首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
138Ce/142Ce isotope ratios in Cenozoic island arc volcanic rocks are reported for the first time, together with isotope ratios of Nd and Sr and abundances of REE, Ba and Sr. The island arc volcanics studies here are boninites from Chichijima, the Bonin Islands, and basalts and andesites from the Solomon Islands. REE patterns of the island arc volcanic rocks from the Solmon Islands and the Bonin Islands are confirmed to have negative Ce anomalies. It is also disclosed that the majority of these island arc volcanic rocks show mainly positive values for both Ce and Nd. It is shown that these Ce and Ce values can hardly be interpreted by simple mixing between MORB and oceanic or continental crustal rocks; the former have positive Nd and negative Ce and the latter have negative Ce and positive or negative Nd. Existence of sources having positive Ce and Nd values is strongly suggested. If the sources are assumed to have been fractionated from CHUR (chondritic uniform reservoir) at the early or middle Precambrian era, the sources from which the volcanics were derived are concluded to have kept concave REE patterns with larger (La/Ce)N and smaller (Nd/Sm)N ratios than chondritic values over a substantial period of time, until the time of Cenozoic magmatism forming island arc volcanic rocks in question. During the periods of the Cenozoic magmatic activities and their related events, Ce anomalies are considered to have been created. From Ce and Nd isotope ratios, however, it is difficult to determine which of the following processes was responsible for the Ce anomaly; the incorporation process of subducted oceanic crust into magma at the mantle or the slab dehydration and metasomatism process. Nevertheless, so far as Ce and Nd isotopic ratios are concerned, incorporation of oceanic sediments did not take place to any clearly detectable degree.  相似文献   

2.
The magma sources for granitic intrusions related to the Mesozoic White Mountain magma series in northern New England, USA, are addressed relying principally upon Nd isotopes. Many of these anorogenic complexes lack significant volumes of exposed mafic lithologies and have been suspected of representing crustal melts. Sm–Nd and Rb–Sr isotope systematics are used to evaluate magma sources for 18 felsic plutons with ages ranging from about 120 to 230 Ma. The possibility of crustal sources is further examined with analyses of representative older crust including Paleozoic granitoids which serve as probes of the lower crust in the region. Multiple samples from two representative intrusions are used to address intrapluton initial isotopic heterogeneities and document significant yet restricted variations (<1 in Nd). Overall, Mesozoic granite plutons range in Nd [T] from +4.2 to -2.3, with most +2 to 0, and in initial 87Sr/86Sr from 0.7031 to 0.709. The isotopic variations are roughly inversely correlated but are not obviously related to geologic, geographic, or age differences. Older igneous and metamorphic crust of the region has much lower Nd isotope ratios with the most radiogenic Paleozoic granitoid at Nd [180 Ma] of -2.8. These data suggest mid-Proterozoic separation of the crust in central northern New England. Moreover, the bulk of the Mesozoic granites cannot be explained as crustal melts but must have large mantle components. The ranges of Nd and Sr isotopes are attributed to incorporation of crust by magmas derived from midly depleted mantle sources. Crustal input may reflect either magma mixing of crustal and mantle melts or crustal assimilation which is the favored interpretation. The results indicate production of anorogenic granites from mantle-derived mafic magmas.  相似文献   

3.
Geochemical and Nd-Sr-Pb-O isotope data for a suite of syn-collisional (ca. 520 Ma) syenites associated with a major shear zone in the Proterozoic Damara orogen (Namibia) constrain their sources and petrogenesis. Major rock types from within and outside the shear zone range from highly potassic nepheline syenites to quartz syenites and were primarily generated by fractional crystallization from a mantle-derived alkaline magma. Even the most primitive samples show pronounced depletion in Nb, Ti, Sr and P on a primitive mantle-normalized diagram, indicating the involvement of a recycled crustal component in the source. Extrapolation of the Sr-Nd-Pb-O isotope composition of the syenites from within the shear zone back to a hypothetical parental melt with 10 wt% MgO suggests derivation from a moderately enriched lithospheric upper mantle (87Sr/86Sr: 0.705, Nd: –2, 18O: 6, 206Pb/204Pb: 19.40, 207Pb/204Pb: 15.82). More evolved quartz syenites show increasing 87Sr/86Sr ratios, increasing 18O values but less radiogenic Nd values and Pb isotopes with decreasing MgO, indicating assimilation of ca. 10% Archaean to Proterozoic local lower crust with unradiogenic Nd, high 87Sr/86Sr and low U/Pb. For samples from outside the shear zone a hypothetical parental melt with 10 wt% MgO has distinctly more radiogenic Sr but less radiogenic Nd isotopic composition (87Sr/86Sr: 0.712, Nd: –13), with strongly unradiogenic Pb isotope ratios (206Pb/204Pb: 17.40, 207Pb/204Pb: 15.50), suggesting another strongly enriched lithospheric mantle source for these rocks. Differentiated syenites from outside the shear zone show decreasing 87Sr/86Sr, increasing 18O values, more radiogenic Nd values and Pb isotope ratios with decreasing MgO indicating interaction with a lithospheric component with low Rb/Sr but high Sm/Nd and U/Pb.  相似文献   

