首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在南黄海某一典型的砂质海底区域,采用全向性声源和全向性接收水听器开展了频率范围为6-24 kHz的海底反向声散射测量。测量结果表明,在避免海面散射干扰并满足远场条件的情况下,本次实验获得了掠射角范围为18~80°的海底反向声散射强度,其数值为-41.1~24.4 dB。在有效掠射角范围内,声散射强度总体上随掠射角的增大呈现出增大趋势,但对于不同的频率,其变化趋势有所不同,反映出不同的散射机理。在20°、40°和60°掠射角处,在6-24 kHz的频率范围内反向声散射强度总体上呈现出正相关的频率依赖性,其线性相关斜率分别为0.2229 dB/kHz、0.5130 dB/kHz、0.1746 dB/kHz。在最大掠射角80°处,反向声散射强度未呈现出明显的频率相关性。  相似文献   

2.
Simultaneous measurements of low-frequency sound generated by an explosive source and backscattered from the seafloor in the eastern Mediterranean were made with two receiver configurations: a towed horizontal array and a vertical array. Images of the scattering features on the beam-time data of the horizontal array were useful in the interpretation of the scattering process and in estimating areas of scatterers received by the vertical array, and permitted scattering strengths to be estimated for both configurations. Images of the vertical array data provided information about the vertical arrival angles at the array from specific scatterers. At long range, the sound from the scattering features was received at grazing angles less than13deg. The scattering strengths for three features varied from - 47 to - 25 dB. The mean frequency dependence over the band 125 to 700 Hz varied from 0 to 2.5 dB/octave with greater variations occurring within smaller bands.  相似文献   

3.
To observe sound penetration into a sandy sediment, a buried acoustic receiving array was insonified by a wide band sound source carried by a remotely operated vehicle. A slanting array design was used to avoid scattering artifacts. This design overcame possible problems in previous experiments, in which scattering artifacts from the array structure could be mistaken for a propagating wave. The experiments took place in a sandy sediment off the West coast of Florida, as part of the sediment acoustics experiment, which is a multidisciplinary effort to study sediment acoustics. A coherent angle, speed, and height estimation process searched through a four-dimensional search space, of source height and elevation angle, wave speed, and propagation delay to find spherical acoustic wave fronts. Three main categories of waves were found: first refracted, dominant nonrefracted and evanescent. Later acoustic arrivals, a fourth category, remain to be analyzed. Their relative intensities effectively characterize the sediment penetrating acoustic energy. The acoustic sound pressure level of penetrating waves below the critical grazing angle was found to be greater than expected for a flat interface.  相似文献   

4.
Determinations of acoustic scattering strength for sand bottoms have been made at several different shallow-water areas under downward refracting sound propagation conditions in the frequency decade below 1 kHz. The measurements have been made using explosive sources detonated at mid-water depth and bottom-mounted vertical and horizontal hydrophone line arrays as receivers. The ubiquitous presence of multipaths in shallow water prevents a direct-path scattering geometry, and scattering strength must be extracted from the full reverberation field, which complicates the determination of bottom grazing angle dependence of scattering. The major focus of this paper has been the variation of scattering strength with frequency (integrated over participating bottom angles), though estimates of the angular dependence of scattering strength have been made using the vertical receiving array. Typically the integrated scattering strength for sand bottoms reported (and elsewhere) are found to decrease below 1 kHz and in some instances to exhibit a minimum in the several hundred hertz range. Sand bottom scattering strengths below 1 kHz are significantly lower than those predicted by the Mackenzie formula and the limited angular dependence determinations have been found to be consistent with Lambert's law  相似文献   

5.
High-frequency shallow-water reverberation statistics were measured from a smooth, sandy, featureless seafloor. The reverberation statistics are presented as a function of source frequency (20-180 kHz), grazing angle (30°, 20°, 9.5°), and source beamwidths (1.2°-2.75°). Generally, the reverberation statistics did not follow a Rayleigh fading model. The model dependence of the reverberation statistics exhibited a complex behavior that ranged from near Gaussian to beyond log-normal. The results show that small changes in the source frequency, grazing angles, and beamwidths caused large variations in the model dependence of the reverberation statistics  相似文献   

