首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The use of reclaimed water and its impact on groundwater quality in the middle and southern parts of the Jordan Valley are investigated. The chemical analyses indicate that nitrate and bacteriological pollution is widespread, and thus, seriously affects groundwater use. During the study, 365 water samples were collected from wells and springs to determine the water chemistry and the extent of nitrate pollution. Three hydrochemical facies are identifed, i. e., (Ca–(Mg)–Na–HCO3), (Ca–Na–SO4–Cl) and (Ca–Na–Cl). The change of facies is accompanied by a gradual increase in the groundwater total dissolved solids (TDS), which is mainly controlled by evaporates and carbonates dissolution in the aquifer matrix. Water analyses indicate that the shallow aquifer in the study area is affected by non‐point pollution sources, primarily from natural (manure) and chemical nitrogen (N)‐fertilizers and treated wastewater used for agriculture. The concentration of nitrate in the groundwater ranges from 10 to 355 mg/L. Considerable seasonal fluctuations in groundwater quality are observed as a consequence of agricultural practices and other factors such as annual rainfall distribution and the Zarqa River flow. The noticeable levels of total coliform and Escherichia coli in the northern part of the study area may be attributed to contamination from the urban areas, intensive livestock production, and illegal dumping of sewage. Heavy metal concentrations in all samples were found to be significantly lower than the permissible limits for drinking water standards.  相似文献   

2.
The artificial sweetener acesulfame (ACE) is a potentially useful tracer of waste water contamination in groundwater. In this study, ACE concentrations were measured in waste water and impacted groundwater at 12 septic system sites in Ontario, Canada. All samples of septic tank effluent (n = 37) had ACE >6 µg/L, all samples of groundwater from the proximal plume zones (n = 93) had ACE >1 µg/L and, almost all samples from the distal plume zones had ACE >2 µg/L. Mean mass ratios of total inorganic nitrogen/ACE at the 12 sites ranged from 680 to 3500 for the tank and proximal plume samples. At five sites, decreasing ratio values in the distal zones indicated nitrogen attenuation. These ratios were applied to three aquifers in Canada that are nitrate‐stressed and an urban stream where septic systems are present nearby to estimate the amount of waste water nitrate contamination. At the three aquifer locations that are agricultural, low ACE values (<0.02‐0.15 µg/L) indicated that waste water contributed <15% of the nitrate in most samples. In groundwater discharging to the urban stream, much higher ACE values (0.2‐11 µg/L) indicated that waste water was the likely source of >50% of the nitrate in most samples. This study confirms that ACE is a powerful tracer and demonstrates its use as a diagnostic tool for establishing whether waste water is a significant contributor to groundwater contamination or not.  相似文献   

3.
To investigate the origin and behaviour of nitrate in alluvial aquifers adjacent to Nakdong River, Korea, we chose two representative sites (Wolha and Yongdang) having similar land‐use characteristics but different geology. A total of 96 shallow groundwater samples were collected from irrigation and domestic wells tapping alluvial aquifers. About 63% of the samples analysed had nitrate concentrations that exceeded the Korean drinking water limit (44·3 mg l?1 NO3?), and about 35% of the samples had nitrate concentrations that exceeded the Korean groundwater quality standard for agricultural use (88·6 mg l?1 NO3?). Based on nitrogen isotope analysis, two major nitrate sources were identified: synthetic fertilizer (about 4‰ δ15N) applied to farmland, and animal manure and sewage (15–20‰ δ15N) originating from upstream residential areas. Shallow groundwater in the farmland generally had higher nitrate concentrations than those in residential areas, due to the influence of synthetic fertilizer. Nitrate concentrations at both study sites were highest near the water table and then progressively decreased with depth. Nitrate concentrations are also closely related to the geologic characteristics of the aquifer. In Yongdang, denitrification is important in regulating nitrate chemistry because of the availability of organic carbon from a silt layer (about 20 m thick) below a thin, sandy surface aquifer. In Wolha, however, conservative mixing between farmland‐recharged water and water coming from a village is suggested as the dominant process. Mixing ratios estimated based on the nitrate concentrations and the δ15N values indicate that water originating from the village affects the nitrate chemistry of the shallow groundwater underneath the farmland to a large extent. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
Increased nitrate concentrations in groundwater and surface waters represent one of the most widespread and acute impacts of modern agriculture on the environment. However, there is often a fundamental gap in understanding how individual agricultural fields and practices contribute to this broad-scale issue. To practically address nutrient dynamics at individual agricultural sites, methods for assessing nitrogen loss to groundwater that are minimally invasive and thus can encourage farmer “buy in” are necessary. We present an approach that uses edge-of-field monitoring at multilevel samplers along with a once-per-year tracer application (bromide) to calculate nitrogen loss on an annual basis. Using appropriate spatio-temporal integrals of measured concentrations, a net loss of nitrogen to groundwater (per field area) can be calculated. This approach directly measures impacts of nitrogen leaching below the water table, while avoiding permanent in-field installations that can interfere with farm operations. We present an application of this technique to assess nitrogen loss to groundwater over 5 years for a commercial agricultural field in Sauk County, WI. Results from Field 19 indicate that nitrogen losses are similar to (or slightly below) previously reported values for corn and potato crops. In all years, however, we estimate that more than 25% (>60 kg/ha) of nitrogen applied leached as nitrate to groundwater. Use of this mass flux estimation method was most reliable when: (1) tracer is injected directly at the water table, limiting “smearing” within the vadose zone; and (2) nitrate concentrations from laboratory analysis were obtained, rather than using ion-selective electrodes or nitrate test strips.  相似文献   

