首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
During the recent 2004 Sediment Acoustics Experiment (SAX04), a buried hydrophone array was deployed in a sandy sediment near Fort Walton Beach, FL. The array was used to measure both the acoustic penetration into the sediment and sound speed and attenuation within the sediment while a smaller, diver-deployed array was also used to measure sound speed and attenuation. Both of these systems had been deployed previously during the 1999 Sediment Acoustics Experiment (SAX99). In that experiment, the buried array was used to make measurements in the 11–50-kHz range while the diver-deployed array made measurements in the 80–260-kHz range. For the SAX04 deployment, the frequency range for the measurements using the buried array was lowered to 2 kHz. The diver-deployed array was also modified to cover the 40–260-kHz range. Unlike the SAX99 deployment, there were no obvious sand ripples at the SAX04 buried array site at the time of the measurements. To examine the role of sand ripples in acoustic penetration over this new frequency range, artificial ripple fields were created. For the high frequencies, the penetration was consistent with the model predictions using small-roughness perturbation theory as in SAX99. As the frequency of the incident acoustic field decreased, the evanescent field became the dominant penetration mechanism. The sound speed measured using the buried array exhibits dispersion consistent with the Biot theory while the measured attenuation exceeds the theory predictions at frequencies above 200 kHz.   相似文献   

2.
As part of the sediment acoustics experiment 1999 (SAX99), backscattering from a sand sediment was measured in the 20- to 300-kHz range for incident grazing angles from 10/spl deg/ to 40/spl deg/. Measured backscattering strengths are compared to three different scattering models: a fluid model that uses the mass density of the sediment in determining backscattering, a poroelastic model based on Biot theory and an "effective density" fluid model derived from Biot theory. These comparisons rely heavily on the extensive environmental characterization carried out during SAX99. This environmental characterization is most complete at spatial scales relevant to acoustic frequencies from 20 to 50 kHz. Model/data comparisons lead to the conclusions that rough surface scattering is the dominant scattering mechanism in the 20-50-kHz frequency range and that the Biot and effective density fluid models are more accurate than the fluid model in predicting the measured scattering strengths. For 50-150 kHz, rough surface scattering strengths predicted by the Biot and effective density fluid models agree well with the data for grazing angles below the critical angle of the sediment (about 30/spl deg/) but above the critical angle the trends of the models and the data differ. At 300 kHz, data/model comparisons indicate that the dominant scattering mechanism may no longer be rough surface scattering.  相似文献   

3.
In order to study the properties of sound-speed dispersion in a sandy sediment, the sound speed was measured both at high frequency (90-170 kHz) and low frequency (0.5-3 kHz) in laboratory environments. At high frequency, a sampling measurement was conducted with boiled and uncooked sand samples collected from the bottom of a large water tank. The sound speed was directly obtained through transmission measurement using single source and single hydrophone. At low frequency, an in situ measurement was conducted in the water tank, where the sandy sediment had been homogeneously paved at the bottom for a long time. The sound speed was indirectly inverted according to the traveling time of signals received by three buried hydrophones in the sandy sediment and the geometry in experiment. The results show that the mean sound speed is approximate 1710-1713 m/s with a weak positive gradient in the sand sample after being boiled (as a method to eliminate bubbles as much as possible) at high frequency, which agrees well with the predictions of Biot theory, the effective density fluid model (EDFM) and Buckingham''s theory. However, the sound speed in the uncooked sandy sediment obviously decreases (about 80%) both at high frequency and low frequency due to plenty of bubbles in existence. And the sound-speed dispersion performs a weak negative gradient at high frequency. Finally, a water-unsaturated Biot model is presented for trying to explain the decrease of sound speed in the sandy sediment with plenty of bubbles.  相似文献   

