首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
微型土压力传感器标定方法研究   总被引:2,自引:0,他引:2       下载免费PDF全文
离心模型试验常用微型土压力传感器测量地基或土与结构接触边界上的土压力。传感器使用之前应进行标定。传统的液标或气标方法不能准确反映传感器埋置过程对土体的扰动或传感器周围人为土拱边界条件形成,导致测试结果不甚理想。故针对试验条件,设计制作一套标定微型土压力传感器的方法和装置,以水、粉质黏土和福建标准砂为标定介质,考虑有无刚性靠背两种工作状态对多个传感器进行室内标定,得到标定系数。结果表明:水标未出现卸载滞后,砂标和土标均出现卸载滞后,且表现为非线性;引入滞后比R评价微型土压力传感器的滞后性,认为标定介质和传感器类型是影响滞后比的两个主要因素;传感器自身材料特性和几何特性、地基土的制备和传感器放置、加载预压和加卸载循环等对土体密实度、土体强度等的改变、工作介质和状态等对标定结果有影响。建议尽量模拟试验工作介质和工作状态,逐个标定传感器,以得到更准确的土压力测量值。  相似文献   

2.
为保证气氡测量结果准确性和可靠性,需对测氡仪器进行定期校准。应用目前我国地震系统内常用的三种校准方法:标准仪器校准法、RN-FD循环式氡气源校准法及固体氡气源校准法,对入网新型气氡仪进行校准方法比测。得出结果认为:循环式常压取源方式更接近新型数字化氡观测仪器的正常工作方式;标准仪器校准法是目前正在使用的几种校准方法中系统误差最小、校准效率最高、维护成本最低的方法;RN-FD循环式氡气源校准法和固体氡气源校准法均为标准物质传递方法,该方法存在诸多困难及不便(如放射性固体源运输、人员技术及环保监管等)影响仪器校准的及时性。通过分析这三种校准方法在原理、使用操作方法等方面的差异,讨论它们对校准结果准确度的影响,为新型仪器的校准操作规程(规范)的编写及实施提供参考。  相似文献   

3.
马陵山地震台水管倾斜仪观测质量评价   总被引:2,自引:0,他引:2  
对马陵山台水管倾斜仪2007~2011年观测资料进行了质量评价,结果表明:①观测资料连续,仪器工作稳定,年零漂和年变幅小,符合形变观测规范要求。②各主波潮汐参数稳定,观测精度mγ2007~2010年连续4年均在0.004 5左右,远小于0.02,噪声水平M10.02",达到并超过了中国地震局形变优秀台站的标准。  相似文献   

4.
A vibrating-wire transducer measurement system was investigated to determine its accuracy, precision, and stability for use in a study of ground water movement in low-permeability material. Twenty transducers with a pressure range of 10 psi were tested for stability over 100 days. half under low pressure (0.256 psi) and half under approximately full-scale pressure (10 psi). Measurement precision and stability were far better than measurement accuracy. Random noise in the data indicates that the transducers were precise to within 0.02 psi. The transducer measurements were generally stable to within 0.05 psi. but most showed a blight decrease in pressure over time. Measurements by transducers under low pressure were within 0.038 psi of actual pressure, and those made by transducers under high pressure were within −0.20 psi. as indicated by the difference between the mean measurement of each transducer and the mean measurement of all transducers. These measurements were within the reported accuracy for transducers under low pressure, but differed by more than the reported accuracy for transducers under high pressure: this indicates that transducer accuracy is largely determined by the pressure coefficient used to convert transducer readings to pressure units. Pressure coefficient calibration of selected transducers by a water filled standpipe and a digital manometer indicate that hysteresis could be the most significant factor affecting the transducer accuracy Standpipe calibrations indicate a pressure coefficient difference of about 13 percent between increasing and decreasing pressure, but deadweight calibrations indicate a difference of only 1.5 percent. The observed measurement and equipment error could affect interpretation of water level measurements; thus, independent water level measurements and rigorous review of the data arc needed to evaluate the accuracy of transducer measurements.  相似文献   

