首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present investigation focuses on population genetic structure analysis of the endangered giant clam species Tridacna maxima across part of the Red Sea,with the main aim of assessing the influence of postulated potential barriers to gene flow(i.e.,particular oceanographic features and marked environmental heterogeneity)on genetic connectivity among populations of this poorly dispersive bivalve species.For this purpose,a total of 44 specimens of T.maxima were collected from five sampling locations along the Saudi Arabian coast and examined for genetic variability at the considerably variable mitochondrial gene cytochrome c oxidase I(COI).Our results revealed lack of population subdivision and phylogeographic structure across the surveyed geographic spectrum,suggesting that neither the short pelagic larval dispersal nor the various postulated barriers to gene flow in the Red Sea can trigger the onset of marked genetic differentiation in T.maxima.Furthermore,the discerned shallow COI haplotype genealogy(exhibiting high haplotype diversity and low nucleotide diversity),associated with recent demographic and spatial expansion events,can be considered as residual effect of a recent evolutionary history of the species in the Red Sea.  相似文献   

2.
竹荚鱼(Trachurus japonicus)是中国近海主捕鱼种之一, 在海洋食物网中扮演了重要角色, 然而环境污染和过度捕捞导致其出现种群数量衰退以及个体趋于小型化等现象。为了解中国近海竹荚鱼的种群遗传格局, 文章以线粒体DNA控制区为遗传标记研究了东海大陆架、福建近海和南海北部湾竹荚鱼群体的遗传结构以及种群历史动态。结果表明, 中国近海竹荚鱼整体呈现高单倍型多态性(Hd=0.998±0.001)和高核苷酸多态性(π=0.01259±0.00041)的遗传多样性特征。单倍型网络图呈现为星形辐射状的单一谱系, 利用最大似然法构建的系统进化树也未发现谱系分化。不同海区地理群体的分子方差分析显示东海群体和南海北部湾群体间无遗传分化, 遗传变异主要来源于群体内部(99.39%)。中性检验和核苷酸歧点分布分析结果暗示各海区竹荚鱼群体(东海、南海北部湾)以及整个群体均经历过近期的种群扩张。中国近海竹荚鱼群体呈现为遗传均匀的种群结构, 可以作为一个单一的种群加以管理, 人类高强度捕捞压力尚未影响其种群恢复潜力。  相似文献   

3.
Marine organisms with a pelagic stage are often assumed to display minor population structure given their extended larval development and subsequent high long‐distance dispersal ability. Nonetheless, considerable population structure might still occur in species with high dispersal ability due to current oceanographic and/or historical processes. Specifically, for the wider Caribbean and Gulf of Mexico, theoretical and empirical considerations suggest that populations inhabiting each of the following areas should be genetically distinct: Panama, Belize, Southwest Florida (Tampa), and Southeast Florida (Fort Pierce). This study tests the hypothesis of significant genetic differentiation in Palaemon floridanus populations across the wider Caribbean and Gulf of Mexico. Population level comparisons were conducted using sequences of the mtDNA COI. In agreement with predictions, AMOVA and pairwise FST values demonstrated population differentiation among most pairs of the studied populations. Only Panama and East Florida populations were genetically similar. An isolation‐with‐migration population divergence model (implemented in IMA2) indicated that population divergence with incomplete lineage sorting can be invoked as the single mechanism explaining genetic dissimilarity between populations from the east and west coast of Florida. Historical demographic analyses indicated demographic expansion of P. floridanus in some localities [recent in Panama and ancient in East Florida and the wider Caribbean (entire dataset)] but constant population in other localities (in Belize and West Florida). This study rejects the idea of panmixia in marine species with high long‐distance dispersal ability. Contemporary and historical processes might interact in a complex manner to determine current phylogeographic patterns.  相似文献   