4.
Initial Nd and Sr isotopic ratios have been measured for Cretaceous acidic and related intermediate rocks (24 volcanic and two plutonic rocks) from the Inner Zone of Southwest Japan (IZSWJ) to investigate the genesis of acidic magmas. The initial Nd and Sr isotopic ratios for these rocks show three interesting features: (1) Nd values for acidic rocks (+2 to –9) are negatively correlated with Sr values (+10 to +90) together with those for intermediate rocks ( Nd=+3 to -8; Sr=0 to +65). (2) The Nd values for silica rich rocks (>60% SiO2) correlate with the longitude of the sample locality, decreasing from west to east in a stepwise fashion: Four areas characterized by uniform Nd values are discriminated. (3) Low silica rocks (<60% SiO2) in a certain area have distinctly different Nd values from those of the high silica rocks in the same area.These results as well as those deduced from the additional samples collected, for comparison, from other provinces in Japan suggest that the acidic rocks can be formed neither by fractional crystallization processes from more basic magmas nor by crustal assimilation processes. The isotopic variations of the acidic rocks may reflect regional isotopic heterogeneity in the lower crust, and this heterogeneity may ultimately be attributed to the regional heterogeneity of the uppermost-mantle beneath the Japanese Islands.  相似文献   

5.
Initial Nd isotope ratios are determined for components of 1.9-1.7 Ga age continental crust in the Ketilidian terrain of South Greenland. The Ketilidian has well-documented ages of migmatization/metamorphism (1.80 Ga) and post-tectonic granitoid intrusion (1.76-1.74 Ga) from U-Pb zircon studies. The Nd results show that: (1) metatholeiites with chondritic 147Sm/144Nd have Nd=+4 to +5 at 1.8 Ga; (2) migmatites, paragneisses and an early granitoid have Nd close to zero; (3) post-tectonic norites have Nd +1.5, while spatially associated more-abundant granitoids have Nd=0 to +1. The metatholeiites show that a normal depleted mantle (Nd=+4 to +5) was present beneath this 1.9-1.7 Ga orogenic zone, as is the case in such environments today. However, metatholeiites are an insignificant part of the Ketilidian crust, and the bulk initial ratio of the whole terrain lies close to Nd=0. Rather than invoking depleted and undepleted mantle sources whose products did not mix, we infer the Nd=0 value to be caused by mixing of a component derived from depleted mantle (Nd=+ 4 to +5) with Archean crustal material (Nd=-9 to -13). As there are no proven relics of Archean crust beyond the border zone of the Ketilidian, and the Nd= 0 value appears to be a wellhomogenized feature, we propose that the Archean material was added in the form of sediments transported to the orogenic zone on oceanic crust. The Archean component comprised between 5 and 17% of the Ketilidian, and the most reasonable estimate is 10%. Thus this 1.9-1.7 Ga terrain consisted of 90% new mantle-derived crust.  相似文献   

6.
Twenty spinel peridotite xenoliths from Pliocene alkali basaltic tuffs and lavas of the western Pannonian Basin (Hungary) have been analysed for bulk rock major and trace elements, electron probe mineral compositions, and REE and Sr, Nd isotopes on separated and leached clinopyroxenes. The xenoliths are texturally diverse, including protogranular, porphyroclastic, equigranular and poikilitic textures which can generally be correlated with geochemical features. Protogranular xenoliths are relatively undepleted in Ca, Al, Ti and Na, whereas poikilitic xenoliths are more refractory. LREE-depleted patterns. and MORB-like Nd and Sr values are associated with protogranular peridotites. In contrast, xenoliths with complex textures are generally LREE-enriched. Much of the isotopic variation in the suite (Sr=–20.4 to +10.4, +Nd=+1.8 to +13.7) can be related to interaction between protogranular mantle and melts resembling the host alkali basalts, but a third (high Sr) component may be due to Miocene subduction beneath the region.  相似文献   

