.77% of the groundwater quality variation. Factor 1 ‘salinity factor’ involves EC, Na+, Cl, SO4‐2, K+ and Mg+2 and reflects groundwater salinization because of overpumping. Factor 2 ‘hardness factor’ includes Ca+2, HCO3 and the pH value and signifies soil–water/rock interaction. Factor 3 ‘nitrate factor’ involves only NO3 and points to groundwater contamination because of human activities, mainly untreated wastewater, and crops and animal cultivation in the unconfined portion of the aquifer. Factors 1 and 3 can be described as human‐induced factors, whereas factor 2 can be described as geogenic factor. Factors' scores were mapped to deduce the controlling processes on the groundwater chemistry. Stable isotope composition of 18O and 2H has revealed that the groundwater is a mixture of two water types. The radioactive isotopes tritium and 14 C were used to evaluate present day recharge to the aquifer and to estimate the groundwater age, respectively. Present day recharge to the groundwater is taking place in the unconfined portion of the aquifer as it is indicated by the measurable tritium content and low groundwater age. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
This study examines the effect of pumping, hydrogeology, and pesticide characteristics on pesticide concentrations in production wells using a reactive transport model in two conceptual hydrogeologic systems; a layered aquifer with and without a stream present. The pumping rate can significantly affect the pesticide breakthrough time and maximum concentration at the well. The effect of the pumping rate on the pesticide concentration depends on the hydrogeology of the aquifer; in a layered aquifer, a high pumping rate resulted in a considerably different breakthrough than a low pumping rate, while in an aquifer with a stream the effect of the pumping rate was insignificant. Pesticide application history and properties have also a great impact on the effect of the pumping rate on the concentration at the well. The findings of the study show that variable pumping rates can generate temporal variability in the concentration at the well, which helps understanding the results of groundwater monitoring programs. The results are used to provide guidance on the design of pumping and regulatory changes for the long‐term supply of safe groundwater. The fate of selected pesticides is examined, for example, if the application of bentazone in a region with a layered aquifer stops today, the concentration at the well can continue to increase for 20 years if a low pumping rate is applied. This study concludes that because of the rapid response of the pesticide concentration at the drinking water well due to changes in pumping, wellhead management is important for managing pesticide concentrations.  相似文献   

16.
Artificially enhancing recharge rate into groundwater aquifer at specially designed facilities is an attractive option for increasing the storage capacity of potable water in arid and semi‐arid region such as Damascus basin (Syria). Two dug wells (I and II) for water injection and 24 wells for water extraction are available in Mazraha station for artificial recharge experiment. Chemical and stable isotopes (δ2H and δ18O) were used to evaluate artificial recharge efficiency. 400 to 500*103 m3 of spring water were injected annually into the ambient shallow groundwater in Mazraha station, which is used later for drinking purpose. Ambient groundwater and injected spring water are calcium bicarbonate type with EC about 880 ± 60 μS/cm and 300 ± 50 μS/cm, respectively. The injected water is under saturated versus calcite and the ambient groundwater is over saturated, while the recovered water is near equilibrium. It was observed that the injection process formed a chemical dilution plume that improves the groundwater quality. Results demonstrate that the hydraulic conductivity of the aquifer is estimated around 6.8*10?4 m/s. The effective diameter of artificial recharge is limited to about 250 m from the injection wells. Mixing rate of 30% is required in order to reduce nitrate concentration below 50 mg/l which is considered the maximum concentration limit for potable water. Deuterium and oxygen‐18 relationship demonstrates that mixing line between injected water and ambient groundwater has a slope of 6.1. Oxygen‐18 and Cl? plot indicates that groundwater salinity origin is from mixing process, and no dissolution and evaporation were observed. These results demonstrate the efficiency of the artificial recharge experiments to restore groundwater storage capacity and to improve the water quality. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Optical sensors are promising for collecting high resolution in‐well groundwater nitrate monitoring data. Traditional well purging methods are labor intensive, can disturb ambient conditions and yield an unknown blend of groundwater in the samples collected, and obtain samples at a limited temporal resolution (i.e., monthly or seasonally). This study evaluated the Submersible Ultraviolet Nitrate Analyzer (SUNA) for in‐well nitrate monitoring through new applications in shallow overburden and fractured bedrock environments. Results indicated that SUNA nitrate‐N concentration measurements during flow cell testing were strongly correlated (R 2 = 0.99) to purged sample concentrations. Vertical profiling of the water column identified distinct zones having different nitrate‐N concentrations in conventional long‐screened overburden wells and open bedrock boreholes. Real‐time remote monitoring revealed dynamic responses in nitrate‐N concentrations following recharge events. The monitoring platform significantly reduced labor requirements for the large amount of data produced. Practitioners should consider using optical sensors for real‐time monitoring if nitrate concentrations are expected to change rapidly, or if a site's physical constraints make traditional sampling programs challenging. This study demonstrates the feasibility of applying the SUNA in shallow overburden and fractured bedrock environments to obtain reliable data, identifies operational challenges encountered, and discusses the range of insights available to groundwater professionals so they will seek to gather high resolution in‐well monitoring data wherever possible.  相似文献   