5.
Fiber-optic (FO) technology is being used increasingly for measurement methods in a variety of environmental applications. However, FO pressure transducers are rarely used in hydrogeological applications. We review the current state of Fabry-Pérot interferometry-based FO pressure transducers, including their advantages and limitations, as another option for high-resolution pressure- or head-change measurements in conventional or advanced aquifer testing. Resolution and precision specifications of FO transducers meet or exceed commonly used non-FO pressure transducers. Due to their design, FO transducers can be used in small-diameter (inner diameter ≥1/4 inch) and continuous multichannel tubing (CMT), sampling points, multilevel packer systems, and Direct Push-based in situ installations and testing. The small diameter of FO transducers provides logistical advantages—especially for tests with monitoring at many zones in a number of wells and/or CMTs (e.g., no reels, placement just below water level in access tubes vs. within isolated zones, reduced weight and volume, small footprint at single point of data acquisition). Principal limitations are small measurement drift that may become evident for tests longer than a few hours, and higher-than-average cost. We present field examples of FO transducer performance in short-term tests with high consistency of acquired data and higher resolution (i.e., capturing significant hydrologic information) compared with commonly used non-FO transducers. Given the above, including advantageous logistical features, FO transducers can open new experimental possibilities in areas of high-resolution three-dimensional (3D) heterogeneity (flow and transport, remediation, critical zones); 3D fracture networks and fundamental hydromechanical behavior; complex 3D flow and leak detection (mines, dams, repositories, geothermal systems).  相似文献   

6.
Hydrogeologic investigations of fractured rock are evolving toward increasing spatial and temporal resolution with increasing use of multilevel systems with 10 or more intervals in a single borehole, each with auto‐sampling sensors monitoring pressure, temperature or chemistry for weeks or months, creating large quantities of densely sampled data (time and space). These data are typically displayed as hydrographs for analysis of site‐specific controls on groundwater flow. We present a method for presentation of high density pressure head data from multilevel installations referred to as time‐elevation head (TEH) sections that improves visualization of spatial and temporal responses of the hydrogeologic system to external stresses. Data collected from two multilevel installations, each with 13 functioning pressure transducers monitoring the upper 40 m of a dolostone aquifer, over a period of 83 d, prior to, during and after a pumping test are used to present TEH sections and examples of data processing. TEH sections are produced using commercially available software designed for geophysical data collected at closely spaced intervals along sub‐parallel lines. These algorithms perform calculations orthogonally either in time (“X” axis) or elevation (“Y” axis) to interpolate a regular grid of head and subsequently when filtering is used to identify subtle trends within the data. The base and filtered TEH sections are used to interpret response of the system to transients and infer hydrogeologic characteristics of the site. The utility of the process is dependent on the precision and accuracy of the head data as well as an informed user to avoid introducing spurious features into the sections.  相似文献   