4.
The size structure of coral populations is the culmination of key demographic events, including recruitment, mortality and growth, thereby providing important insights to recent ecological dynamics. Importantly, the size structure of corals reflects both intrinsic (inherent life-history characteristics) and extrinsic (enhanced mortality due to chronic or acute disturbances) forcing on local populations, enabling post-hoc assessment of spatial and taxonomic differences in susceptibility to disturbance. This study examined the size structure of four locally abundant corals (Acropora downingi, Favia pallida, Platygyra daedalea, and massive Porites spp.) in two regions of the Persian Gulf: the southern Gulf (Dubai and Abu Dhabi) and eastern Gulf (western Musandam). Significant and consistent differences were apparent in mean colony sizes and size-distributions between regions. All corals in the southern Gulf were significantly smaller, and their size structure positively skewed and relatively more leptokurtic (i.e., peaky) compared to corals in the eastern Gulf. Sea surface temperatures, salinity, and the recent frequency of mass bleaching are all higher, in the southern Gulf, suggesting higher mortality rates and/or slower growth in these populations. Differences in size structure between locations were more pronounced than differences between species at each location, suggesting that extreme differences in environmental conditions and disturbance events have a greater influence on population dynamics in the Gulf than inherent differences in their life-history characteristics.  相似文献   

5.
We investigated genetic diversity and population genetic structure of two common benthic nematode species, Ptycholaimellus pandispiculatus and Terschellingia longicaudata, from sandy beaches in the area of Bandar Abbas (Iran), Persian Gulf. Based upon partial mitochondrial cytochrome oxidase c subunit 1 (COI) gene data, 17 and two haplotypes were found for P. pandispiculatus and Te. longicaudata, respectively. Analysis of molecular variance did not reveal a significant population genetic structure for either species. The absence of genetic structuring indicates substantial dispersal and gene flow in our study area. To assess the species structure of Te. longicaudata at a larger geographic scale, we compared 18S rDNA and COI sequences from Iran and the Scheldt Estuary in The Netherlands to ascertain whether they truly belong to the same species. Our data confirmed previous studies that Te. longicaudata likely constitutes a complex of multiple cryptic species, with one of these species having a (near) cosmopolitan distribution.  相似文献   

6.
Molecular population genetic analysis has provided evidence that the copepod, Calanus finmarchicus, of the Labrador Current, Gulf of St Lawrence, Scotian Shelf, Gulf of Maine, and Georges Bank constitute a single, interbreeding population. The DNA sequence of a 350 base pair portion of the mitochondrial large subunit (16S) ribosomal RNA (rRNA) gene was determined for a total of 72 individuals collected in 1992, and 110 individuals collected in 1993 from these regions. There was significant heterogeneity in haplotype frequencies among the samples collected in 1992, but this heterogeneity did not resolve into regional patterns. The only regional differences seen were between pooled samples of the western N. Atlantic and those of the Norwegian Sea. There were no significant differences in haplotype frequencies among the samples collected in 1993, and fewer haplotypes were observed in these samples. Intraspecific molecular variation was typical of other marine species: there were 29 haplotypes among the 182 individuals sequenced. The frequency distribution of the haplotypes was highly skewed: 128 individuals shared one haplotype and 19 individuals were unique. There were 24 variable sites among the 350 bases sequenced; estimated nucleotide diversity was 0.0042. The genetic character of C. finmarchicus populations in the western N. Atlantic was stable over time in that three of the haplotypes (including the most abundant) occurred in both 1992 and 1993. However, haplotype frequencies differed significantly between the two years. The lack of regional structure in the 1992 samples and the genetic homogeneity of samples collected in 1993 across the domain from the Labrador Current to the Gulf of St Lawrence to Georges Bank and the Gulf of Maine indicated that there is significant gene flow across this region. The persistent genetic pattern suggests that the Gulf of St Lawrence may be an important source region for recruitment of C. finmarchicus to Georges Bank. Determination of zooplankton dispersal patterns within high gene flow species will provide information that may not be determined by conventional oceanographic analyses.  相似文献   

7.
The widespread mud crab, Scylla serrata, of the Indo‐West Pacific is an excellent model species to demonstrate how the colonization history of a species can be influenced by complex oceanographic conditions. Through the combination of ecological data (fossil records and paleo‐oceanographic conditions) and molecular data (coalescent simulations, network analysis, and nucleotide diversity tests), the phylogeographic history of S. serrata was re‐analyzed. Based on the analysis of mtDNA cytochrome oxidase I sequences, two major clades were identified for S. serrata, including a widespread clade (Clade I) with three disjunct geographic clusters (IA, IB and IC) and an endemic Northwest Australian clade (Clade II). Moreover, a significant phylogeographic structure corresponding to four subpopulations was revealed: Northwest Australia, West Indian Ocean, Red Sea‐South China Sea and West Pacific. A colonization history of a Northwest Australia origin for S. serrata followed by westward transmarine dispersal across the Indian Ocean for Clade I and sequential colonization from the West Indian Ocean to Red Sea‐South China Sea and West Pacific was corroborated. The Pleistocene fluctuations of paleo‐oceanographic conditions including surface circulations and physical topography in the Indo‐West Pacific might be responsible for the wide distribution, colonization history and genetic divergence of this species.  相似文献   