5.
N. Rajmohan  L. Elango 《水文研究》2007,21(20):2698-2712
Study of the movement of water and solute within soil profiles is important for a number of reasons. Accumulation of prominent contaminants from agricultural chemicals in the unsaturated zone over the years is a major concern in many parts of the world. As a result, the unsaturated zone has been a subject of great research interest during the past decade. Hence, an intensive field study was conducted in a part of Palar and Cheyyar river basins to understand the variation of major ions and nutrients in the soil zone during paddy cultivation. The chloride and nitrate data were used to model the movement of these chemicals in the unsaturated zone using the HYDRUS‐2D model. The field study shows that fertilizer application and irrigation return flow increases the major ions and nutrients concentration in the unsaturated zone. Further, the nutrient concentrations are regulated by plant uptake, fertilizer application and infiltration rate. Additionally, denitrification and soil mineralization processes also regulate the nitrogen concentration in the unsaturated zone. The solute transport modelling study concluded that the simulated results match reasonably with the observed trends. Simulated concentrations of chloride and nitrate for a 5‐year period indicate that the concentrations of these ions fluctuate in a cyclic manner (from 60 to 68 mg l?1 and from 3·4 to 3·5 mg l?1 respectively in groundwater) with no upward and downward trend. The influence of excessive fertilizer application on groundwater was also modelled. The model predicts an increase of about 17 mg l?1 of chloride and 2·3 mg l?1 of nitrogen in the groundwater of this area when the application of fertilizers is doubled. The model indicates that the present level of use of agrochemicals is no threat to the groundwater quality. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
In an aquifer system with complex hydrogeology, mixing of groundwater with different ages could occur associated with various flow pathways. In this study, we applied different groundwater age‐estimation techniques (lumped parameter model and numerical model) to characterize groundwater age distributions and the major pathways of nitrate contamination in the Gosan agricultural field, Jeju Island. According to the lumped parameter model, groundwater age in the study area could be explained by the binary mixing of the young groundwater (4–33 years) and the old water component (>60 years). The complex hydrogeologic regimes and local heterogeneity observed in the study area (multilayered aquifer, well leakage hydraulics) were particularly well reflected in the numerical model. The numerical model predicted that the regional aquifer of Gosan responded to the fertilizer applications more rapidly (mean age: 9.7–22.3 years) than as estimated by other models. Our study results demonstrated that application and comparison of multiple age‐estimation methods can be useful to understand better the flow regimes and the mixing characteristics of groundwater with different ages (pathways), and accordingly, to reduce the risk of improper groundwater management plans arising from the aquifer heterogeneity.  相似文献   