7.
A simple image‐based method for measuring plane strain fields on the surface of specimens in earthquake engineering experiments was developed. This method integrated camera calibration, stereo triangulation, image metric rectification and image template matching techniques to develop a method that was cost‐effective, easy to apply and provided a satisfactory level of measurement accuracy. A zero‐strain test conducted using this method showed that the measurement accuracy achieved was 0.04 pixels. That is, the relative displacement accuracy achieved was 0.005 mm and the strain accuracy was 0.001. This level of accuracy was achieved using eight‐mega‐pixel digital cameras to measure a 17 cm × 28 cm measurement region. Cracks that were 0.012 mm wide were identified in the concrete by examining the displacement fields calculated through the application of this image‐based method in an RC‐wall experiment. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The use of spatial patterns of flood inundation (often obtained from remotely sensed imagery) to calibrate flood inundation models has been widespread over the last 15 years. Model calibration is most often achieved by employing one or even several performance measures derived from the well‐known confusion matrix based on a binary classification of flooding. However, relatively early on, it has been recognized that the use of commonly reported performance measures for calibrating flood inundation models (such as the F measure) is hampered because the calibration procedure commonly utilizes only one possible solution of a wet/dry classification of a remote sensing image [most often acquired by a synthetic aperture radar (SAR)] to calibrate or validate models and are biased towards either over‐prediction or under‐prediction of flooding. Despite the call in several studies for an alternative statistic, to this date, very few, if any, unbiased performance measure based on the confusion matrix has been proposed for flood model calibration/validation studies. In this paper, we employ a robust statistical measure that operates in the receiver operating characteristics (ROC) space and allows automated model calibration with high identifiability of the best model parameter set but without the need of a classification of the SAR image. The ROC‐based method for flood model calibration is demonstrated using two different flood event test cases with flood models of varying degree of complexity and boundary conditions with varying degree of accuracy. Verification of the calibration results and optional SAR classification is successfully performed with independent observations of the events. We believe that this proposed alternative approach to flood model calibration using spatial patterns of flood inundation should be employed instead of performance measures commonly used in conjunction with a binary flood map. © 2013 California Institute of Technology. Hydrological Processes © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Studies employing integrated surface–subsurface hydrological models (ISSHMs) have utilized a variety of test cases to demonstrate model accuracy and consistency between codes. Here, we review the current state of ISSHM testing and evaluate the most popular ISSHM test cases by comparing the hydrodynamic processes simulated in each case to the processes found in well‐characterized, real‐world catchments and by comparing their general attributes to those of successful benchmark problems from other fields of hydrogeology. The review reveals that (1) ISSHM testing and intercode comparison have not adopted specific test cases consistently; (2) despite the wide range of ISSHM metrics available for model testing, only two model performance diagnostics are typically adopted: the catchment outflow hydrograph and the catchment water balance; (3) in intercode comparisons, model performance is usually judged by evaluating only one performance diagnostic: the catchment outflow hydrograph; and (4) ISSHM test cases evaluate a small number of hydrodynamic processes that are largely uniform across the model domain, representing a limited selection of the processes of interest in well‐characterized, real‐world catchments. ISSHM testing would benefit from more intercode comparisons using a consistent set of test cases, aimed at evaluating more catchment processes (e.g. flooding) and using a wider range of simulation diagnostics (e.g. pressure head distributions). To achieve this, a suite of test case variations is required to capture the relevant catchment processes. Finally, there is a need for additional ISSHM test problems that compare model predictions with hydrological observations from intensively monitored field sites and controlled laboratory experiments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Images from satellite platforms are a valid aid in order to obtain distributed information about hydrological surface states and parameters needed in calibration and validation of the water balance and flood forecasting. Remotely sensed data are easily available on large areas and with a frequency compatible with land cover changes. In this paper, remotely sensed images from different types of sensor have been utilized as a support to the calibration of the distributed hydrological model MOBIDIC, currently used in the experimental system of flood forecasting of the Arno River Basin Authority. Six radar images from ERS‐2 synthetic aperture radar (SAR) sensors (three for summer 2002 and three for spring–summer 2003) have been utilized and a relationship between soil saturation indexes and backscatter coefficient from SAR images has been investigated. Analysis has been performed only on pixels with meagre or no vegetation cover, in order to legitimize the assumption that water content of the soil is the main variable that influences the backscatter coefficient. Such pixels have been obtained by considering vegetation indexes (NDVI) and land cover maps produced by optical sensors (Landsat‐ETM). In order to calibrate the soil moisture model based on information provided by SAR images, an optimization algorithm has been utilized to minimize the regression error between saturation indexes from model and SAR data and error between measured and modelled discharge flows. Utilizing this procedure, model parameters that rule soil moisture fluxes have been calibrated, obtaining not only a good match with remotely sensed data, but also an enhancement of model performance in flow prediction with respect to a previous calibration with river discharge data only. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
针对地磁相对观测工作存在的时间及幅值漂移等问题,进行时间一致性、幅值低漂移以及网络通讯等关键技术研究,开发了由低漂移磁通门传感器和低漂移数据采集电路组成的地磁相对观测仪器,将研制的3台仪器与昌黎后土桥地震台现有GM4磁通门磁力仪进行对比测试,并对测试数据进行日形态变化和预处理分钟值等分析,结果表明,3台待测仪器30天内漂移小于1个采样点,日变化曲线一致性强,与GM4数据曲线最大偏差小于0.7 nT,满足地震台站相对记录设备技术指标的要求。  相似文献   