4.
In order to study the properties of sound-speed dispersion in a sandy sediment, the sound speed was measured both at high frequency(90–170 k Hz) and low frequency(0.5–3 k Hz) in laboratory environments. At high frequency, a sampling measurement was conducted with boiled and uncooked sand samples collected from the bottom of a large water tank. The sound speed was directly obtained through transmission measurement using single source and single hydrophone. At low frequency, an in situ measurement was conducted in the water tank, where the sandy sediment had been homogeneously paved at the bottom for a long time. The sound speed was indirectly inverted according to the traveling time of signals received by three buried hydrophones in the sandy sediment and the geometry in experiment. The results show that the mean sound speed is approximate 1710–1713 m/s with a weak positive gradient in the sand sample after being boiled(as a method to eliminate bubbles as much as possible) at high frequency, which agrees well with the predictions of Biot theory, the effective density fluid model(EDFM) and Buckingham's theory. However, the sound speed in the uncooked sandy sediment obviously decreases(about 80%)both at high frequency and low frequency due to plenty of bubbles in existence. And the sound-speed dispersion performs a weak negative gradient at high frequency. Finally, a water-unsaturated Biot model is presented for trying to explain the decrease of sound speed in the sandy sediment with plenty of bubbles.  相似文献   

5.
In this paper, modeling results are presented demonstrating that, using an ensemble of forward-scattering measurements from a rippled sand/water interface, it is possible to accurately estimate the plane wave, flat surface reflection coefficient. The modeling effort was carried out in preparation for a sediment acoustics experiment in 2004 (SAX04). Guided by the modeling results, forward-scattering measurements were made during SAX04. The measurement instrumentation and procedure are presented. The plane wave reflection coefficients derived from these measurements are given and compared to reflection coefficients calculated using a fluid model and an approximation to the Biot porous medium model for the sand known as the effective density fluid model (EDFM). The model reflection coefficients were calculated using acoustic parameters determined from environmental measurements carried out by other researchers involved in SAX04. The reflection coefficient data/model comparison indicates that the sand at the SAX04 site is most accurately viewed as a porous medium for acoustic modeling purposes.   相似文献   

6.
Acoustic backscattering from a sandy seabed was measured at a frequency of 5.5 kHz at a wide range of grazing angles. The measurement system used was the University of Miami's sonar tower, consisting of an omni-directional broadband source and two 16-channel hydrophone receiver arrays. A volume scattering model, which combines a fluid model with reflection/transmission coefficients derived from the Biot theory, is used. This model allows energy penetration into the bottom, calculations of the volume scattering at all grazing angles, and the frequency dependence of the sound speed in the water-saturated sediment. In the model, rather than assume sound-speed correlation length in sedimentary volume, core data were used to assimilate a 3-D fluctuation spectrum of the density. The numerical results showed excellent agreement with the measurement at lower grazing angles. We concluded that the interface roughness scattering was dominant at lower grazing angles, while the volume scattering is dominant at higher grazing angles at the sandy site. The border of the dominance of the interface and volume scattering was the so-called critical angle at this frequency. The frequency dependence of sound speeds is also discussed.  相似文献   

7.
The effects of refracting sediments on low-frequency sound propagation in range-dependent oceans are studied with parabolic equation models. The predictions of three sediment sound-speed models for low-frequency propagation are compared. Two factors that result in sediment sound-speed gradients are considered. Variation in static pressure due to the variation in the weight of overlying material causes sediment sound speed to increase with depth. The thermodynamic influence of the ocean results in large sound-speed gradients in a boundary layer in the uppermost layer of the sediment. The associated affects of attenuation on propagation are also considered. Both time-domain and frequency-domain results are presented  相似文献   

8.
To accurately characterize sound speed dispersion of shallow sediments in the Southern Yellow Sea, three types of sediments, i.e., silt, clayey silt, and silty clay, were selected to measure the sound speeds at 25–250?kHz. Over the frequency range, the sound speeds vary approximately from 1,536 to 1,565?m?s?1 in silt sediment, from 1,511 to 1,527?m?s?1 in clayey silt sediment, and from 1,456 to 1,466?m?s?1 in silty clay sediment. The sound speed exhibits a slow increase with frequency in a nearly linear gradient, but these three types of sediments have different sound speed dispersion characteristics. The silt sediment with relatively coarse grains has the most significant sound speed dispersion, while the sound speed dispersions of the two others are relatively weak. Comparison between the measured dispersions and the model predictions shows that the grain-shearing model can match the measured data at most of frequencies. Nevertheless, when the grain bulk modulus was assigned 3.2?×?1010?Pa according to relevant references, the Biot–Stoll model predictions were higher than the measured values at high frequencies; when it was assigned a relatively small value of 2.8?×?1010?Pa, the model predictions achieved optimal matching with the measured values.  相似文献   