7.
The Wild Bight Group (WBG) is a sequence of early and middle Ordovician volcanic, subvolcanic and epiclastic rocks, part of the Dunnage Tectonostratigraphic Zone of the Newfoundland Appalachians. A detailed geochemical and Nd-isotopic study of the volcanic and subvolcanic rocks has been carried out to determine the geochemical characteristics of the rocks, interpret their palcotectonic environments and constrain their petrogenetic history. The lower and central stratigraphic levels of the WBG contain mafic volcanic rocks with island-arc geochemical signatures, including LREE-enriched are tholeiites with Nd(t) =-0.1 to +2.2 (type A-I), LREE-depleted arc tholeiites with Nd(t) =+5.6 to +7.1 (type A-II) and an unusual suite of strongly incompatible-element depleted tholeiites in which Nd(t) ranges from-0.9 to +4.6 and is negatively correlated with147Sm/144Nd (type A-III). High-silica, low-K rhyolites occur locally in the central part of the stratigraphy, associated with mafic rocks of arc affinity, and have Nd(t) =+4.7 to +5.4. The upper stratigraphic levels of the WBG dominantly contain rocks with non-arc geochemical signatures, including alkalic basalts with Nd(t) =+4.6 to +5.5 (type N-I), strongly LREE- and incompatible element-enriched tholeiites that are transitional between alkalic and non-alkalic rocks with Nd(t) =+4.4 to +7.0 (type N-II) and rocks with flat to slightly LREE-enriched patterns and Nd(t) =+5.1 to +7.4 (type N-III). Rocks with non-arc and arc signatures are locally interbedded near the stratigraphic type of the WBG. Nd-isotopic data in the type A-I and A-II rocks are generally compatible with mixing/partial melting models involving depleted mantle, variably contaminated by a subducted crustally-derived sediment. The petrogenesis of type A-III rocks must involve source mixing and multi-stage partial melting, but the details are not clear. The geochemistry and Nd isotope data for types N-I, N-II and N-III rocks are compatible with petrogenetic models involving variable partial melting of a source similar to that postulated for modern oceanic island basalts. Comparison of the WBG with modern analogues suggests a 3-stage developmental model: stage 1) island-arc volcanism (eruption of type mafic volcancs); stage 2) arc-rifting (continued eruption of type A-I, A-I, eruption of types A-II and A-III mafic volcanics and high-silica, low-K rhyolites); and stage 3) back-arc basin volcanism (continued minor eruption of type A-I basalts, eruption of types N-I, N-II, N-III basalts). Stages 1 and 2 volcanism involved partial melting of subduction contaminated mantle, while stage 3 volcanism utilized depleted-mantle sources not affected by the subducting slab. This model provides a basis for interpreting coeval sequences in central Newfoundland and a comparative framework for some early Paleozoic oceanic volcanic sequences elsewhere in the Appalachian orogen.  相似文献   

8.
Granulite-facies xenoliths from an Upper Devonian lamprophyre dyke near Tangier, Nova Scotia, provide new information about the lower crust in the Meguma Zone. Two mineralogically and chemically distinet groups of xenoliths occur. Both groups contain quartz+feldspar+biotite+Fe–Ti oxides+sulfides. In addition, group A contains garnet+graphite±[aluminosilicates+spinel±sapphirine (hight Al2O3 subgroups A1 and A2)] or [clinopyroxene+sphene+apatite (high CaO sub-group A3)]. Group B has highly variable proportions of orthopyroxene (B1), clinopyroxene (B2), and amphibole (B3). Trace-element contents of the highly aluminous xenoliths compare closely with average to upper crustal model compositions and are similar in many aspects to other undepleted granulite-facies rocks. LowP-T sedimentary assemblages of quartz-chlorite-clay minerals-calcite-albite or paragonite can account for the compositions of group A xenoliths. Within group B, a high-MgO (MgO>13 wt%) subgroup with high transition-metal contents, and low-MgO (MgO<9 wt%) sub-groups with higher LIL (large-ion-lithophile) element contents exist. Although the rare-earth and high-field-strength elements indicate a tholeiitic or low-K calc-alkaline chemistry, the LIL elements are as high as those from high-K calc-alkaline volcanic are rocks. Isotopically, group A ranges from Ndt=-2.56 to-0.80 and87Sr/86Sr t =0.7046 to 0.7182 fort=370 Ma. For group B these values are +1.45 to +5.33 and 0.7028 to 0.7048, respectively. Model ages (TCHUR) are correspondingly low and are tightly constrained (544±52 Ma). These young ages contrast with the middle Proterozoic Nd model ages of the overlying Meguma Zone low-grade flysch. This time-inverted stratigraphy appears to be the product of a tectonic break between a younger autochthonous Tangier lower crust (Avalon), and an older allochthonous Meguma Group upper crust.  相似文献   