7.
Nitrate concentrations in streamwater of agricultural catchments often exhibit interannual variations, which are supposed to result from land‐use changes, as well as seasonal variations mainly explained by the effect of hydrological and biogeochemical cycles. In catchments on impervious bedrock, seasonal variations of nitrate concentrations in streamwater are usually characterized by higher nitrate concentrations in winter than in summer. However, intermediate or inverse cycles with higher concentrations in summer are sometimes observed. An experimental study was carried out to assess the mechanisms that determine the seasonal cycles of streamwater nitrate concentrations in intensive agricultural catchments. Temporal and spatial patterns of groundwater concentrations were investigated in two adjacent catchments located in south‐western Brittany (France), characterized by different seasonal variations of streamwater nitrate concentrations. Wells were drilled across the hillslope at depths ranging from 1·5 to 20 m. Dynamics of the water table were monitored and the groundwater nitrate and chloride concentrations were measured weekly over 2 years. Results highlighted that groundwater was partitioned into downslope domains, where denitrification induced lower nitrate concentrations than into mid‐slope and upslope domains. For one catchment, high subsurface flow with high nitrate concentrations during high water periods and active denitrification during low water periods explained the higher streamwater nitrate concentrations in winter than in summer. For the other catchment, the high contribution of groundwater with high nitrate concentrations smoothed or inverted this trend. Increasing bromide/chloride ratio and nitrate concentrations with depth argued for an effect of past agricultural pressure on this catchment. The relative contribution of flows in time and correlatively the spatial origin of waters, function of the depth and the location on the hillslope, and their chemical characteristics control seasonal cycles of streamwater nitrate concentrations and can influence their interannual trends. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Spatio‐temporal variations in nitrogen and phosphorus concentrations in groundwater were analysed and related to the variations in hydrological conditions, vegetation type and substrate in an alluvial ecosystem. This study was conducted in the Illwald forest in the Rhine Plain (eastern France) to assess the removal of nutrients from groundwater in a regularly flooded area. We compared both forest and meadow ecosystems on clayey‐silty soils with an anoxic horizon (pseudogley) at 1·5–2 m depth (eutric gley soil) and a forest ecosystem on a clayey‐silty fluviosoil rich in organic matter with a gley at 0·5 m depth (calcaric gley soil). Piezometers were used to measure the nutrient concentrations in the groundwater at 2 m depth in the root layer and at 4·5 m depth, below the root layer. Lower concentrations of nitrate and phosphate in groundwater were observed under forest than under meadow, which could be explained by more efficient plant uptake by woody species than herbaceous plants. Thus NO3‐N inputs by river floods were reduced by 73% in the shallow groundwater of the forested ecosystem, and only by 37% in the meadow. Compared with the superficial groundwater layer, the lowest level of nitrate nitrogen (NO3‐N) and the highest level of ammonium nitrogen (NH4‐N) were measured in the deep layer (under the gley horizon at 2·5 m depth), which suggests that the reducing potential of the anoxic horizon in the gley soils contributes to the reduction of nitrate. Nitrate concentrations were higher in the groundwater of the parcel rich in organic matter than in the one poorer in organic matter. Phosphate (PO4‐P) concentrations in both shallow and deep groundwater are less than 62 to 76% of those found in surface water which can be related to the retention capacity of the clay colloids of these soils. Moreover, the temporal variations in nutrient concentrations in groundwater are directly related to variations in groundwater level during an annual hydrological cycle. Our results suggest that variations in groundwater level regulate spatio‐temporal variations in nutrient concentrations in groundwater as a result of the oxidation–reduction status of soil, which creates favourable or unfavourable conditions for nutrient bioavailability. The hydrological variations are much more important than those concerning substrate and type of vegetation. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
Abstract