6.
Broad-band forward loss and backscattering measurements were made at low to moderate grazing angles in shallow water off San Diego using pulses extending from 1 to 6 kHz in bandwidth. For forward bounce measurements, these large bandwidths achieved time resolutions as small as 0.25 ms, and revealed fine-scale subbottom layering with separations down to approximately 50 cm. The forward loss values show large fluctuations (>10 dB) over translation distances of 20-50 m in some cases or between two measurement runs separated by a few hundred meters in other cases. This observation, along with associated variations in the extent and number of subbottom arrivals, indicates a distinct patchiness in surficial sediment type. Previous measurements made in nearby locales also evidenced strong variations in bottom loss, but lacked the spatial resolution to discern interface reflections from subbottom contributions. Broad-band backscattering strength measured at 20-40° grazing was quite homogeneous over the entire region, probably because the critical angle is below 20°, as inferred from forward loss measurements. Theory suggests that scattering at angles above critical is from subbottom inhomogeneities rather than boundary roughness. The grazing angle and frequency dependence of these backscattering data are relatively weak  相似文献   

7.
为了进行声相关计程仪(ACL)仿真研究,结合K irchhoff近似和R ay le igh-R ice近似散射模型,根据ACL垂直发射波束的特点,在掠射角90°附近,利用已发表的海底散射实验数据与APL-UW散射模型及L am bert公式的理论计算结果相比较,基于K irchhoff近似的散射模型与实验数据具有很好的一致性,仿真结果证明,由于不同类型海底沉积物引起的体积散射在上述情况下是可以被忽略的,这将大大简化进行声相关测速仿真研究的海底建模过程。  相似文献   

8.
As part of the sediment acoustics experiment 1999 (SAX99), backscattering from a sand sediment was measured in the 20- to 300-kHz range for incident grazing angles from 10/spl deg/ to 40/spl deg/. Measured backscattering strengths are compared to three different scattering models: a fluid model that uses the mass density of the sediment in determining backscattering, a poroelastic model based on Biot theory and an "effective density" fluid model derived from Biot theory. These comparisons rely heavily on the extensive environmental characterization carried out during SAX99. This environmental characterization is most complete at spatial scales relevant to acoustic frequencies from 20 to 50 kHz. Model/data comparisons lead to the conclusions that rough surface scattering is the dominant scattering mechanism in the 20-50-kHz frequency range and that the Biot and effective density fluid models are more accurate than the fluid model in predicting the measured scattering strengths. For 50-150 kHz, rough surface scattering strengths predicted by the Biot and effective density fluid models agree well with the data for grazing angles below the critical angle of the sediment (about 30/spl deg/) but above the critical angle the trends of the models and the data differ. At 300 kHz, data/model comparisons indicate that the dominant scattering mechanism may no longer be rough surface scattering.  相似文献   

9.
In order to study the properties of sound-speed dispersion in a sandy sediment, the sound speed was measured both at high frequency (90-170 kHz) and low frequency (0.5-3 kHz) in laboratory environments. At high frequency, a sampling measurement was conducted with boiled and uncooked sand samples collected from the bottom of a large water tank. The sound speed was directly obtained through transmission measurement using single source and single hydrophone. At low frequency, an in situ measurement was conducted in the water tank, where the sandy sediment had been homogeneously paved at the bottom for a long time. The sound speed was indirectly inverted according to the traveling time of signals received by three buried hydrophones in the sandy sediment and the geometry in experiment. The results show that the mean sound speed is approximate 1710-1713 m/s with a weak positive gradient in the sand sample after being boiled (as a method to eliminate bubbles as much as possible) at high frequency, which agrees well with the predictions of Biot theory, the effective density fluid model (EDFM) and Buckingham''s theory. However, the sound speed in the uncooked sandy sediment obviously decreases (about 80%) both at high frequency and low frequency due to plenty of bubbles in existence. And the sound-speed dispersion performs a weak negative gradient at high frequency. Finally, a water-unsaturated Biot model is presented for trying to explain the decrease of sound speed in the sandy sediment with plenty of bubbles.  相似文献   