9.
Nd- and Sr-isotopic data are reported for lavas from 23 submarine and 3 subaerial volcanoes in the northern Mariana and southern Volcano arcs. Values of Nd range from +2.4 to +9.5 whereas 87Sr/86Sr ranges from 0.70319 to 0.70392; these vary systematically between and sometimes within arc segments. The Nd-and Sr-isotopic compositions fall in the field of ocean island basalt (OIB) and extend along the mantle array. Lavas from the Volcano arc, Mariana Central Island Province and the southern part of the Northern Seamount Province have Nd to +10 and 87Sr/86Sr=0.7032 to 0.7039. These are often slightly displaced toward higher 87Sr/86Sr at similar Nd. In contrast, those lavas from the northern part of the Mariana Northern Seamount Province as far north as Iwo Jima show OIB isotopic characteristics, with Nd and 87Sr/86Sr=0.7035 to 0.7039. Plots of 87Sr/86Sr and Nd versus Ba/La and (La/Yb)n support a model in which melts from the Mariana and Volcano arcs are derived by mixing of OIB-type mantle (or melts therefrom) and a metasomatized MORB-type mantle (or melts therefrom). An alternate interpretation is that anomalous trends on the plots of Nd- and Sr-isotopic composition versus incompatible-element ratios, found in some S-NSP lavas, suggest that the addition of a sedimentary component may be locally superimposed on the two-component mixing of mantle end-members.  相似文献   

10.
Isotopic ratios of Nd and Sr have been measured in a suite of samples spanning most of the exposed stratigraphy of the Skaergaard intrusion in order to detect and quantify input (such as assimilated wallrock and fresh magma) into the magma chamber during crystallization. Unlike 18O and D, Nd and Sr isotope ratios do not appear to have been significantly affected by circulation of meteoric waters in the upper part of the intrusion. Variations in initial 87Sr/86Sr and Nd suggest that the Skaergaard magma chamber was affected during its crystallization by a small amount (2%–4%) of assimilation of Precambrian gneiss wallrock (high 87Sr/86Sr, low Nd) and possibly recharge of uncontaminated magma. Decreases in Nd and increases in 87Sr/86Sr during the early stages (0%–30%) of crystallization give way to approximately unchanging isotopic ratios through crystallization of the latest-deposited cumulates. Modelling of assimilation-fractional crystallization-recharge processes using these data as constraints shows that the assimilation rate must have been decreasing throughout crystallization. In addition, the isotope data allow replenishment by an amount of uncontaminated magma equal to 20%–30% of the total intrusion mass, occurring either continuously or in pulses over the first 75% of crystallization. Comparison of the recharge models with published Mg/(Mg+Fe2+) data from Skaergaard cumulates shows that the modelled replenishment rates are not inconsistent with available major element data, although significant recharge during the final 25% of crystallization can be ruled out. The isotope data show that the Skaergaard magma could have incorporated only a small amount of the gneiss that it displaced from the floor of the chamber; assimilation appears to have taken place primarily across a partially molten zone that formed at the roof from the wallrock that was dislodged during emplacement. In the latest stages of crystallization (>75% crystallized), the Skaergaard magma may have become stratified into two separately-convecting layers, effectively insulating Layered Series cumulates from further contamination.  相似文献   