8.
The extreme environmental variability of coastal lagoons suggests that physical and ecological factors could contribute to the genetic divergence among populations occurring in lagoon and open‐coast environments. In this study we analysed the genetic variability of lagoon and marine samples of the sand goby, Pomatoschistus marmoratus (Risso, 1810) (Pisces: Gobiidae), on the SW Spain coast. A fragment of mitochondrial DNA control region (570 bp) was sequenced for 196 individuals collected in five localities: Lo Pagan, Los Urrutias and Playa Honda (Mar Menor coastal lagoon), and Veneziola and Mazarrón (Mediterranean Sea). The total haplotype diversity was h = 0.9424 ± 0.0229, and the total nucleotide diversity was π = 0.0108 ± 0.0058. Among‐sample genetic differentiation was not significant and small‐scale patterns in the distribution of haplotypes were not apparent. Gene flow and dispersal‐related life history traits may account for low genetic structure at a small spatial scale. The high genetic diversity found in P. marmoratus increases its potential to adapt to changing conditions of the Mar Menor coastal lagoon.  相似文献   

9.
Planktonic copepod Calanus sinicus is the dominant meso-zooplankton in the Northwest Pacific Ocean. To better understand its population dynamics and phylogeographic patterns, 243 C. sinicus individuals were collected from seven locations across the shelf waters of China and its population genetics was studied by mitochondrial DNA cytochrome oxidase I(mtCOI) sequences analyses. Thirty-nine different sequences, or haplotypes, were detected with moderate haplotype diversity(h=0.749) and low nucleotide diversity(π=0.003) for all populations. The evolutionary divergence between geographic populations varied from 0.24% to 0.37%, indicative of very limited genetic differentiation. Visualized minimum spanning network(MSN) and phylogenetic analysis of all the detected haplotypes did not reveal any clear phylogeographic pattern. Furthermore, AMOVA data showed no significant spatial population differentiation existed among the individuals collected across China shelf waters. Pairwise FST values showed that population collected from northwest of the East China Sea(ECS) displayed a low difference to other populations. Mismatch distribution analyses and neutrality tests indicated that C. sinicus might undergo a demographic/population expansion. No significant population genetic structuring was detected, indicating an extensive gene flow among the C. sinicus populations. Our results provide molecular evidence for the hypothesis that C. sinicus in the northwestern South China Sea in winter is transported from the East China Sea and the Yellow Sea by the China Coastal Current during the northeast monsoon period.  相似文献   

10.
We studied the genetic structure of the sea cucumber Holothuria (Roweothuria) polii (Delle Chiaje 1823) by analysing the mitochondrial DNA variation in two fragments of cytochrome oxidase I (COI) and 16S genes. Individuals were collected in seven locations along the Mediterranean Sea, which cover a wide range of the species distribution. We found high haplotype diversity for COI and moderate diversity for 16S, and low nucleotide diversity for both genes. Our results for the COI gene showed many recent and exclusive haplotypes with few mutational changes, suggesting recent or ongoing population expansion. The Western and Eastern Mediterranean populations exhibited slight but significant genetic differentiation (COI gene) with higher genetic diversity in the East. The most ancient haplotype was not present in the westernmost sampling location (SE Spain). The oldest expansion time was observed in Turkey, corresponding to mid‐Pleistocene. Turkey had also the highest genetic diversity (number of total and exclusive haplotypes, polymorphisms, haplotype and nucleotide diversity). This suggests that this region could be the origin of the subsequent colonizations through the Mediterranean Sea, a hypothesis that should be assessed with nuclear markers in future research.  相似文献   