Large-scale agricultural activities cause deterioration of groundwater resources throughout the world. This study focuses on the irrigated agricultural district of Jinghuiqu in Shaanxi, China. The objectives are to identify the main sources and processes that control nitrate transport, and to assess the impact of long-term irrigation practices on nitrate leaching. The hydrogeochemistry of major solute constituents and stable isotope ratios of NO3 ? in groundwater were used to identify historical sources of contamination and transformation processes occurring in the shallow groundwater of the Jinghuiqu irrigation district. The N-NO3 ? concentrations in groundwater ranged from 0.0 to more than 100 mg L?1 in April 1990, and from 0.47 to 42.0 mg L?1 in December 2009. Our measurements of N-NO3 ? show that the main reasons for this dramatic decline in N-NO3 ? concentrations from 1990 to 2009 are denitrification, which controls nitrogen types, together with the sharp decline of the groundwater table. The isotope ratios in collected samples showed that the source of nitrate was mainly manure, a result that corresponds with historical data showing that manure was the main nitrate source before the 1980s, and that fertilizers became dominant thereafter. A numerical model was then used to evaluate future impacts of current irrigation practices on groundwater sources. The HYDRUS-1D model was employed first to evaluate the water movement and the N-NO3 ? solute transport for a single irrigation pulse experiment carried out under field conditions, and then in evaluating the long-term impact of irrigation on N-NO3 ? leaching. Simulations showed that, after introducing irrigation, the downward drainage fluxes of N-NO3 ?, and the N-NO3 ? and N-tot concentrations increased at all depths within the 2-m soil profile. This indicates that N concentrations below 1-m depth and in the groundwater could become even more elevated with increased future irrigation.

Editor D. Koutsoyiannis

Citation Liu, X.-H., Sun, S.-J., Ji, P., and ?im?nek, J., 2013. Evaluation of historical nitrate sources in groundwater and impact of current irrigation practices on groundwater quality. Hydrological Sciences Journal, 58 (1), 1–15.  相似文献   

10.
Aquifer storage and recovery (ASR) can provide a means of storing water for irrigation in agricultural areas where water availability is limited. A concern, however, is that the injected water may lead to a degradation of groundwater quality. In many agricultural areas, nitrate is a limiting factor. In the Umatilla Basin in north central Oregon, shallow alluvial groundwater with elevated nitrate‐nitrogen of <3 mg/L to >9 mg/L is injected into the Columbia River Basalt Group (CRBG), a transmissive confined aquifer(s) with low natural recharge rates. Once recovery of the injected water begins, however, NO3‐N in the recovered water decreases quickly to <3 mg/L (Eaton et al. 2009), suggesting that NO3‐N may not persist within the CRBG during ASR storage. In contrast to NO3‐N, other constituents in the recovered water show little variation, inconsistent with migration or simple mixing as an explanation of the NO3‐N decrease. Nitrogen isotopic ratios (δ15N) increase markedly, ranging from +3.5 to > +50, and correlate inversely with NO3‐N concentrations. This variation occurs in <3 weeks and recovery of <10% of the originally injected volume. TOC is low in the basalt aquifer, averaging <1.5 mg/L, but high in the injected source water, averaging >3.0 mg/L. Similar to nitrate concentrations, TOC drops in the recovered water, consistent with this component contributing to the denitrification of nitrate during storage.  相似文献   