11.
Sm-Nd whole-rock and mineral data for the Kings River ophiolite define two isochrons of 485±21 Ma and 285±45 Ma age with Nd (483)= +10.7±0.5 and Nd (285)= +9.9±1.1, respectively. The 483 Ma isochron is defined by samples of the main igneous construct. Samples from crosscutting diabase dikes and flaser gabbro sheets within the peridotite unit yield the 285 Ma isochron. The 483 Ma data provide the first evidence of lower Paleozoic oceanic crust in the Sierran ophiolite belt. New U-Pb analyses of zircons from a plagiogranite lying on the 483 Ma Sm-Nd isochron yield upper and lower intercepts with the concordia of 430 –60 +200 and 183±15 Ma. Published zircon ages have underestimated the primary age of the ophiolite by 200–300 m.y. due to the effects of polymetamorphism. The 483 Ma samples have initial 87Sr/86Sr=0.7023–0.7030, 206Pb/204Pb=17.14–17.82, 207Pb/204Pb=15.37–15.52, 208Pb/204Pb=36.80–37.38. The 285 Ma samples have similar initial 87Sr/86Sr, but more radiogenic Pb. The range in Sr and Pb compositions is probably due to introduction of radiogenic Sr and Pb during multiple post-emplacement metamorphic events. The high Nd, low 87Sr/86Sr, 206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb of the least disturbed samples are clearly diagnostic of a midocean ridge origin for the 483 Ma portion of the ophiolite. Igneous activity at 285 Ma is thought to have occurred in an arc or back-arc setting, or perhaps along a leaky transform. The initial Nd (483)=+10.7 is indistinguishable from that of the similar age Trinity Peridotite (Jacobsen et al. 1984). This value is the highest yet reported for the Mesozoic or Paleozoic depleted mantle and requires either a mantle source that was depleted 850 m.y. earlier than average or a source more highly depleted than average. Alternatively, if such values were more typical of the early Paleozoic mantle than is currently thought, then there has been little evolution of the depleted mantle over the last 500 m.y. This requires that the modern mantle has been refluxed by material with low Nd, such as continental crust.Division Contribution # 4302 (530)  相似文献   

12.
Strong compositional zonation of the 34 Ma Grizzly Peak Tuff in west-central Colorado is attended by non-monotonic trends in O, Sr, Nd, and Pb isotope ratios. Fiamme from the tuff cluster in chemical compositions and petrographic characteristics, indicating the magma chamber was not continuously zoned but consisted of at least seven compositional layers. The most mafic magma erupted (57 wt% SiO2, fiamme group 7) had 18O= +8.5, initial 87Sr/86Sr=0.7099, Nd, and 206Pb/204Pb=17.80, suggesting that the magma was produced by 50% fractional crystallization of basaltic magma that assimilated 20 to 40 wt% Proterozoic crust. Isotopic compositions of more evolved parts of the chamber (up to 77 wt% SiO2, fiamme group 1) depart from the mafic base-level composition of fiamme group 7, and reflect late-stage assimilation that occurred largely after compositional layering was established. 18O values decrease by as much as 1.5 from fiamme groups 7 through 4, indicating assimilation of hydrothermally altered roof rocks. 18O values abruptly inerease by up to 1.5 between fiamme groups 4 and 3. This discontinuity is interpreted to reflect evolution in an asymmetric chamber that had a split-level roof, allowing assimilation of wall rocks that varied vertically in degree of hydrothermal alteration. This chamber geometry is also supported by collapse structures in the caldera. Late-stage assimilation of heterogeneous wall rocks is also indicated by variations in Sr, Nd, and Pb isotope ratios. Large Sr isotope disequilibrium exists between some phenocrysts and whole-rock fiamme, and initial 87Sr/86Sr ratios in phenocrysts are as high as 0.7170. values regularly increase from-13.0 in fiamme group 7 to-11.3 in fiamme group 3, and then decrease to-12.2 in fiamme group 1. 206Pb/204Pb ratios generally increase from 17.80 to 17.94 for fiamme groups 7 through 1. The rhyolitic parts of the Grizzly Peak Tuff have isotopic compositions that could be attributed to a purely crustal melt. It is unlikely, however, that the mafic parts of the tuff were generated by crustal melting, and the compositional and isotopic variations across the entire zonation of the tuff are best explained by fractional crystallization of mantle-derived magmas, accompanied by extensive assimilation of Proterozoic crust.  相似文献   