11.
带鱼(Trichiurusjaponicus)是广泛分布于东亚大陆架海域的暖温性近底层经济鱼类,也是东海区最重要的海洋渔业捕捞对象。然而,目前的研究报道对东海近岸带鱼群体遗传变异特性认识不足,不利于其种群的遗传资源保护和管理。本研究利用线粒体控制区序列对东海近岸带鱼6个群体191个个体的遗传多样性、遗传分化和历史动态进行分析。在577 bp长的控制区序列中共检测到70个多态位点,定义了121个单倍型。群体总的单倍型多样性较高(0.9911),但总的核苷酸多样性较低(0.0092),群体间遗传多样性水平差异较小。单倍型遗传学关系、Fst值和分子方差分析结果均表明群体间的遗传分化不显著,存在广泛的基因交流。历史动态分析结果表明东海近岸带鱼群体在更新世中晚期可能经历了瓶颈效应和随后的群体快速扩张,这是导致群体遗传多样性较低的主要原因。带鱼较强的扩散能力、洄游行为、海洋环流以及近期的群体扩张可能是造成东海近岸带鱼缺乏显著的系统地理种群结构的原因。研究结果提示,在线粒体DNA水平上,东海近岸带鱼群体是一个随机交配的种群,在遗传资源管理上可作为一个单元进行管理。  相似文献   

12.
遗传多样性和群体遗传结构是研究群体动态变化的重要内容, 也是种质资源评估与保护的基础。日本鳀(Engraulis japonicus)是我国东部近海的重要鱼种, 具有重要的生态价值和经济价值。文章利用线粒体控制区全序列分析了黄海海域4个地理群体(北黄海北部、北黄海南部、南黄海北部和南黄海中部)日本鳀的遗传多样性、种群遗传结构和历史动态变化。结果显示, 131个样品检测到了126个单倍型, 且4个群体的单倍型多样性均很高, 其中北黄海南部群体的最低(0.995±0.009), 南黄海中部群体的最高(1.000±0.014)。而核苷酸多样性均较低, 为0.010±0.005 ~ 0.011±0.006。主成分判别分析(DAPC)和遗传分化系数Fst表明4个群体无明显的群体分化现象, 群体间的遗传同质性水平高, 分子方差分析(AMOVA)也显示分子变异基本来自于群体内, 并且没有明显的群体遗传结构。贝叶斯系统发育树分析发现, 黄海日本鳀有2个谱系, 谱系1和谱系2的分化时间为0.701Ma前, 可以追溯到更新世期间; 进一步中性检验和核苷酸错配分布分析表明这2个谱系可能发生过群体扩张。贝叶斯天际线图则显示黄海鳀鱼的有效群体数量在0.150Ma前发生了明显的下降。  相似文献   

13.
Yi  Chang Ho  Kim  Won 《Ocean Science Journal》2020,55(1):99-113

The solitary ascidian, Ciona savignyi (Ascidiacea, Enterogona) is a notorious marine invader still expanding its habitat range worldwide. This species is considered native to the North West Pacific, but its indigeneity in Korean coastal waters has been questioned because of outdated taxonomic records and its inhabitation of oceanographically marginal areas. To clarify their cryptic invasion state, 247 individual C. savignyi samples were collected from 12 harbors and marinas on the Korean coast, and a 744 bp region of mitochondrial DNA (mtDNA) cytochrome c oxidase subunit I gene was sequenced and analyzed. Our analyses of population genetic structure and demographic history provided considerable pieces of evidence supporting their long-term establishment on the Korean coasts: differentiated population genetic structure, sequentially arrayed star-shape haplotype network, neutrality test results of past population expansions, and post-glacial colonization pattern of demography. Consequently, we concluded that C. savignyi populations on the Korean Coast are indigenous rather than exotic. These results could be used as reference data for further phylogeo graphic and demographic studies of problematic Ciona species, and to clarify and resolve similar cryptic invasion states of the other Korean coastal marine organisms. This study is the first to resolve the cryptic in vasion state of Korean marine organisms using genetic analysis.