12.
Testing hydrological models over different spatio‐temporal scales is important for both evaluating diagnostics and aiding process understanding. High‐frequency (6‐hr) stable isotope sampling of rainfall and runoff was undertaken during 3‐week periods in summer and winter within 12 months of daily sampling in a 3.2‐km2 catchment in the Scottish Highlands. This was used to calibrate and test a tracer‐aided model to assess the (a) information content of high‐resolution data, (b) effect of different calibration strategies on simulations and inferred processes, and (c) model transferability to <1‐km2 subcatchment. The 6‐hourly data were successfully incorporated without loss of model performance, improving the temporal resolution of the modelling, and making it more relevant to the time dynamics of the isotope and hydrometric response. However, this added little new information due to old‐water dominance and riparian mixing in this peatland catchment. Time variant results, from differential split sample testing, highlighted the importance of calibrating to a wide range of hydrological conditions. This also provided insights into the nonstationarity of catchment mixing processes, in relation to storage and water ages, which varied markedly depending on the calibration period. Application to the nested subcatchment produced equivalent parameterization and performance, highlighting similarity in dominant processes. The study highlighted the utility of high‐resolution data in combination with tracer‐aided models, applied at multiple spatial scales, as learning tools to enhance process understanding and evaluation of model behaviour across nonstationary conditions. This helps reveal more fully the catchment response in terms of the different mechanistic controls on both wave celerites and particle velocities.  相似文献   

13.
The development of chloride sensors which can be used for continuous, on‐line monitoring of groundwater could be very valuable in the management of our coastal water resources. However, sensor stability, drift, and durability all need to be addressed in order for the sensors to be used in continuous application. This study looks at the development of a simple, inexpensive chloride electrode, and evaluates its performance under continuous use, both in the laboratory and in a field test in a monitoring well. The results from the study showed a consistent response to changing chloride concentrations over longer periods. The signal was seen to be stable, with regular drift in both laboratory and field test. In the field application, the sensor signal was corrected for drift, and errors were observed to be under 7% of that of conductivity measurements. The study also found that the chloride sensor remained responsive even at low chloride concentrations, where the conductivity electrode was no longer responding to changing chloride levels. With the results, it is believed that the simple chloride sensor could be used for continuous monitoring of groundwater quality.  相似文献   

14.
Displacement‐based seismic assessment of buildings containing unreinforced masonry (URM) walls requires as input, among others, estimates of the in‐plane drift capacity at the considered limit states. Current codes assess the drift capacity of URM walls by means of empirical models with most codes relating the drift capacity to the failure mode and wall slenderness. Comparisons with experimental results show that such relationships result in large scatter and usually do not provide satisfactory predictions. The objective of this paper is to determine trends in drift capacities of modern URM walls from 61 experimental tests and to investigate whether analytical models could lead to more reliable estimates of the displacement capacity than the currently used empirical models. A recently developed analytical model for the prediction of the ultimate drift capacity for both shear and flexure controlled URM walls is introduced and simplified into an equation that is suitable for code implementation. The approach follows the idea of plastic hinge models for reinforced concrete or steel structures. It explicitly considers the influence of crushing due to flexural or shear failure in URM walls and takes into account the effect of kinematic and static boundary conditions on the drift capacity. Finally, the performance of the analytical model is benchmarked against the test data and other empirical formulations. It shows that it yields significantly better estimates than empirical models in current codes. The paper concludes with an investigation of the sensitivity of the ultimate drift capacity to the wall geometry, static, and kinematic boundary conditions.  相似文献   

15.
PTY-8鉴频器的改制,是为使仪器更好地地震预报与地震监测的需要而进行的,经室内测试标定和实际运行,表明改制后的PTY-8鉴频器主要技术指标与工作性能已达到规范的要求。本文简述了改制后的PTY-8鉴频器各部分的工作原理及其主要技术指标,给出了仪器标定和试验结果,并介绍了其与原PTY-8鉴频器相比所具有的优越性。  相似文献   