13.
Obduction of the late Ordovician Solund-Stavfjord Ophiolite Complex (443±3 Ma), west Norwegian Caledonides, involved generation and high-level emplacement of granitic and granodioritic dikes and plutons. Initial 87Sr/86Sr ratios in the granites are low (0.7042–0.7059), suggesting either a mantle component or a Rb-poor crustal source. Initial Nd (Nd(t)) ranges from-0.8 to-8.8, indicating that the granites represent recycling of old crustal rocks, which is supported by Precambrian inheritance in zircons from two of the studied granites. I argue that the Rb-Sr and the Sm-Nd isotope systems are decoupled in the sense that the Sr-and the Nd-isotopes derive their dominant signals from two different sources, a mantle source and a crustal source respectively. The granites are metaluminous to peraluminous and typically have high Sr, Ba and Na2O/K2O ratios. SiO2 contents range from 66 to 74 wt%. REE abundances are highly variable; the La contents range from 80 to 200 times chondrite, and are inversely correlated with the contents of SiO2. The concentration of Nd in the granites decreases asymptotically with decreasing Nd(t) suggesting fractional crystallization of accessory phases and assimilation of continental crust. This argument is supported by the presence of partly dismembered xenoliths in the granites with Nd(t)-values that are significantly lower than Nd(t)-values in the host granite. The following models are suggested for the granites. When the ophiolite complex obducted, an outboard subduction zone approached the continental margin, and subduction-related magmas accumulated beneath the continental margin, and probably intruded the overlying eugeosynclinal deposits. The mantle-derived magmas most likely evolved to granitoid composition by assimilation of these eugeosynclinal sediments and by fractional crystallization of amphibole, feldspar, sphene, and allanite. Alternatively, but less likely, the heat content of the mantle-derived magmas caused extensive melting of immature graywackes and calc-alkaline volcaniclastic rocks in the deepest portions of the eugeosyncline. Either way, during ascent, the compositions of the granitic melts were modified by fractional crystallization of LREE-rich phases and by assimilation of continental metasediments.  相似文献   

14.
The Coldwell Complex represents the largest alkaline intrusion associated with the Midcontinent Rift System in North America. This complex contains a plethora of rock types that have previously been subdivided into three intrusive centers. A detailed U-Pb zircon/baddeleyite age study of five samples indicates that the majority of the complex was emplaced into cold Archean crust at 1108±1 Ma and likely experienced a rapid cooling history. These data, combined with published U-Pb zircon/baddeleyite results for other rift related igneous activity, document the contemporaneous production and emplacement of tholeiitic and alkaline magmas at the onset of rifting. The Sr-Nd-Pb isotopic compositions of selected minerals from different phases of the complex display considerable scatter that is best explained by the presence of magmas with different initial isotopic compositions. The initial Sr and Nd isotopic compositions for clinopyroxene and plagioclase from one of the earliest gabbro phases (Nd=+0.5 to +1.6; Sr=+2.4 to +3.1) are identical to published data for primitive olivine tholeiites from the rift and indicate that the majority of magmas, both tholeiitic and alkaline, have a uniform, nearly chondritic isotopic composition. This very reproducible isotopic composition for rift magmatism can be explained by the dominance of a well-mixed mantle plume signature in magma genesis. The shift in isotopic compositions observed for the more evolved granite and syenite samples (Nd=–4.6 to –6.4; Sr=+10.2 to +13.8) combined with a less radiogenic Pb isotopic signature is consistent with derivation of these magmas from or interaction with an older granulite facies lower crust. The chondritic isotopic signature typical of most MRS volcanic and plutonic rocks is quite distinct from published results on associated carbonatites (Nd=+2.1 to +4.5; Sr=–8.0 to 2212;11.5) indicating the presence of at least two distinct subcontinental mantle isotopic reservoirs in this region.  相似文献   

15.
New single crystal diffraction data for natural and heat-treated anorthite crystals (Angel et al. 1990) allow the determination of their states of Al/Si order in terms of a macroscopic order parameter,Q OD , for the transition. Numerical values ofQ OD obtained from estimates of site occupancies are shown to vary with the scalar spontaneous strain, s , as s Q OD 2 , and with the ratio of the sums of typeb (superlattice) reflections and typea (sublattice) reflections asI b/I a Q OD 2 . An empirical calibration for pure anorthite is obtained giving varies between 0.92 and 0.87 in samples equilibrated at T1300° C, but then falls off relatively rapidly with increasing temperature, reaching 0.7 near the melting point ( 1557° C). The observed temperature dependence does not conform to the predictions of the simplest single order parameter models; coupling ofQ OD withQ of the transition is suspeeted.  相似文献   

16.
Hf isotope systematics in granitoids from the central and southern Alps   总被引:1,自引:0,他引:1  
First initial-Hf isotopic compositions for samples from the Alpine domain are presented and discussed. The results are mainly based on zircons and a few whole rocks with ages between 30 and 450 Ma. Of those so far analyzed, the present-day Hf isotopic compositions of zircons from non-metamorphic and metamorphic granitoid rocks vary between 0.2824 and 0.2829. Zircon populations with concordant U-Pb ages have much higher initial 176Hf/177Hf than inversely discordant populations which have been contaminated with older zircons containing less radiogenic Hf. Correlated Nd-Hf crustal-residence ages have been found involving model parameters of Hf/Nd=f(Lu/Hf)/f(Sm/Nd) 1.6 for the depleted mantle and f(Lu/Hf)/f(Sm/Nd) 1.2 for elemental fractionations in the crust. The model implies 176Lu/177Hf of 0.017 for the bulk crust. It is suggested that the granitoid rocks are the result of mixing of subcontinental mantle-derived magmas with 1.7 Ga old recycled and partially molten crustal material. The continental/mantle component mass-ratio values for the granitoids range between 0.3 and 2.  相似文献   