10.
In order to study the properties of sound-speed dispersion in a sandy sediment, the sound speed was measured both at high frequency(90–170 k Hz) and low frequency(0.5–3 k Hz) in laboratory environments. At high frequency, a sampling measurement was conducted with boiled and uncooked sand samples collected from the bottom of a large water tank. The sound speed was directly obtained through transmission measurement using single source and single hydrophone. At low frequency, an in situ measurement was conducted in the water tank, where the sandy sediment had been homogeneously paved at the bottom for a long time. The sound speed was indirectly inverted according to the traveling time of signals received by three buried hydrophones in the sandy sediment and the geometry in experiment. The results show that the mean sound speed is approximate 1710–1713 m/s with a weak positive gradient in the sand sample after being boiled(as a method to eliminate bubbles as much as possible) at high frequency, which agrees well with the predictions of Biot theory, the effective density fluid model(EDFM) and Buckingham's theory. However, the sound speed in the uncooked sandy sediment obviously decreases(about 80%)both at high frequency and low frequency due to plenty of bubbles in existence. And the sound-speed dispersion performs a weak negative gradient at high frequency. Finally, a water-unsaturated Biot model is presented for trying to explain the decrease of sound speed in the sandy sediment with plenty of bubbles.  相似文献   

11.
Sea-surface acoustic backscattering measurements at moderate to high frequencies were performed in the shallow water of the south Yellow Sea, using omnidirectional spherical sources and omnidirectional hydrophones. Sea-surface backscattering data for frequencies in the 6–25 k Hz range and wind speeds of(3.0±0.5)and(4.5±1.0) m/s were obtained from two adjacent experimental sites, respectively. Computation of sea-surface backscattering strength using bistatic transducer is described. Finally, we calculated sea-surface backscattering strengths at grazing angles in the range of 16°–85°. We find that the measured backscattering strengths agree reasonably well with those predicted by using second order small-roughness perturbation approximation method with "PM" roughness spectrum for all frequencies at grazing angles ranged from 40° to 80°. The backscattering strengths varied slightly at grazing angles of 16°–40°, and were much stronger than roughness scattering. It is speculated that scattering from bubbles dominates the backscattering strengths at high wind speeds and small grazing angles. At the same frequencies and moderate to high grazing angles, the results show that the backscattering strengths at a wind speed of(4.5±1.0) m/s were approximately 5 d B higher than those at a wind speed of(3.0±0.5) m/s. However, the discrepancies of backscattering strength at low grazing angles were more than 10 d B. Furthermore the backscattering strengths exhibited no significant frequency dependence at 3 m/s wind speed. At a wind speed of 4.5 m/s, the scattering strengths increased at low grazing angles but decreased at high grazing angles with increasing grazing angle.  相似文献   

12.
The shallow refracted path through sea floor sediments plays a significant role in the transmission of acoustic energy at low frequencies. For bottom grazing angles of 90/spl deg/ to 25/spl deg/, low-frequency acoustic energy was observed to come from reflected paths. For bottom grazing angles of 25/spl deg/ to 10/spl deg/ the dominant source of low-frequency acoustic energy is from shallow refracted paths through the sediments. At angles less than 10/spl deg/, low-frequency acoustic energy is received from both the refracted and the reflected paths. The refracted path is possible because of the positive gradient within the sediment. The sudden emergence of the refracted arrival is related to the overall sound path length in the sediment and sediment absorption of sound. Since sediment absorption is directly proportional to frequency, only low-frequency energy is transmitted via this path. The refracted path may well exist where unconsolidated sediments of at least a few hundred feet are present.  相似文献   