11.
We evaluated sources and pathways of groundwater recharge for a heterogeneous alluvial aquifer beneath an agricultural field, based on multi‐level monitoring of hydrochemistry and environmental isotopes of a riverside groundwater system at Buyeo, Korea. Two distinct groundwater zones were identified with depth: (1) a shallow oxic groundwater zone, characterized by elevated concentrations of NO3? and (2) a deeper (>10–14 m from the ground surface) sub‐oxic groundwater zone with high concentrations of dissolved Fe, silica, and HCO3?, but little nitrate. The change of redox zones occurred at a depth where the aquifer sediments change from an upper sandy stratum to a silty stratum with mud caps. The δ18O and δ2H values of groundwater were also different between the two zones. Hydrochemical and δ18O? δ2H data of oxic groundwater are similar to those of soil water. This illustrates that recharge of oxic groundwater mainly occurs through direct infiltration of rain and irrigation water in the sandy soil area where vegetable cropping with abundant fertilizer use is predominant. Oxic groundwater is therefore severely contaminated by agrochemical pollutants such as nitrate. In contrast, deeper sub‐oxic groundwater contains only small amounts of dissolved oxygen (DO) and NO3?. The 3H contents and elevated silica concentrations in sub‐oxic groundwater indicate a somewhat longer mean residence time of groundwater within this part of the aquifer. Sub‐oxic groundwater was also characterized by higher δ18O and δ2H values and lower d‐excess values, indicating significant evaporation during recharge. We suggest that recharge of sub‐oxic groundwater occurs in the areas of paddy rice fields where standing irrigation and rain water are affected by strong evaporation, and that reducing conditions develop during subsequent sub‐surface infiltration. This study illustrates the existence of two groundwater bodies with different recharge processes within an alluvial aquifer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
South Florida's Miami‐Dade agricultural area is located between two protected natural areas, the Biscayne and Everglades National Parks, subject to the costliest environmental restoration project in history. Agriculture, an important economic activity in the region, competes for land and water resources with the restoration efforts and Miami's urban sprawl. The objective of this study, understanding water quality interactions between agricultural land use and the shallow regional aquifer, is critical to the reduction of agriculture's potentially negative impacts. A study was conducted in a 4‐ha square field containing 0·9 ha of corn surrounded by fallow land. The crop rows were oriented NW–SE along the dominant groundwater flow in the area. A network of 18 monitoring wells was distributed across the field. Shallow groundwater nitrate–nitrogen concentration [N‐NO3?] was analyzed on samples collected from the wells biweekly for 3 years. Detailed hydrological (water table elevation [WTE] at each well, groundwater flow direction [GwFD], rainfall) and crop (irrigation, fertilization, calendar) data were also recorded in situ. Flow direction is locally affected by seasonal regional drainage through canal management exercised by the local water authority. The data set was analyzed by dynamic factor analysis (DFA), a specialized time series statistical technique only recently applied in hydrology. In a first step, the observed nitrate variation was successfully described by five common trends representing the unexplained variability. By including the measured hydrological series as explanatory variables the trends were reduced to only three. The analysis yields a quantification of the effects of hydrological factors over local groundwater nitrate concentration. Furthermore, a spatial structure across the field, matching land use, was found in the five remaining common trends whereby the groundwater [N‐NO3?] in wells within the corn rows could be generally separated from those in fallow land NW and SE of the crop strip. Fertilization, masked by soil/water/plant‐delayed processes, had no discernible effect on groundwater nitrate levels. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
Regional nitrate contamination in groundwater is a management challenge involving multisector benefits. There is always conflict between restricting anthropogenic activities to protect groundwater quality and prioritizing economic development, especially in productive agriculture dominated areas. To mitigate the nitrate contamination in groundwater, it is necessary to develop management alternatives that simultaneously support environmental protection and sustainable economic development. A regional transport modeling framework is applied to evaluate nitrate fate and transport in the Dagu Aquifer, a shallow sandy aquifer that supplies drinking water and irrigation water for a thriving agricultural economy in Shandong Province in east coastal China. The aquifer supports intensive high-value vegetable farms and nitrate contamination is extensive. Detailed land-use information and fertilizer use data were compiled and statistical approaches were employed to analyze nitrogen source loadings and the spatiotemporal distribution of nitrate in groundwater to support model construction and calibration. The evaluations reveal that the spatial distribution and temporal trends of nitrate contamination in the Dagu Aquifer are driven by intensive fertilization and vertical water exchange, the dominant flow pattern derived from intensive agricultural pumping and irrigation. The modeling framework is employed to assess the effectiveness of potentially applicable management alternatives. The predictive results provide quantitative comparisons for the trend and extent of groundwater quality mitigation under each scenario. Recommendations are made for measures that can both improve groundwater quality and sustain productive agricultural development.  相似文献   

14.
Analyses (n = 525) of chloride (Cl), bromide (Br), nitrate as nitrogen (NO3-N), sodium (Na+), calcium (Ca2+) and potassium (K+) in stream water, tile-drain water and groundwater were conducted in an urban-agricultural watershed (10% urban/impervious, 87% agriculture) to explore potential differences in the signature of Cl originating from an urban source as compared with an agricultural source. Only during winter recharge events did measured Cl concentrations exceed the 230 mg/L chronic threshold. At base flow, nearly all surface water and tile water samples had Cl concentrations above the calculated background threshold of 18 mg/L. Mann–Whitney U tests revealed ratios of Cl to Br (p = .045), to NO3-N (p < .0001), to Ca2+ (p < .0001), and to Na+ (p < .0001) to be significantly different between urban and agricultural waters. While Cl ratios indicate that road salt was the dominant source of Cl in the watershed, potassium chloride fertilizer contributed as an important secondary source. Deicing in watersheds where urban land use is minimal had a profound impact on Cl dynamics; however, agricultural practices contributed Cl year-round, elevating stream base flow Cl concentrations above the background level.  相似文献   