  相似文献   

14.
The skunk clownfish (Amphiprion akallopisos) has a disjunct distribution, occurring in the Eastern Indian Ocean (EIO) and the Western Indian Ocean (WIO), separated by several thousands of kilometres. Information on connectivity of marine species is very important for the correct spacing of marine protected areas, a powerful instrument for the protection of coral reefs. The population genetic structure of A. akallopisos was analysed in order to investigate connectivity amongst populations and to explain the disjunct distribution of the species. A fragment of the mitochondrial control region was used to investigate the genetic population structure. Fin clips were collected from 263 individuals at 14 sites in the WIO and three sites in the EIO. The obtained DNA sequences were used to calculate genetic diversity, evaluate demographic history and to construct a haplotype network. An analysis of molecular variance (AMOVA) was conducted to evaluate the significance of the observed genetic population structure. None of the identified 69 haplotypes was shared between the WIO and EIO. Haplotype as well as nucleotide diversity was considerably higher in the EIO than in the WIO. Significant genetic population structure was revealed by an AMOVA with an overall φst‐value of 0.28 (P < 0.001) in the Indian Ocean. The overall AMOVA (φst = ?0.00652) was not significant in the EIO, but was significant in the WIO (φst = 0.016; P < 0.01). Demographic analysis indicated population expansion in the EIO and WIO. Population genetic analysis revealed highly restricted gene flow between the EIO and WIO. Genetic diversity was much higher in the EIO than in the WIO, suggesting that the EIO is the geographical origin of the species. Given the large distance between the disjunct populations and the short pelagic larval duration, long‐distance dispersal is rather unlikely. A stepping stone model involving islands in the Central Indian Ocean is a more likely scenario for colonization of the WIO.  相似文献   

15.
Molecular data have shown that jellyfishes are more geographically restricted and evolutionarily divergent than previously thought. We examined genetic variation and divergence within the meroplanktonic barrel jellyfish Rhizostoma pulmo in the Mediterranean Sea; specific sampling areas were the northern Adriatic, western Mediterranean and Tunisian coast. A total of 19 sampling sites and 68 sequences of the mtDNA cytochrome c oxidase subunit I (COI) gene were used. Of the 68 COI sequences, 45 were newly collected specimens which originated from nine sampling sites along the Tunisian coast. A total of 24 haplotypes were obtained and the specimens sampled were characterised by relatively high levels of haplotype diversity (h = 0.866) and low levels of nucleotide diversity (π = 0.004). Haplotype network analysis showed the presence of three distinct phylogenetic lineages (populations), with separate geographic ranges in the northern Adriatic, western Mediterranean and Tunisian coast. The observed genetic differentiation between these three lineages was supported by the presence of significant genetic differentiation between the 19 populations (FST = 0.757, p < 0.001). The high level of genetic differentiation detected in the barrel jellyfish investigated could be attributed to either intrinsic and/or extrinsic barriers to genetic exchange between different populations that may have adapted to different environmental conditions.  相似文献   

16.
The deep-sea habitat, from 200 to 2000 m depth, has long been thought as an ecosystem where biotic and abiotic factors vary very little and consequently species are not disturbed by processes and phenomena which could promote fast evolutionary mechanisms. Unfortunately, biological information relating to deep water is limited, especially regarding the population genetics of species inhabiting the Mediterranean Sea, and general patterns cannot be inferred. In this study we report data on the population genetic structure of Aristeus antennatus , a deep-sea decapod crustacean species which has been widely studied due to its important economic value. We surveyed and examined the variation in a 369-bp fragment of the mtDNA control region from individuals caught by Spanish and Italian trawlers in eight localities. High levels of mitochondrial control region haplotypic diversity (ranging from 0.884 to 0.989) were observed. AMOVA showed a high level of genetic variation, more within than between populations, and a low but significant ΦST value was recovered. Minimum spanning network did not separate any haplotype group and haplotype distribution does not mirror the geographic origin of the samples. The absence of population substructuring was also observed with a principal coordinates analysis, which uses an individual-by-individual comparison. These results revealed extensive gene flow among populations. Information on demographic history based on mismatch analysis revealed an unstable population, showing an alternate pattern of growth and decline. Our results indicated that in the western and central Mediterranean basins A. antennatus is a large panmictic population with a fluctuating abundance. The absence of deep-sea barriers and adult migration may prevent the structuring of the species into genetically differentiated populations.  相似文献   