9.
During the sediment acoustics experiment, SAX99, a hydrophone array was deployed in sandy sediment near Fort Walton Beach, Florida, in a water depth of 18 m. Acoustic methods were used to determine array element positions with an accuracy of about 0.5 cm, permitting coherent beamforming at frequencies in the range 11-50 kHz. Comparing data and simulations, it has been concluded that the primary cause of subcritical acoustic penetration was diffraction by sand ripples that were dominant at this site. These ripples had a wavelength of approximately 50 cm and RMS relief of about 1 cm. The level and angular dependence of the sound field in the sediment agree within experimental uncertainties with predictions made using small-roughness perturbation theory.  相似文献   

10.
During the 1999 sediment acoustics experiment (SAX99), porometric properties were measured and predicted for a well sorted, medium sand using standard laboratory geotechnical methods and image analysis of resin-impregnated sediments. Sediment porosity measured by laboratory water-weight-loss methods (0.372 /spl plusmn/ 0.0073 for mean /spl plusmn/1 standard deviation) is 0.026 lower than determined by microscopic image analysis of resin-impregnated sediments (0.398 /spl plusmn/ 0.029). Values of intrinsic permeability (m/sup 2/) determined from constant-head permeameter measurements (3.29 /spl times/ 10/sup -11/ /spl plusmn/ 0.60 /spl times/ 10/sup -11/) and by microscopic image analysis coupled with effective medium theory modeling (2.78 /spl times/ 10/sup -11/ /spl plusmn/ 1.01 /spl times/ 10/sup -11/) are nearly identical within measurement error. The mean value of tortuosity factor measured from images is 1.49 /spl plusmn/ 0.09, which is in agreement with tortuosity factor determined from electrical resistivity measurements. Slight heterogeneity and anisotropy are apparent in the top three centimeters of sediment as determined by image-based porometric property measurements. However, the overall similarity for both measured and predicted values of porosity and permeability among and within SAX99 sites indicates sediments are primarily homogeneous and isotropic and pore size distributions are fairly uniform. The results indicate that an effective medium theory technique and two-dimensional image analysis accurately predicts bulk permeability in resin-impregnated sands.  相似文献   

11.
12.
We propose an approximation technique with which the porous Biot model can be converted into a pseudo-fluid medium model, i.e., a medium represented by its sound speed and density. This technique begins from an analytic derivation of the reflection coefficient on a planar interface of fluid and porous ocean sediment. Invoking the low grazing angle approximation, useful for solving long range propagation problems, the pseudo-fluid medium is obtained. Alternate pseudo-fluid medium can be obtained through the weak frame approximation (Williams, J. Acoust. Soc. Am. 110, 2276-2281, 2001). In this paper, we discuss the accuracy and limitations of the low grazing angle approximation by numerically comparing the reflection coefficient to the full Biot model cases as functions of various Biot parameters, frequency, and water sound speed. The usefulness of the present low grazing angle approximated pseudo-fluid medium in ocean wave propagation modeling is demonstrated by comparing the transmission loss results with that of the full Biot model.  相似文献   