15.
National terrestrial nitrogen budgets for many developed countries have been calculated as part of the management of impacts of N on the environment, but these rarely represent the subsurface explicitly. Using estimates of vadose zone travel time and agricultural nitrate loading, we quantify, for the first time, the total mass of nitrate contained in the vadose zone of aquifers in England and Wales. This mass peaked in 2008 at 1400 kt N (800 to >1700 kt N from sensitivity analyses), which is approximately 2.5 to 6 times greater than saturated zone estimates for this period and indicates that the subsurface is an important store of reactive nitrogen. About 70% of the nitrate mass is estimated to be in the Chalk, with the remainder split between the Permo‐Triassic sandstones, the Jurassic Oolitic limestones and minor aquifers. Current controls on fertilizer application mean that the vadose zone is now a nitrate source, and in 2015 we estimate the net flux from the unsaturated zone to groundwater to be 72 kt N/a. The mass of nitrate in the vadose zone should be included in future terrestrial nitrogen budgets at national and global scales to improve ecosystem management. British Geological Survey © NERC 2015. Hydrological Processes © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Transport and losses of nitrate from sloped soils are closely linked to nitrogen fertilizer management. Previous studies have always focused on different types of fertilizer applications and rarely analysed various initial nitrate distributions as a result of nitrogen fertilizer applications. Under certain conditions, both subsurface lateral saturated flow and vertical leaching dominate nitrate losses. Soil tank experiments and HYDRUS‐2D modelling were used to better understand the subsurface nitrate transport and losses through lateral saturated flow and vertical leaching under various initial nitrate distributions. Low (L: 180 mg L?1), normal (N: 350 mg L?1), and high (H: 500 mg L?1) nitrate concentrations were used in five different distributions (NNNN, NLLN, LHHL, LNLN, and HNHN) along the slope of the tank. The first two treatments (NNNN and NLLN) were analysed both experimentally and numerically. Experiments were conducted under 12 rainfall events at intervals of 3 days. The HYDRUS‐2D model was calibrated and validated against the experimental data and demonstrated good model performance. The other three treatments (LHHL, LNLN, and HNHN) were investigated using the calibrated model. Nitrate concentrations in purple sloped soils declined exponentially with time under intermittent rainfalls, predominantly in the upper soil layers. Non‐uniform initial nitrate distributions contributed to larger differences between four locations along the slope in deeper soil layers. The non‐uniform nitrate distribution either enhanced or reduced decreases in nitrate concentrations in areas with higher or lower initial nitrate concentrations, respectively. Higher nitrate concentrations at the slope foot and along the slope were reduced mainly by lateral flow and vertical leaching, respectively. Increasing nitrogen application rates increased subsurface nitrate losses. Mean subsurface lateral nitrate fluxes were twice as large as mean vertical leaching nitrate fluxes. However, due to longer leaching durations, total nitrate losses due to vertical leaching were comparable with those due to lateral flow, which indicated comparable environmental risks to surface waters and groundwater.  相似文献   