16.
We report here the results obtained during a feasibility study that was pursued in order to evaluate the performances of absolute airborne gravimetry. In contrast to relative systems, which use spring‐type gravimeters, each measurement acquired by absolute systems is independent from the others and the instrument is not suffering from problems like instrumental drift, frequency response of the spring and variation of the calibration factor. After a validation of the dynamic performance of the experimental setup in a moving truck, a comparison between the experimental airborne data retrieved over the Swiss Alps and those obtained by ground upward continuation at flight altitude allow us to state that airborne absolute gravimetry is feasible. The first test flight shows a spatial resolution comparable to those obtained by relative airborne gravimetry. For a wavelength on the order of 12 km the absolute value of gravity can be evaluated with an uncertainty of 6.9 mGal.  相似文献   

17.
Thermochron iButtons incorporate the latest in digital technology, making them smaller, less expensive, durable and potentially more reliable than many other temperature logging devices. The objective of this study was to test the accuracy of an inexpensive air temperature measurement system, composed of a Thermochron iButton and radiation shield. Sixty‐one iButtons were subjected to a sequence of two water baths (0 °C and 24·9 °C) to assess the absolute accuracy of the sensors. Five solar radiation shields were tested in a greenhouse setting to evaluate the reduction in radiative heating. Significant differences (p < 0·05) were detected between instruments subsequent to both water‐bath treatment analyses. The accuracy of the sensors was well within the manufacturer's stated specification of ±1·0 °C with a collective temperature variance of ±0·21 °C. Temperature responses generated by the Thermochron iButtons in different radiation shields were consistent, but varied significantly (p < 0·05) from 28 to 44 °C based on diurnal temperature ranges. Results indicate that the Thermochron iButton is an accurate, inexpensive alternative to more expensive temperature data‐logging systems, and is well suited for obtaining quality spatially distributed data for hydrologic and water quality investigations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
Calibration is required for most soil moisture sensors if accurate measurements are to be obtained. This can be time consuming and costly, especially if field calibration is undertaken, but can be facilitated by a good understanding of the behaviour of the particular sensor being calibrated. We develop generalized temperature correction and soil water calibration relationships for Campbell Scientific CS615 water‐content reflectometer sensors. The temperature correction is estimated as a function of the raw sensor measurement. The calibration relationship requires one soil‐related parameter to be set. These relationships facilitate field calibration of these sensors to acceptable accuracies with only a small number of samples. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
This study presents a seismic fragility analysis of low‐rise masonry in‐filled (MI) reinforced concrete (RC) buildings using a proposed coefficient‐based spectral acceleration method. The coefficient‐based method, without requiring any complicated finite element analysis, is a simplified procedure for assessing the spectral acceleration demand (or capacity) of buildings subjected to earthquakes. This paper begins with a calibration of the proposed coefficient‐based method for low‐rise MI RC buildings using published experimental results obtained from shaking table tests. Spectral acceleration‐based fragility curves for low‐rise MI RC buildings under various inter‐story drift limits are then constructed using the calibrated coefficient‐based method. A comparison of the experimental and estimated results indicates that the simplified coefficient‐based method can provide good approximations of the spectral accelerations at peak loads of low‐rise MI RC buildings, if a proper set of drift‐related factors and initial fundamental periods of structures are used. Moreover, the fragility curves constructed using the coefficient‐based method can provide a satisfactory vulnerability evaluation for low‐rise MI RC buildings under a given performance level. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Inter‐story drift displacement data can provide useful information for story damage assessment. The authors' research group has developed photonic‐based sensors for the direct measurement of inter‐story drift displacements. This paper proposes a scheme for evaluating the degree of damage in a building structure based on drift displacement sensing. The scheme requires only measured inter‐story drift displacements without any additional finite element analysis. A method for estimating yield drift deformation is proposed, and then, the degree of beam end damage is evaluated based on the plastic deformation ratios derived with the yield drift deformation values estimated by the proposed method. The validity and effectiveness of the presented scheme are demonstrated via experimental data from a large‐scale shaking table test of a one‐third‐scale model of an 18‐story steel building structure conducted at E‐Defense. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号