13.
As part of the effort to characterize the acoustic environment during the high frequency sediment acoustics experiment (SAX99), fine-scale variability of sediment density was measured by an in situ technique and by core analysis. The in situ measurement was accomplished by a newly developed instrument that measures sediment conductivity. The conductivity measurements were conducted on a three-dimensional (3-D) grid, hence providing a set of data suited for assessing sediment spatial variability. A 3-D sediment porosity matrix is obtained from the conductivity data through an empirical relationship (Archie's Law). From the porosity matrix, sediment bulk density is estimated from known average grain density. A number of cores were taken at the SAX99 site, and density variations were measured using laboratory techniques. The power spectra were estimated from both techniques and were found to be appropriately fit by a power-law. The exponents of the horizontal one-dimensional (1-D) power-law spectra have a depth-dependence and range from 1.72 to 2.41. The vertical 1-D spectra have the same form, but with an exponent of 2.2. It was found that most of the density variability is within the top 5 mm of the sediment, which suggests that sediment volume variability will not have major impact on acoustic scattering when the sound frequency is below 100 kHz. At higher frequencies, however, sediment volume variability is likely to play an important role in sound scattering.  相似文献   

14.
This paper proposes a method, based on the Biot model, for estimating the physical and acoustic properties of surficial ocean sediments from normal incidence reflection data acquired by a chirp sonar. The inversion method estimates sediment porosity from reflection coefficient measurements and, using the estimated porosity and the measured change in fast wave attenuation with frequency, estimates the permeability of the top sediment layer. The spectral ratio of echoes from the interface at the base of the upper sediment layer and from the sediment-water interface provides a measure of the change in attenuation with frequency. Given the porosity and permeability estimates, the Kozeny-Carman equation provides the mean grain size and the inversion method yields the acoustic properties of top sediment layer. The inversion technique is tested using chirp sonar data collected at the 1999 Sediment Acoustics Experiment (SAX-99) site. Remote estimates of porosity, grain size, and permeability agree with direct measurements of those properties.  相似文献   

15.
Measurement of Low-Frequency Sound Attenuation in Marine Sediment   总被引:1,自引:0,他引:1  
Marine sediment compressional wave attenuation and its frequency dependence have been active topics in the ocean acoustics community. To support the predictions of the frequency dependence of the sediment attenuation, experimental studies are essential for providing the observations of the sediment attenuation as a function of frequency in different environments, such as sediment type, source–receiver range, water depth, etc. This paper proposes an experimental method for estimating marine sediment attenuation at low frequencies in shallow water. The experimental geometry is short range between a vertical line array and multiple source depths to cover bottom reflections over a wide span of grazing angles. Single bounce bottom-reflected (BR) and sub-bottom-reflected signals are used in the analysis to obtain the best approximation of the sediment intrinsic attenuation. The attenuation estimating method is demonstrated on chirp data (1.5–4.5 kHz) collected on the New Jersey Continental Shelf during the 2006 Shallow Water Experiment (SW06). The data indicate a linear frequency dependence of the compressional wave attenuation for clay rich sediments on the outer shelf, and the estimated value is 0.15 dB/ $lambda$ within the frequency band of 1.75–3.15 kHz. The observation of small sound-speed dispersion of $sim$15 m/s over the frequency band is consistent with a linear frequency dependence of attenuation.   相似文献   

16.
为研究小尺度海底沉积物样品的声衰减特性,作者提出了用声学探针测量海底沉积物声波幅值的新方法,对沉积物样品扰动小,两个测量点的距离可小于波长,为海底沉积物微观声衰减测量提供了新手段。作者用小于波长的间隔逐点测量了沉积物的压缩波幅值,数据分析表明沿沉积物柱状样全长的声衰减满足指数衰减模型。目前主要用同轴差距衰减测量法获得海底沉积物声衰减数据,但该方法不能辨识声衰减模型,因此不同海区的测量结果难以建立联系。对此作者又提出用声吸收系数反演的幅值比与声衰减系数反演的R值(两种幅值比的比值)作评价依据,分析了垂直轴差距衰减测量法获得的南海海底沉积物声衰减测量数据,发现部分沉积物样品声衰减的R值远大于1,其声衰减不满足指数衰减模型。在声衰减满足指数衰减模型的条件下,用Hamilton的声衰减和频率经验公式预报的南海沉积物声衰减比与作者用声学探针测量海底沉积物所得的声衰减比对比,通过对R值分析得出Hamilton的声衰减和频率经验公式可以预报南海沉积物声衰减比的范围。作者提出的声学探针测量海底沉积物声衰减的方法的优点是既能获得声衰减数据又能辨识声衰减模型,不同海区测量的沉积物声衰减比可用R值建立联系。  相似文献   