13.
一种分层海底反向散射模型   总被引:1,自引:1,他引:0  
In order to predict the bottom backscattering strength more accurately, the stratified structure of the seafloor is considered. The seafloor is viewed as an elastic half-space basement covered by a fluid sediment layer with finite thickness. On the basis of calculating acoustic field in the water, the sediment layer, and the basement, four kinds of scattering mechanisms are taken into account, including roughness scattering from the water-sediment interface, volume scattering from the sediment layer, roughness scattering from the sediment-basement interface,and volume scattering from the basement. Then a backscattering model for a stratified seafloor applying to low frequency(0.1–10 kHz) is established. The simulation results show that the roughness scattering from the sediment-basement interface and the volume scattering from the basement are more prominent at relative low frequency(below 1.0 kHz). While with the increase of the frequency, the contribution of them to total bottom scattering gradually becomes weak. And the results ultimately approach to the predictions of the high-frequency(10–100 kHz) bottom scattering model. When the sound speed and attenuation of the shear wave in the basement gradually decrease, the prediction of the model tends to that of the full fluid model, which validates the backscattering model for the stratified seafloor in another aspect.  相似文献   

14.
An accurate model of acoustic interaction with sandy sediments is crucial to the application of SONAR in shallow-water environments. Because acoustic scattering from interface roughness plays a major role in the reverberation from and penetration into sandy sediments, it is imperative to be able to accurately measure the roughness of the sediment/water interface. An interface roughness measurement system has been developed in which a laser light sheet is projected onto the ocean floor. A resulting image can then be analyzed to determine the interface roughness. The system has been shown to achieve a height measurement error of less than 0.9 mm over a spatial frequency range of 15 to 60 cycles/m with about 0.5 mm standard deviation. These spatial frequencies correspond to acoustic Bragg frequencies of 11 to 45 kHz for backscattering applications. The error in wavelength was less than 5 mm with a standard deviation of about 1.0 mm. The system is inexpensive, easily deployable and automated in terms of data extraction. This system could greatly aid in determining the local interface profile for in situ acoustic scattering experiments.  相似文献   

15.
Tests of models for high-frequency seafloor backscatter   总被引:3,自引:0,他引:3  
The interaction of high-frequency sound with the seafloor is inherently a stochastic process. Inversion techniques must, therefore employ good stochastic models for bottom acoustic scattering. An assortment of physical models for bottom backscattering strength is tested by comparison with scattering strength data obtained at 40 kHz at three shallow water sites spanning a range of sediment types from fine silt to coarse sand. These acoustic data are accompanied by sediment physical property data obtained by core sample analysis and in situ probes. In addition, stereo photography was used to measure the power spectrum of bottom relief on centimeter scales. These physical data provided the inputs needed to test the backscatter models, which treat scattering from both the rough sediment-water interface and the sediment volume. For the three sites considered here, the perturbation model for scattering from a slightly rough fluid seafloor performs well. Volume scattering is predicted to be weak except at a site having a layer of methane bubbles  相似文献   

16.
A finite-difference time-domain (FDTD) method for scattering by one-dimensional, rough fluid-fluid interfaces is presented, modifications to the traditional FDTD algorithm are implemented which yield greater accuracy at lower computational cost. These modifications include use of a conformal technique, in which the grid conforms locally to the interface, and a correction for the numerical dispersion inherent to the FDTD algorithm, Numerical results are presented for fluid-fluid cases modeling water-sediment interfaces. Two different roughness spectra, the single-scale Gaussian roughness spectrum and a multiscale modified power-law spectrum, are used. The Gaussian results are calculated as a function of the dimensionless parameters kh and kl, where k is the wavenumber in water, h is the rms surface height, and l is the surface correlation length. For the modified power-law spectrum, statistical parameters consistent with an insonification frequency of 7.5 kHz are used. Results are compared with those obtained using an integral equation technique both for scattering from single-surface realizations and for Monte Carlo averages of scattering from an ensemble of surface realizations. Scattering strengths are calculated as a function of scattering angle for an incident angle of 70° (20° grazing). The results agree well over all scattering angles for the cases examined  相似文献   