17.
The Ascutney Mountain complex of eastern Vermont, USA, is a composite epizonal pluton of genetically related gabbro to granite intrusives. Nd isotopic data are reported for mafic rocks, granites, and nearby country rock. The parental mafic magma producing the complex 122 m.y. ago had 87Sr/86Sr=0.7039, 143Nd/144Nd=0.512678 ( Nd=+3.8) and 18O=6.1, indicating a mantle source with time-integrated lithophile element depletion. Uniform initial radiogenic isotope ratios for granites, which are undistinguishable from those for the most primitive gabbro, suggest that the granite magma evolved from the mafic magma without crustal contamination and that the increase in 18O, to about 7.8, is the result of fractional crystallization. Mafic rocks show a large range in initial 143Nd/144Nd ratio, from about 0.51267 to 0.51236 ( Nd= +3.7 to –2.5), which is correlated with elevated 87Sr/86Sr ratios and 18O. These data substantiate the production of mafic lithologies by fractional crystallization of the parental magma accompanied by assimilation of up to about 50% crust. The local country rocks include gneiss and schist and assimilation involved representatives of both rock types. The isotopic and chemical relationships preclude derivation from a single batch of magma undergoing contamination and indicate that a large magma body at depth evolved largely by fractionation with batches of melt issued from this chamber being variably contaminated at higher levels or at the level of emplacement.The Precambrian gneisses of the Chester dome and overlying lower Paleozoic schists have essentially identical Nd isotope systematics which suggest a crustal formation age of about 1.6. b.y. The parental sediments for the schists were apparently derived from a protolith similar to the gneissic basement without appreciable Sm/Nd fractionation.  相似文献   

18.
Nd, Sr and O isotopic data were obtained from silicic ash-flow tuffs and lavas at the Tertiary age (16–9 Ma) Timber (Mountain/Oasis Valley volcanic center (TMOV) in southern Nevada, to assess models for the origin and evolution of the large-volume silicic magma bodies generated in this region. The large-volume (>900 km3), chemically-zoned, Topopah Spring (TS) and Tiva Canyon (TC) members of the Paintbrush Tuff, and the Rainier Mesa (RM) and Ammonia Tanks (AT) members of the younger Timber Mountain Tuff all have internal Nd and Sr isotopic zonations. In each tuff, high-silica rhyolites have lower initial Nd values (1 Nd unit), higher87Sr/86Sr, and lower Nd and Sr contents, than cocrupted trachytes. The TS, TC, and RM members have similar Nd values for high-silica rhyolites (-11.7 to -11.2) and trachytes (-10.5 to -10.7), but the younger AT member has a higher Nd for both compositional types (-10.3 and -9.4). Oxygen isotope data confirm that the TC and AT members were derived from low Nd magmas. The internal Sr and Nd isotopic variations in each tuff are interpreted to be the result of the incorporation of 20–40% (by mass) wall-rock into magmas that were injected into the upper crust. The low Nd magmas most likely formed via the incorporation of low 18O, hydrothermally-altered, wall-rock. Small-volume rhyolite lavas and ash-flow tuffs have similar isotopic characteristics to the large-volume ash-flow tuffs, but lavas erupted from extracaldera vents may have interacted with higher 18O crustal rocks peripheral to the main magma chamber(s). Andesitic lavas from the 13–14 Ma Wahmonie/Salyer volcanic center southeast of the TMOV have low Nd (-13.2 to -13.8) and are considered on the basis of textural evidence to be mixtures of basaltic composition magmas and large proportions (70–80%) of anatectic crustal melts. A similar process may have occurred early in the magmatic history of the TMOV. The large-volume rhyolites may represent a mature stage of magmatism after repeated injection of basaltic magmas, crustal melting, and volcanism cleared sufficient space in the upper crust for large magma bodies to accumulate and differentiate. The TMOV rhyolites and 0–10 Ma old basalts that erupted in southern Nevada all have similar Nd and Sr isotopic compositions, which suggests that silicic and mafic magmatism at the TMOV were genetically related. The distinctive isotopic compositions of the AT member may reflect temporal changes in the isotopic compositions of basaltic magmas entering the upper crust, possibly as a result of increasing basification of a lower crustal magma source by repeated injection of mantle-derived mafic magmas.  相似文献   