17.
The acoustic properties of seafloor sediments are of great importance in geoacoustic modeling, detecting, and oceanic engineering. The methods based on the first arrival cycle are investigated to calculate sound speed and attenuation of sediment more precisely in in situ measurements. The comparison of different data analysis methods based on the first arrival cycle approach for in situ measurement results in the following conclusions: (1) the calculated methods can help find the effective cycles and reduce the errors in calculating sound speed and attenuation; (2) using this approach, the point judgment method-based data analysis has the same effectiveness as the cross-correlation method-based data analysis in calculating group sound speed and has the same effectiveness in calculating attenuation in the time domain as the spectrum analysis method-based data analysis has in calculating attenuation in frequency domain; and (3) measurement in water can help not only calibrate the transmitting distance but also can calculate the time delay for the sound speed and the attenuation loss in the transmitting process. Finally, theoretical calculation was used to calculate the measured results, indicating a good agreement, which supports that first arrival cycle-based calculated methods can be used to analyze the measured data and the effective density fluid model can be used to analyze more acoustic properties and invert several physical properties in this experiment.  相似文献   

18.
The problem of coherent reflection of an acoustic plane wave from a rough seabed with a randomly inhomogeneous sediment layer overlying a uniform elastic basement is considered in this analysis. The randomness of the sound field is attributable to the roughness of the seabed and the sound-speed perturbation in the sediment layer, resulting in a joint rough surface and volume scattering problem. An approach based upon perturbation theory, combined with a derived Green's function for a slab bounded above and below by a fluid and an elastic half-space, respectively, is employed to obtain an analytic solution for the coherent field in the sediment layer. Furthermore, a boundary perturbation theory developed by Kuperman and Schmidt (1989) is applied to treat the problem of rough surface scattering. A linear system is then established to facilitate the computation of the coherent reflection field. The coherent reflection coefficients for various surface roughness, sediment randomness, frequency, sediment thickness, and basement elasticity have been generated numerically and analyzed. It was found that the higher/larger size of surface and/or medium randomness, frequency, thickness, and shear-wave speed, the lower the coherent reflection. Physical interpretations of the various results are provided.  相似文献   

19.
An experiment was performed to measure sediment penetrating acoustic waves to test a model of acoustic propagation, which is based on Biot's theory. Independent geophysical measurements provided model input parameters. A parametric sound source was used to project a narrow beam pulse into a silty sand sediment at a shallow grazing angle. The sediment acoustic waves were measured by an array of buried sensors and processed to measure wave directions and speeds. Two acoustic waves were observed, corresponding to the fast and slow waves predicted by Biot's theory. Discrepancies between model predictions and measured acoustic waves were examined, deficiencies in the model identified, and strategies for improvement postulated. The permeability and bulk modulus of the solid frame were of particular interest  相似文献   

20.
Abstract

The high-frequency acoustic properties of seafloor sediments are very significant in seafloor study and underwater acoustic study field. In order to measure the sound speed and the attenuation for the small-scale sediment cores more accurately, this study developed a water coupled acoustic laboratory measurement system based on Richardson-Briggs technique. This method used the correlation comparison of waveforms received in sediment core and in identical reference tubes filled with water to measure sound speed and attenuation. The sound speed and attenuation of a clayey silt sediment sample were measured using the water coupled acoustic laboratory measurement system. This frequency dependence of the sound speed and attenuation showed that the clayey silt sediment has a weak positive sound speed dispersion, while the attenuation increases with a strong positive gradient within the measurement frequency range. This study also noted that the measured sound speed ratio match well with the empirical equations from literature. The measured attenuation factor data can fall in the Hamilton’s empirical prediction range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号