17.
During the sediment acoustics experiment in 1999 (SAX99), several researchers measured sound speed and attenuation. Together, the measurements span the frequency range of about 125 Hz-400 kHz. The data are unique both for the frequency range spanned at a common location, and for the extensive environmental characterization that was carried out as part of SAX99. Environmental measurements were sufficient to determine or bound the values of almost all the sediment and pore water physical property input parameters of the Biot poroelastic model for sediment. However, the measurement uncertainties for some of the parameters result in significant uncertainties for Biot-model predictions. Here, measured sound-speed and attenuation results are compared to the frequency dependence predicted by Biot theory and a simpler "effective density" fluid model derived from Biot theory. Model/data comparisons are shown where the uncertainty in Biot predictions due to the measurement uncertainties for values of each input parameter are quantified. A final set of parameter values, for use in other modeling applications e.g., in modeling backscattering (Williams et al., 2002) are given, that optimize the fit of the Biot and effective density fluid models to the sound-speed dispersion and attenuation measured during SAX99. The results indicate that the variation of sound speed with frequency is fairly well modeled by Biot theory but the variation of attenuation with frequency deviates from Biot theory predictions for homogeneous sediment as frequency increases. This deviation may be due to scattering from volume heterogeneity. Another possibility for this deviation is shearing at grain contacts hypothesized by Buckingham; comparisons are also made with this model.  相似文献   

18.
As part of the effort to characterize the acoustic environment during the high frequency sediment acoustics experiment (SAX99), fine-scale variability of sediment density was measured by an in situ technique and by core analysis. The in situ measurement was accomplished by a newly developed instrument that measures sediment conductivity. The conductivity measurements were conducted on a three-dimensional (3-D) grid, hence providing a set of data suited for assessing sediment spatial variability. A 3-D sediment porosity matrix is obtained from the conductivity data through an empirical relationship (Archie's Law). From the porosity matrix, sediment bulk density is estimated from known average grain density. A number of cores were taken at the SAX99 site, and density variations were measured using laboratory techniques. The power spectra were estimated from both techniques and were found to be appropriately fit by a power-law. The exponents of the horizontal one-dimensional (1-D) power-law spectra have a depth-dependence and range from 1.72 to 2.41. The vertical 1-D spectra have the same form, but with an exponent of 2.2. It was found that most of the density variability is within the top 5 mm of the sediment, which suggests that sediment volume variability will not have major impact on acoustic scattering when the sound frequency is below 100 kHz. At higher frequencies, however, sediment volume variability is likely to play an important role in sound scattering.  相似文献   

19.
A two-scale roughness model for bottom backscattering (Novarini and Caruthers) was applied to multibeam sounder data (95 kHz) from Browns Bank (south of Yarmouth, Nova Scotia, Canada). In order to better understand frequency and incident angle dependence of backscattering, acoustic-calibration data (1-6 kHz) were collected from the same area and treated with the same model. The frequency and incident angle dependence of bottom backscattering in the multibeam and acoustic-calibration data were compared. Backscattering due to large-scale roughness was most relevant at near-normal incidence (<7°) and it was more dominant in the low-frequency range, and was strongly dependent on incident angle. Volume scattering was least dependent upon incident angle. It was the dominant factor at the large incident angle. Bragg scattering was the most significant over a very wide frequency range and was more important for high frequency (>5 kHz) and small incidence, but not near-normal incidence  相似文献   

20.
This paper presents fully polarimetric radar scattering measurements of low grazing angle sea clutter. The measurements were obtained at a three degree grazing angle using a high range resolution (1.5 m) X-Band polarimetric radar operated from a shore site overlooking the Chesapeake Bay. The radar employs pulse-to-pulse switching between orthogonal transmitted polarizations and simultaneously measures two orthogonally polarized components of the backscattered wave to obtain full polarimetric information about the scattering process. The complete Stokes matrix, computed by averaging successive realizations of the polarization scattering matrix, is used to obtain polarization signatures and to determine the polarization dependence of the clutter. Sea spike echoes are shown to be weakly polarized and to exhibit polarization signatures indicative of multiple independent scattering mechanisms. Clutter echoes in the absence of sea spikes are shown to be highly polarized and to exhibit polarization signatures indicative of a single dominant scattering mechanism  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号