19.
Young volcanic rocks from different sections of the Aleutian Islands-Alaska Peninsula Arc have been measured for 87Sr/86Sr, 143Nd/144Nd and some trace elements. We found the 143Nd/144Nd to be highly restricted in range ( Nd=6 to 7) and low as compared to midocean ridge ba-salts (MORB). This indicates that the source of the Aleutian Arc magmas is different from MORB and remarkably isotopically homogeneous with respect to Nd. The range reported here for arc rocks is substantially smaller than found by other workers. However, the Sr isotope ratios vary considerably ( Sr=–24 to –14). Those samples from small volcanic centers north of the main arc (second arc) are characterized by low Sr. Our data in combination with previous studies suggest that there are slight geochemical differences between discrete sections of the arc. The general uniformity of Nd isotope ratios are thought to be the surface expression of an efficient mixing or homogenization process beneath the arc plate, but which still causes a wide dispersion in Sr isotopic composition.To relate the arc rocks to the broader tectonic setting and to identify possible sources of arc magmas, measurements were done on volcanic and sedimentary rocks from the North Pacific/Bering Sea area. Alkali basalts from the back-arc islands St. George, Nunivak and St. Lawrence and alkali-rich tholeiites from the fore-arc have Nd=+4 to +9 and are correlated on the Sr- Nddiagram parallel to the mantle array but shifted to lower Sr. These samples are thought to be isotopically representative of the mantle transported to that region. A tholeiitic basalt from the Kamchatka Basin ocean floor (back-arc), however, yielded typical MORB values ( Nd=10, Sr=–24). Composite sediment samples were made from DSDP cores in the Aleutian Abyssal Plain, Gulf of Alaska and the Alka Basin which represent mixtures of continentally and arc-derived materials. These composites have intermediate Nd isotopic ( Nd= –2 and +2) and high Sr isotopic values ( Sr=+9 and +37). These data show that possible source materials of the Aleutian Arc volcanics are isotopically different from and much more heterogeneous than the arc rocks themselves.On the basis of this study and of literature data, we developed a set of alternative models for volcanic arc magma generation, based on the restricted range in Nd and the wider range in Sr for arc rocks. Different isotopic and trace element characteristics found in different arcs or arc sections are explained by varying mixing proportions or concentrations in source materials. The basic observations require rather strict mixing ratios to obtain constant Nd. The preferred model is one where the melting of subducted oceanic crust is controlled by the amount of trapped sediment with the melting restricted to the upper part of the altered basaltic layer. Homogenization within the upper part of the oceanic crust is brought about by hydrothermal circulation attending dewatering of the slab during subduction and possibly some oxygen exchange of the magmas on ascent.Division Contribution Number 3849 (411)  相似文献   

20.
The Sr-Nd isotopic data for selected granitoids of the Central Bohemian Pluton show a broad negative correlation with the total range of (87Sr/86Sr)330 = 0.7051–0.7129 and Nd 330 = +0.2 to –8.9. The older intrusions have more depleted Sr-Nd compositions and calc-alkaline geochemistry (Sázava suite), whereas the younger intrusions shift towards K-rich calc-alkaline (Blatná suite) and shoshonitic rocks (íany and ertovo bemeno suites) with more evolved isotopic signatures. The distribution of the data is interpreted as reflecting a diversity of sources and processes, rather than a single progressive crustal contamination trend. The Sázava suite could have originated by partial melting of metabasites, or of a mantle source with an isotopic composition close to bulk earth, or by hybridization of crustally-derived tonalitic and mantle-derived magmas. Variation within the Blatná suite is modelled by mixing between a moderately enriched [(87Sr/86Sr)330 0.708, Nd 330 –3] mantle component with either an isotopically evolved metasedimentary component, or with more evolved magmas of the suite. The íany suite was most probably produced by partial melting of peraluminous lithologies, possibly of the adjacent Moldanubian unit. The ertovo bemeno suite evolved from strongly enriched mantle-derived magmas [(87Sr/86Sr)3300.7128, Nd 330 –7], either through closed-system fractional crystallization or interaction with magma corresponding to leucogranites of the Central Bohemian Pluton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号