17.
本研究利用形态学方法和基于线粒体细胞色素氧化酶亚基Ⅰ(COⅠ)的遗传学方法分析了中国沿海青蚶(Barbatia virescens)6个地理群体的形态差异、遗传多样性、遗传结构及其种群历史动态。单因素方差分析(ANOVA)和Tukey检验表明,青蚶不同地理种群间表现出显著形态差异(P0.05)。经PCR扩增测序获得长度为587bp的COⅠ基因片段,112个个体共检测到18个多态性位点、17个单倍型,每个群体均有特有单倍型。青蚶群体的遗传多样性水平较低,总群体的平均单倍型多样度为0.5472,平均核苷酸多样度为0.000974。AMOVA分析表明,群体内个体间的遗传分化是青蚶群体遗传变异的主要原因,占87.40%。阳江群体与其他群体之间存在显著的低程度的遗传分化,而其他群体间的遗传分化不显著。单倍型网络关系图呈典型的星状拓扑结构,没有表现出显著的地理谱系结构。单倍型邻接树结果也没有明显分支,未呈现出地域性差异。中性检验和核苷酸不配对分析结果揭示青蚶种群历史上经历了群体扩事件,扩张时间约为26万年前。研究结果为青蚶资源的保护和可持续利用提供了基础资料。  相似文献   

18.
We describe the hydrological structure of waters of the Persian Gulf and its seasonal variability according to the data of CTD surveys carried out in February–June 1992 in the course of the cruises of the NOAA R/VMt. Mitchell aimed at the analysis of the consequences of the ecological catastrophe caused by the spread of oil spots formed as a result of war operations in the Persian Gulf in 1991. Translated by Peter V. Malyshev and Dmitry V. Malyshev  相似文献   

19.
Prior to the 1950s, thornback ray (Raja clavata L.) was common and widely distributed in the seas of Northwest Europe. Since then, it has decreased in abundance and geographic range due to over-fishing. The sustainability of ray populations is of concern to fisheries management because their slow growth rate, late maturity and low fecundity make them susceptible to exploitation as victims of by-catch. We investigated the population genetic structure of thornback rays from 14 locations in the southern North Sea, English Channel and Irish Sea. Adults comprised < 4% of the total sampling despite heavy sampling effort over 47 hauls; thus our results apply mainly to sexually immature individuals. Using five microsatellite loci, weak but significant population differentiation was detected with a global FST = 0.013 (P < 0.001). Pairwise Fst was significant for 75 out of 171 comparisons. Although earlier tagging studies suggest restricted foraging distances from home areas, the absence of genetic differentiation between some distant populations suggests that a substantial fraction of individuals migrate over wide areas. Autumn/winter locations appear to have a lower level of differentiation than spring/summer, which could be due to seasonal migration. Management and conservation of thornback ray populations will be challenging as population structure appears to be dynamic in space and time.  相似文献   

20.
Mitochondrial DNA (mtDNA) is a single, usually non‐recombining locus, and often uniparentally inherited. Therefore, its ability to reveal recent gene flow among populations is usually questioned. In this study, the genetic population structure of 16 populations of Tridacna crocea (n = 366) from the Indo‐Malay Archipelago (IMA) was examined with 10 microsatellite markers and compared to previous studies using mtDNA, in order to test if the revealed population structure was congruent between the two marker systems. The results showed that the genetic population structure revealed by the two marker systems was mostly congruent, with a high correlation between cytochrome c oxidase subunit I (COI) and microsatellites. The studied populations could be divided by both marker systems as follows: (i) Eastern Indian Ocean, (ii) Central IMA, and (iii) Western Pacific. Populations in the Central IMA showed high gene flow. However, populations in the Java Sea (Karimunjava, Pulau Seribu) were grouped into a separate cluster by mtDNA analysis, while this grouping was not detected by microsatellites. It was also noteworthy that there is obvious heterozygosity deficiency in most of the populations, which may be caused by null alleles, inbreeding or population expansion. Overall, these results indicate that the mitochondrial COI gene is applicable for population genetic analysis and precise recovery of connectivity patterns of giant clams. Therefore, the combination of mtDNA and nuclear DNA markers can lead to a more complete understanding of population genetics. Moreover, this study is expected to facilitate fully displaying the population genetic structure of giant clams combining with other researchers' results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号