17.
Timber harvest temporarily increases water yield; however, relationships between hydrologic and nutrient chemistry changes have not been consistent. This study quantified the effects of forest harvesting and site preparation without fertilization and with modern best management practices on nutrient concentrations and yields in small headwater streams of the Southeastern Coastal Plain. We monitored two watershed pairs for 2 years prior to and 1 year following timber harvest and for 2 more years following site preparation and planting. Treatment watersheds were clearcut, and downstream portions of streamside management zones were thinned in Fall 2003. Site preparation (herbicide application and burning) and planting followed a year later. All operations followed 1999 Georgia forestry best management practices. Previously published research revealed a large increase in water yield following harvest. Nutrient concentrations varied significantly within and between monitoring periods, even in reference watersheds. Silvicultural activities had no discernible effect on phosphorus and ammonium concentrations; however, statistically significant increases in nitrate/nitrite (67–340 µg L−1) and total nitrogen concentrations (100–400 µg L−1) in treatment watersheds followed stand re‐establishment. Nutrient yields increased after timber harvest largely as a result of increased water yields, although increased nutrient yields were small relative to inter‐annual and inter‐watershed variability and variability. Annual water yield largely explained the variability in annual nitrogen and phosphorus export from reference and treatment streams (r2 values from 0.65 to 0.98). High NOx concentrations coming from an upstream agricultural area decreased 1600–1800 µg L−1 over several hundred metres in the treatment streams by dilution, uptake or denitrification. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Large water‐sample sets collected from 1899 through 1902, 1907, and in the early 1950s allow comparisons of pre‐impoundment and post‐impoundment (1969 through 2008) nitrogen concentrations in the lower Missouri River. Although urban wastes were not large enough to detectably increase annual loads of total nitrogen at the beginning of the 20th century, carcass waste, stock‐yard manure, and untreated human wastes measurably increased ammonia and organic‐nitrogen concentrations during low flows. Average total‐nitrogen concentrations in both periods were about 2.5 mg/l, but much of the particulate‐organic nitrogen, which was the dominant form of nitrogen around 1900, has been replaced by nitrate. This change in speciation was caused by the nearly 80% decrease in suspended‐sediment concentrations that occurred after impoundment, modern agriculture, drainage of riparian wetlands, and sewage treatment. Nevertheless, bioavailable nitrogen has not been low enough to limit primary production in the Missouri River since the beginning of the 20th century. Nitrate concentrations have increased more rapidly from 2000 through 2008 (5 to 12% per year), thus increasing bioavailable nitrogen delivered to the Mississippi River and affecting Gulf Coast hypoxia. The increase in nitrate concentrations with distance downstream is much greater during the post‐impoundment period. If strategies to decrease total‐nitrogen loads focus on particulate N, substantial decreases will be difficult because particulate nitrogen is now only 23% of total nitrogen in the Missouri River. A strategy aimed at decreasing particulates also could further exacerbate land loss along the Gulf of Mexico, which has been sediment starved since Missouri River impoundment. In contrast, strategies or benchmarks aimed at decreasing nitrate loads could substantially decrease nitrogen loadings because nitrates now constitute over half of the Missouri's nitrogen input to the Mississippi. Ongoing restoration and creation of wetlands along the Missouri River could be part of such a nitrate‐reduction strategy. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

19.
The main purpose of this study was to examine the hydrogeochemical factors leading to nitrate contamination of shallow groundwater in an agricultural area. Another purpose was to identify relationships between variations in organic matter levels (as estimated by the BOD and COD parameters) of groundwater that transports effluent from small‐scale livestock holdings. Major cations, anions, BOD and COD of organic matter and total coliforms were analysed. It was found that groundwaters beneath cultivated areas and areas carrying livestock had higher concentrations of calcium, nitrate and chloride than did freshwater. Above all, the nitrification process increased concentrations of nitrate. Nitrate levels were depressed in some places where the groundwater was low in dissolved oxygen. Groundwaters affected by livestock activities showed high concentrations of organic matter (BOD, COD) and high microbial concentrations (as indicated by total coliforms). The COD/BOD ratio increased in the downward direction. It was inferred that this was due to the faster loss of easily biodegradable organic matter compared with non‐biodegradable organic matter proceeding away from a discharge. Accordingly, it is possible to trace effluent in a small area back to a point source by monitoring the COD/BOD ratio of groundwater. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
Contaminated water resources have important implications on health and the environment. Nitrate contamination of the groundwater is a serious problem in the European Union. A method based on the statistical process control (SPC) and time series analysis is developed to monitoring and to predict the concentration evolution of nitrate (NO3 ) in groundwater. In many pumping wells the NO3 concentration ([NO3 ]) increases and approaches or even passes the European Community standard of 50 mg l−1. The objective of this paper is to show the application of statistical process control as a monitoring tool for groundwater pollution from agricultural practices. We propose the autoregressive integrated moving average (ARIMA) model as a management tool to monitoring and reduction of the intrusion of nitrate into the groundwater. This tool should help in setting up useful guidelines for evaluating actual environmental performance against the firm’s environmental objectives and targets and regulatory requirements. We concluded that the statistical process control method may be a potentially important way of monitoring groundwater quality that also permits rapid response to serious increases in pollutants concentrations. In doing so, the paper fills an important gap in the water pollution standards and emerging polices (Water Framework directives).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号