18.
The National Research Council has estimated that over 126,000 contaminated groundwater sites are unlikely to achieve low ug/L clean‐up goals in the foreseeable future. At these sites, cost‐effective, long‐term monitoring schemes are needed in order to understand the long‐term changes in contaminant concentrations. Current monitoring optimization schemes rely on site‐specific evaluations to optimize groundwater monitoring frequency. However, when using linear regression to estimate the long‐term zero‐order or first‐order contaminant attenuation rate, the effect of monitoring frequency and monitoring duration on the accuracy and confidence for the estimated attenuation rate is not site‐specific. For a fixed number of monitoring events, doubling the time between monitoring events (e.g., changing from quarterly monitoring to semi‐annual monitoring) will double the accuracy of estimated attenuation rate. For a fixed monitoring frequency (e.g., semi‐annual monitoring), increasing the number of monitoring events by 60% will double the accuracy of the estimated attenuation rate. Combining these two factors, doubling the time between monitoring events (e.g., quarterly monitoring to semi‐annual monitoring) while decreasing the total number of monitoring events by 38% will result in no change in the accuracy of the estimated attenuation rate. However, the time required to collect this dataset will increase by 25%. Understanding that the trade‐off between monitoring frequency and monitoring duration is not site‐specific should simplify the process of optimizing groundwater monitoring frequency at contaminated groundwater sites.  相似文献   

19.
A geochemical study was carried out in a small spa area (Onyang Spa, Korea) where intensive pumping of deep thermal groundwater (1 300 000 m3 year−1) is taking place. This has caused the deep fractures to lose their artesian pressure and the upper shallow fractures have been encroached by shallow, cold waters. To quantify the influence of long‐term heavy pumping on the quality of the geothermal water, groundwater sampling and chemical analysis, water‐level measurement, and well loggings were performed for the selected deep thermal wells and shallow cold wells. Chemical analysis results indicate a big contrast in water chemistry and origins between the two water types. Shallow groundwater shows a wider concentration ranges in solutes that are closely related to human activity, illustrating the water's vulnerability to contamination near the land surface. Plots of water chemistry as a function of fluoride reveal that the quality of the thermal water was greatly influenced by the shallow, cold groundwater and that intensive pumping of the deep thermal groundwater has caused the introduction of shallow groundwater into the deeper fractures. Although the deep and the shallow fractures were piezometrically separated to some extent, a mixing model based on fluoride and nitrate indicated that the cold‐water fractions in the thermal wells are up to 50%. This suggests that the thermal water is faced with water quality degradation by the downward flow of the shallow, cold water. Restriction on the total of all the pumpage permits per unit area is suggested to restore the artesian pressure of the deep thermal aquifer and to prevent cold‐water intrusion in the study area. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
For the evaluation of policy action programs to improve groundwater quality, research institutes and governments intensively monitor nitrate concentrations in shallow or near surface groundwater. However, trend detection is often hampered by the large seasonal and multi-annual temporal variability in nitrate concentrations, especially in shallow groundwater within 0–5 m below the surface in relatively humid regions. This variability is mainly caused by variations in precipitation excess (precipitation minus evapotranspiration) that results in strong variability in groundwater recharge. The objective of this study was to understand and quantify this weather-induced variability in shallow groundwater nitrate concentrations.We present an example of measured weather related variations in shallow groundwater nitrate concentrations from De Marke, an intensively monitored experimental farm in The Netherlands. For the quantification of the weather-induced variability, concentration-indices were calculated using a 1D model for water and solute transport. The results indicate that nitrate concentrations in the upper meter of groundwater at De Marke vary between 55% and 153% of the average concentration due to meteorological variability. The concentration-index quantification method was successfully used to distinguish weather related variability from human-induced trends in the nitrate concentration monitoring data from De Marke. Our model simulations also shows that sampling from fixed monitoring wells produces less short term variability than measuring from open boreholes. In addition, using larger screen depths and longer screens filters out short term temporal variability at the cost of a more delayed detection of trends in groundwater quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号